publications 2016-19

People whose last names are highlighted in bold are Skoltech faculty, researchers, PhD students, or MSc students (in alphabetical order)


2019 / peer-reviewed publications / 121-075

  1. A. Buryak, A. Basalaev, “Open WDVV equations and Virasoro constraints”, Arnold Math J. 5:2-3(2019) 145-186, doi.org/10.1007/s40598-019-00115-w [ PDF: English, arXiv: 1901.10393]
  2. M. Bershtein, P. Gavrylenko, A. Marshakov, “Cluster Toda chains and Nekrasov functions”, Theoret. and Math. Phys., 198:2 (2019), 157–188 [ PDF: English, arXiv: 1804.10145 ]
  3. M. Bershtein, A. Shchechkin, “Painlevé equations from Nakajima-Yoshioka blow-up relations”, Lett Math Phys (2019) 1-44, doi.org/10.1007/s11005-019-01198-4 [ PDF: English, arXiv: 1811.04050 ]
  4. M. Bershtein, A. Tsymbaliuk, “Homomorphisms between different quantum toroidal and affine Yangian algebras”, J. Pure Appl. Algebra 223 (2019), no. 2, 867-899, doi:10.1016/j.jpaa.2018.05.003, [ PDF: English, arXiv: 1512.09109 ]
  5. A. Braverman, M. Finkelberg, H. Nakajima, “Ring objects in the equivariant Satake category arising from Coulomb branches”, Advances in Theoretical and Mathematical Physics 23:2(2019) 253-344 dx.doi.org/10.4310/ATMP.2019.v23.n2.a1 [ PDF: English, arXiv: 1706.02112 ]
  6. A. Braverman, M. Finkelberg, H. Nakajima, “Coulomb branches of 3d N=4 quiver gauge theories and slices in the affine Grassmannian”, Advances in Theoretical and Mathematical Physics 23:1(2019) 75-166 https://dx.doi.org/10.4310/ATMP.2019.v23.n1.a3 [ PDF: English, arXiv: 1604.03625 ]
  7. A. Braverman, M. Finkelberg, “Coulomb Branches of 3-Dimensional Gauge Theories and Related Structures”, In: Bruzzo U., Grassi A., Sala F. (eds) Geometric Representation Theory and Gauge Theory. Lecture Notes in Mathematics, vol 2248 (2019) 1-52 Springer, Cham https://dx.doi.org/10.1007/978-3-030-26856-5_1, [ PDF: English, arXiv: 1807.09038 ]
  8. E. Feigin, “Large tensor products and Littlewood-Richardson coefficients”, J. Lie Theory 29:4(2019) 927–940 [ PDF: English, arXiv: 1902.01154 ]
  9. A. Bigeni, E. Feigin, “Symmetric Dellac configurations and symplectic/orthogonal flag varieties” Linear Algebra Appl. 573 (2019), 54–79 [ PDF: English, arXiv: 1804.10804 ]
  10. M. Finkelberg, A. Tsymbaliuk, “Shifted quantum affine algebras: integral forms in type A”, Arnold Math J. 5(2019) 197-283. https://doi.org/10.1007/s40598-019-00118-7 [ PDF: English, arXiv: 1811.12137 ]
  11. M. Finkelberg, A. Tsymbaliuk, “Multiplicative slices, relativistic Toda and shifted quantum affine algebras”, Progress in Mathematics 330(2019) 133-304 doi.org/10.1007/978-3-030-23531-4_6 [ PDF: English, arXiv: 1708.01795 ]
  12. M. Finkelberg, E. Goncharov, “Coulomb branch of a multiloop quiver gauge theory”, Funct Anal Its Appl 53, 241–249 (2019), doi.org/10.1134/S0016266319040014 [ PDF: English, arXiv: 1903.05822]
  13. A. Gaifullin, D. Gorodkov, “An explicit local combinatorial formula for the first Pontryagin class”, Uspekhi Mat. Nauk, 74:6(450) (2019), 161–162, DOI: https://doi.org/10.1070/rm9920
  14. P. Gavrylenko, R. Santachiara, “Crossing invariant correlation functions at c=1 from isomonodromic τ functions”, J. High Energ. Phys. 2019, 119 (2019). https://doi.org/10.1007/JHEP11(2019)119 [ PDF: English, arXiv: 1812.10362 ]
  15. M. Cafasso, P. Gavrylenko, O. Lisovyy, “Tau functions as Widom constants”, Commun. Math. Phys. (2018) 1-32 doi.org/10.1007/s00220-018-3230-9 [ PDF: English, arXiv: 1712.08546 ]
  16. R. Gonin, A. Tsymbaliuk, “On Sevostyanov’s construction of quantum difference Toda lattices for classical groups”, Int. Math. Res. Notices, rnz083, doi.org/10.1093/imrn/rnz083 [ PDF: English, arXiv: 1804.01063 ]
  17. D. Gorodkov, A 15-Vertex Triangulation of the Quaternionic Projective Plane. Discrete Comput Geom 62, 348–373 (2019). https://doi.org/10.1007/s00454-018-00055-w
  18. A. Grekov, A. Zabrodin, A. Zotov, “Supersymmetric extension of qKZ-Ruijsenaars correspondence”, Nuclear Physics B 939 (2019) 174-190, doi10.1016/j.nuclphysb.2018.12.014 [ PDF: English, arXiv: 1810.12658 ]
  19. A. Grekov, I. Sechin, A. Zotov, “Generalized model of interacting integrable tops”, J. High Energ. Phys. 2019, 81 (2019). https://doi.org/10.1007/JHEP10(2019)081 [ PDF: English, arXiv: 1905.07820]
  20. A. Grekov, E. Dotsenko, “Real Forms of Elliptic Integrable Systems”, Theor Math Phys 199, 513–524 (2019) https://doi.org/10.1134/S0040577919040032
  21. T. Grigoryev, M.Nazarov, “An Analogue of the Perelomov-Popov Formula for the Lie Superalgebra q(N)”, Funct Anal Its Appl 53, 304–308 (2019). https://doi.org/10.1134/S0016266319040075
  22. A. Ilina, I. Krichever, N. Nekrasov, “Two-dimensional periodic Schrödinger operators integrable on an energy “eigenlevel””, Funktsional. Anal. i Prilozhen., 53:1 (2019), 23–36, doi.org/10.4213/faa3626 [ PDF: English, arXiv: 1903.01778 ]
  23. S. Grushevsky, I. Krichever, C. Norton, “Real-normalized differentials: limits on stable curves”, Russian Math. Surveys 74:2(446) (2019) [ PDF: English, arXiv: 1703.07806 ]
  24. S.Lando, “On Dubrovin’s Frobenius structures on Hurwitz spaces”, Advanced Studies in Pure Mathematics, 83(2019) 217-236
  25. A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “New symmetries of gl(N)-invariant Bethe vectors”, J. Stat. Mech., 2019 (2019), 44001, 24 doi: 10.1088/1742-5468/ab02f0 [ PDF: English, arXiv: 1810.00364 ]
  26. A. Liashyk, S. Pakuliak, E. Ragoucy, N. Slavnov, “Bethe vectors for orthogonal integrable models”, Theoret. and Math. Phys., Theoret. and Math. Phys., 201:2 (2019), 1543–1562 [ PDF: English, arXiv: 1906.03202]
  27. A. Gorsky, M. Litvinov, “Metal or Insulator? Dirac operator spectrum in holographic QCD”, Phys.Letters B (2019) 795 379-385, doi.org/10.1016/j.physletb.2019.06.017 [ PDF: English, arXiv: 1812.02321 ]
  28. I. Makhlin, “FFLV-type monomial bases for type B”, Algebraic Combinatorics, 2:2(2019) 305–322 doi.org/10.5802/alco.41 [ PDF: English, arXiv: 1610.07984 ]
  29. X. Fang, E. Feigin, G. Fourier, I. Makhlin, “Weighted PBW degenerations and tropical flag varieties”, Comm. Contemporary Math., 21 (2019) 1-27, doi.org/10.1142/S0219199718500165 [ PDF: English, arXiv: 1711.00751]
  30. A. Marshakov, M. Semenyakin, “Cluster integrable systems and spin chains”, J. High Energ. Phys. (2019) 2019: 100, doi.org/10.1007/JHEP10(2019)100 [ PDF: English, arXiv: 1905.09921 ]
  31. S. M. Khoroshkin, M. G. Matushko, “Fermionic limit of the Calogero-Sutherland system”, J. Math. Phys. 60, 071706 (2019) doi10.1063/1.5100035 [ PDF: English, arXiv: 1910.08972 ]
  32. N. Nekrasov, “Superspin chains and supersymmetric gauge theories”, J. High Energ. Phys. (2019) 2019: 102. https://doi.org/10.1007/JHEP03(2019)102 [ PDF: English, arXiv: 1811.04278 ]
  33. N. Nekrasov, “Laughlin states and gauge theory”, Arnold Math J. 5:1(2019) 123-138, doi.org/10.1007/s40598-019-00113-y
  34. G. Olshanski, “Interpolation Macdonald polynomials and Cauchy-type identities”, Jour.Comb.Theory, Series A. 162(2019) 65-117 [ PDF: English, arXiv: 1712.08018 ]
  35. A. Dymarsky, K. Pavlenko, “Exact generalized partition function of 2D CFTs at large central charge”, J. High Energ. Phys. 2019, 77 (2019). https://doi.org/10.1007/JHEP05(2019)077 [ PDF: English, arXiv: 1812.05108 ]
  36. A. Dymarsky, K. Pavlenko, “Generalized Eigenstate Thermalization in 2d CFTs”, https://doi.org/10.1103/PhysRevLett.123.111602 [ PDF: English, arXiv: 1903.03559 ]
  37. A. Dymarsky, K. Pavlenko, “Generalized Gibbs Ensemble of 2d CFTs at large central charge in the thermodynamic limit”, High Energ. Phys. (2019) 2019: 98, https://doi.10.1007/JHEP01(2019)098 [ PDF: English, arXiv: 1810.11025 ]
  38. V. Prokofev, A. Zabrodin, “Toda lattice hierarchy and trigonometric Ruijsenaars-Schneider hierarchy” Journal of Physics A: Math. Theor., 52 (2019) 495202, doi: 10.1088/1751-8121/ab520c [ PDF: English, arXiv: 1907.06621]
  39. S. Nechaev, K. Polovnikov, S. Shlosman, A. Valov, A. Vladimirov, “Anomalous 1D fluctuations of a simple 2D random walk in a large deviation regime”, Phys. Rev. E 99, 012110 (2019) doi10.1103/PhysRevE.99.012110 [ PDF: English, arXiv: 1805.05014 ]
  40. O. Ogievetsky, S. Shlosman, “Critical configurations of solid bodies and the Morse theory of MIN functions”, Russian Math. Surveys, 74:4 (2019), 631–657 [ PDF: English, arXiv: 1907.01896]
  41. O. Ogievetsky, S. Shlosman, “Extremal cylinder configurations II: configuration O6″ Experimental Mathematics, (2019) v.31, issue 2, 486-496, doi.org/:10.1080/10586458.2019.1641768 [ PDF: English, arXiv: 1902.08995]
  42. S. Dobrokhotov, D. Minenkov, A. Neishtadt, S. Shlosman, “Classical and Quantum Dynamics of a Particle in a Narrow Angle”, Regul. Chaot. Dyn. 24:6(2019) 704-716, https://doi.org/10.1134/S156035471906008X
  43. D. Ioffe, S. Shlosman, “Formation of Facets for an Effective Model of Crystal Growth”,Springer Proceedings in Mathematics and Statistics,298199-245 DOI: 10.1007/978-981-15-0294-1_9, [ PDF: English, arXiv: 1704.06760 ]
  44. A. Kemppainen, S. Smirnov, “Conformal Invariance of Boundary Touching Loops of FK Ising Model”, Comm. Math. Phys., 369(2019)49-98 doi.org/10.1007/s00220-019-03437-0 [ PDF: English, arXiv: 1509.08858 ]
  45. A. Zabrodin, “Time discretization of the spin Calogero-Moser model and the semi-discrete matrix KP hierarchy”, J.Math.Phys., 60, 033502 (2019); doi.org/10.1063/1.5081021 [ PDF: English, arXiv: 1806.10525 ]
  46. A. Zabrodin, “Matrix Modified Kadomtsev-Petviashvili Hierarchy”, Theor.Math.Phys. 199:3(2019) 771-783, https://doi.org/10.1134/S0040577919060011
  47. I. Vilkoviskiy, “Persistent current in a thin superconducting wire”, Phys. Scr. 95:1(2019) 015801 doi.org/10.1088/1402-4896/ab3d1a [ PDF: English, arXiv: 1806.01192 ]

2019 / preprints / 074-066

  1. E. Dotsenko, “The Dynamical equations for gl(n|m)” [ PDF: English, arXiv: 1904.00006]
  2. E. Feigin, A. Khoroshkin, I. Makedonskyi, “Peter-Weyl, Howe and Schur-Weyl theorems for current groups” [ PDF: English, arXiv: 1906.03290]
  3. E. Feigin, “Tensor products, Kerov’s theorem and GUE eigenvalues density” [ PDF: English, arXiv: 1902.01154]
  4. N. Klemyatin, “Universal spaces of parameters for complex Grassmann manifolds Gq+1,2″ [ PDF: English, arXiv: 1905.03047]
  5. I. Karzhemanov, G. Konovalov, “Rational maps and K3 surfaces” [ PDF: English, arXiv: 1910.06655]
  6. I. Krichever, A. Varchenko, “Incarnations of XXX slNˆ Bethe ansatz equations and integrable hierarchies” [ PDF: English, arXiv: 1907.12198]
  7. A. Liashyk, “New approach to scalar products of Bethe vectors” [ PDF: English, arXiv: 1907.11875]
  8. V. Prokofev, A. Zabrodin, “Matrix KP hierarchy and spin generalization of trigonometric Calogero-Moser hierarchy” [ PDF: English, arXiv: 1910.00434]
  9. O. Ogievetsky, S. Shlosman, “Platonic compounds of cylinders” [ PDF: English, arXiv: 1904.02043]

2018 / peer-reviewed publications / 065-031

  1. A. Basalaev, N. Priddis, “Givental-Type reconstruction at a nonsemisimple point”, Michigan Math. J. 67:2(2018) 333-369, doi:10.1307/mmj/1523584849
  2. M. Bershtein, P. Gavrylenko, A. Marshakov, “Twist-field representations of W-algebras, exact conformal blocks and character identities”, J. High Energ. Phys. (2018) 8:108, doi: 10.1007/jhep08(2018)108 [ PDF: English, arXiv: 1705.00957 ]
  3. M. Bershtein, B. Feigin, G. Merzon, “Plane partitions with a “pit”: generating functions and representation theory”, Sel. Math. New Ser. (2018) 24:1 21-62, doi: 10.1007/s00029-018-0389-z
  4. M. Bershtein, P. Gavrylenko, A. Marshakov, “Cluster integrable systems, q-Painleve equations and their quantization”, J. High Energ. Phys. (2018) 2018: 77 [ PDF: English, arXiv: 1711.02063 ]
  5. A. Braverman, D. Kazhdan, “Remarks on the asymptotic Hecke algebra “, In: Kac V., Popov V. (eds) Lie Groups, Geometry, and Representation Theory. Progress in Mathematics, vol 326. Birkhäuser, Cham, doi.org/10.1007/978-3-030-02191-7_4 [ PDF: English, arXiv: 1704.03019 ]
  6. A. Braverman, D. Kazhdan, “Schwartz space of parabolic basic affine space and asymptotic Hecke algebras”, Braverman, Alexander and David Kazhdan. “Schwartz space of parabolic basic affine space and asymptotic Hecke algebras”, Representations of Reductive Groups (2018): n. pag. doi:10.1090/pspum/101/02 [ PDF: English, arXiv: 1804.00336 ]
  7. B. Feigin, E. Feigin, M. Jimbo, T. Miwa, E. Mukhin, “Fermionic Formulas for Eigenfunctions of the Difference Toda Hamiltonian”, Lett. Math.Physics, 108:7(2018) 1779-1781 doi.org 10.1007/s11005-018-1058-z
  8. M. Finkelberg, J. Kamnitzer, K. Pham, L. Rybnikov, A. Weekes, “Comultiplication for shifted Yangians and quantum open Toda lattice”, Adv. Math. 327 (2018) 349-389, [ PDF: English, arXiv: 1608.03331 ]
  9. M. Finkelberg, A. Ionov, “Kostka-Shoji polynomials and Lusztig’s convolution diagram”, Inst. Math. Acad. Sinica, 13:1 (2018) 31-42, DOI: https://doi.org/10.21915/BIMAS.2018102
  10. M. Finkelberg, A. Kuznetsov, L. Rybnikov, G. Dobrovolska, “Towards a cluster structure on trigonometric zastava”, Sel. Math. New Ser. (2018) 24:1 187-225
  11. M. Finkelberg , “Double affine Grassmannians and Coulomb branches of 3d N=4 quiver gauge theories”, Proc. Int. Cong. of Math. in Rio de Janeiro, World Scientific (2018), Vol.2, 1283-1302 doi.org/10.1142/9789813272880_0097 [ PDF: English, arXiv: 1712.03039 ]
  12. A. Gaifullin, L. Ignashchenko, “Dehn Invariant and scissors congruence of flexible polyhedra”, Proc. Steklov Inst. Math. (2018) 302: 130. doi.org/10.1134/S0081543818060068 [ PDF: English, arXiv: 1710.11247 ]
  13. A. A. Gaifullin, Y. A. Neretin, “Infinite symmetric group, pseudomanifolds, and combinatorial cobordism-like structures”, J. Topol. Anal., 10:3(2018) 605-625 doi.org/10.1142/S179352531850022X
  14. P. Gavrylenko, O. Lisovyy, “Fredholm determinant and Nekrasov sum representations of isomonodromic tau functions”, Commun. Math. Phys. (2018) 363:1 1-58. doi.org/10.1007/s00220-018-3224-7 [PDF: English, arXiv: 1608.00958 ]
  15. P. Gavrylenko, N. Iorgov, O. Lisovyy, “On solutions of the Fuji-Suzuki-Tsuda system”, SIGMA 14 (2018), 123, doi10.3842/SIGMA.2018.123 [ PDF: English, arXiv: 1806.08650 ]
  16. P. Gavrylenko, O. Lisovyy, “Pure SU(2) gauge theory partition function and generalized Bessel kernel”, Proc. of Symposia in Pure Mathematics 98 (2018) 181-205 doi.org/10.1090/pspum/098/01727 [ PDF: English, arXiv: 1705.01869 ]
  17. V. Belavin, R. Geiko, “c-Recursion for multi-point superconformal blocks. NS sector”, J. High Energ. Phys., 8(2018)112 [ PDF: English, arXiv: 1806.09563 ]
  18. M. Kazaryan, S. Lando, V. Prasolov, “Algebraic Curves. Towards Moduli Spaces”, Springer Nature Switzerland AG 2018, ISBN 978-3-030-02942-5, https://doi.org/10.1007/978-3-030-02943-2
  19. M. Kazarian, S. Lando, D. Zvonkine, “Universal cohomological expressions for singularities in families of genus 0 stable maps”, Int. Math. Res. Notices, V.2018, 22, 6817–6843, https://doi.org/10.1093/imrn/rnx070
  20. A. Liashyk, N. A. Slavnov, “On Bethe vectors in gl3-invariant integrable models”, J. High Energ. Phys. 6 (2018) 018, [ PDF: English, arXiv: 1803.07628 ]
  21. A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Scalar products and norm of Bethe vectors for integrable models based on Uq(glˆn)”, SciPost Phys. 4, (2018) 006 [ PDF: English, arXiv: 1711.03867 ]
  22. G. Olshanski, “The topological support of the z-measures on the Thoma simplex”, Funct. Anal. Appl., 52:4 (2018), 308–310 doi.org/10.4213/faa3616 [ PDF: English, arXiv: 1809.07125 ]
  23. A. Losev, I. Polyubin, A. Rosly, “Ultraviolet Properties of the Self-Dual Yang-Mills Theory”, J. High Energ. Phys. (2018) 2018: 41 [ PDF: English, arXiv: 1711.10026 ]
  24. M. Semenyakin, G. Falkovich, “Alternating currents and shear waves in viscous electronics”, Phys. Rev. B 97, 085127 (2018) [ PDF: English, arXiv: 1710.08844 ]
  25. O. V. Ogievetskii, S. B. Shlosman, “Plane Partitions and Their Pedestal Polynomials”, Mat. Zametki, 103:5 (2018), 745–749
  26. A. Vladimirov, S. Pirogov, A. Rybko, S. Shlosman, “Propagation of Chaos and Poisson Hypothesis”, Problems of Information Transmission, 54:3 (2018) 290-299 DOI: 10.1134/S0032946018030080
  27. R. Kusner, W. Kusner, J.C. Lagarias, S. Shlosman, “Configuration Spaces of Equal Spheres Touching a Given Sphere: The twelve spheres problem”, 10.1007/978-3-662-57143-3 [ PDF: English, arXiv: 1611.10297 ]
  28. S. Shlosman, “Topological Tverberg Theorem: the proofs and the counterexamples”, Russian Mathematical Surveys, 2018, V.73 [ PDF: English, arXiv: 1804.03120 ]
  29. S. Dobrokhotov, D. Minenko, S. Shlosman, “Asymptotics of Wave Functions of the Stationary Schrodinger Equation in the Weyl Chamber”, Theoret. and Math. Phys., 197:2(2018) 1626–1634 DOI: 10.1134/S0040577918110065
  30. F. Baccelli, A. Rybko, S. Shlosman, A. Vladimirov, “Metastability of Queuing Networks with Mobile Servers”, J. Stat. Phys. (2018). https://doi.org/10.1007/s10955-018-2023-z [ PDF: English, arXiv: 1704.02521 ]
  31. D. Abraham, C. M. Newman, S. Shlosman, “A continuum of pure states in the Ising model on a halfplane”, J. Stat. Phys. (2018) 172(2) 611-626, DOI: 10.1007/s10955-017-1918-4 [ PDF: English, arXiv: 1710.05411]
  32. A. Skripchenko, S. Troubetzkoy, “On the Hausdorff dimension of minimal interval exchange transformations with flips”, J. Lond. Math. Soc., 97:2(2018) 149-169, [ PDF: English, arXiv: 1510.02362 ]
  33. A. Kemppainen, S. Smirnov, “Configurations of FK Ising interfaces and hypergeometric SLE”, Math. Research Lett. 25(3) (2018) 875 – 889, dx.doi.org/10.4310/MRL.2018.v25.n3.a7 [ PDF: English, arXiv: 1704.02823 ]
  34. A. Zabrodin, A.Zotov, “Self-dual form of Ruijsenaars–Schneider models and ILW equation with discrete Laplacian”, Nucl. Phys. B, 927 (2018) 550-565 [ PDF: English, arXiv: 1711.01036 ]
  35. A. Eskin, M. Kontsevich, M. Moeller, A. Zorich, “Lower bounds for Lyapunov exponents of flat bundles on curves”, Geometry & Topology 22 (2018) 2299–2338, DOI: 10.2140/gt.2018.22.2299 [ PDF: English, arXiv: 1609.01170 ]

2018 / preprints / 030-027

  1. E. Feigin, I. Makedonskyi, “Vertex algebras and coordinate rings of semi-infinite flags” * [ PDF: English, arXiv: 1804.03359 ]
  2. S. Alekseev, M. Litvinov, “On resummation of the irregular conformal block” [ PDF: English, arXiv: 1812.03387 ]
  3. A. Zabrodin, “Lectures on nonlinear integrable equations and their solutions”, [ PDF: English, arXiv: 1812.11830 ]
  4. A. Zabrodin, “On matrix modified KP hierarchy”, [ PDF: English, arXiv: 1802.02797 ]

2017 / peer-reviewed publications / 026-006

  1. M. A. Bershtein, A. I. Shchechkin, “Backlund transformation of Painleve III(D8) tau function”, J. Phys. A: Math. Theor. 50 (2017) 115205. [ PDF: English, arXiv: 1608.02568 ]
  2. M. A. Bershtein, A. I. Shchechkin, “q-deformed Painleve τ function and q-deformed conformal blocks”, J. Phys. A: Math. Theor. 50 (2017) 085202. [ PDF: English, arXiv: 1608.02566 ]
  3. A. Braverman, M. Finkelberg, “Twisted zastava and q-Whittaker functions”, J. London Math. Soc. (2) 96 (2017) 309-325. [ PDF: English, arXiv: 1410.2365 ]
  4. S. Kruglik, M. Dudina, V. Potapova, A. Frolov, “On one generalization of LRC codes with availability”, 2017 IEEE Information Theory Workshop (ITW), Kaohsiung, Taiwan, 2017, pp. 26-30, doi: 10.1109/ITW.2017.8277989
  5. E. Feigin, M. Finkelberg, M. Reineke, “Degenerate affine Grassmannians and loop quivers”, Kyoto J. Math., 57:2 (2017), 445-474
  6. E. Feigin, I. Makedonskyi, “Weyl modules for osp(1,2) and nonsymmetric Macdonald polynomials”, Math.Res.Lett., 24:3 (2017), 741–766
  7. E. A. Makedonskii, E. B. Feigin, “Generalized Weyl modules for twisted current algebras”, TMF, 192:2 (2017), 284–306; Theoret. and Math. Phys., 192:2 (2017), 1184–1204
  8. G. Cerulli Irelli, X. Fang, E. Feigin, G. Fourier, M. Reineke, “Linear degenerations of flag varieties”, Math. Z. (2017) 287: 615-654, [ PDF: English, arXiv: 1603.08395 ]
  9. E. Feigin, I. Makedonskyi, “Generalized Weyl modules, alcove paths and Macdonald polynomials”, Sel. Math. New Ser. (2017) 23: 2863 [ PDF: English, arXiv: 1512.03254 ]
  10. A. A. Gaifullin, “On an extension of the Birman–Craggs–Johnson homomorphism”, Russian Math. Surveys, 72:6 (2017), 1171–1173
  11. A. V. Ilyina, I. M. Krichever, “Triangular reductions of 2D Toda hierarchy,” Funkts. Anal. Prilozhen., 51:1 (2017), 60–81; English transl.: Funct. Anal. Appl., 51:1 (2017), 48–65. [ arXiv: 1609.05120, PDF: English ]
  12. S. Lando, V. Zhukov, “Delta-matroids and Vassiliev invariants”, Mosc. Math. J., 17:4(2017) 1-15
  13. A. Zabrodin, A. Zotov, A. Liashyk, D. Rudneva, “Asymmetric 6-vertex model and classical Ruijsenaars-Schneider system of particles”, Theoret. Math. Phys., 192:2 (2017) 1141-1153. [ PDF: English, arXiv: 1611.02497 ]
  14. A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Scalar products of Bethe vectors in the models with gl(m|n) symmetry”, Nucl.Phys.B, 923 (2017) 277-311, [ PDF: English, arXiv: 1704.08173 ]
  15. A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Norm of Bethe vectors in gl(m|n) based models”, Nuclear Phys. B, 926 (2018), 256–278 [ PDF: English, arXiv: 1705.09219 ]
  16. A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Current presentation for the double super-Yangian $DY(\mathfrak{gl}(m|n))$ and Bethe vectors”, Russian Math. Surveys, 72:1 (2017), 33–99. [ PDF: English, arXiv: 1611.09620 ]
  17. G. Olshanski, “Analogue of big q-Jacobi polynomials in the algebra of symmetric functions”, Funct. Anal. Appl. 51:3(2017) 204-220. [ PDF: English, arXiv: 1705.06543 ]
  18. S. Shlosman, “Crystals in the Void”, J. Stat. Phys., 169:3 (2017) 472–479, doi10.1007/s10955-017-1878-8 [ PDF: English, arXiv: 1706.08967 ]
  19. A. Rybko, S. Shlosman, A. Vladimirov, “Poisson hypothesis for open networks at low load”, Mosc. Math. J., 17:1 (2017), 145–160
  20. L. Manukyan, S.A. Montandon, A. Fofonjka, S. Smirnov, M. Milinkovitch, “A living mesoscopic cellular automaton made of skin scales”, Nature 544(7649) (2017), 173-179 doi10.1038/nature22031
  21. A. Zabrodin, A. Zotov, “QKZ-Ruijsenaars correspondence revisited”, Nucl.Phys.B 922 (2017) 113-125, doi10.1016/j.nuclphysb.2017.06.025 [ PDF: English, arXiv: 1704.04527 ]

2017 / preprints / 005-005

  1. E. Feigin, I. Makedonskyi, “Semi-infinite Plücker relations and Weyl modules”, [ PDF: English, arXiv: 1709.05674]

2016 / peer-reviewed publications / 004-004

  1. A. Braverman, M. Finkelberg, H. Nakajima, “Instanton moduli spaces and W-algebras”, Astérisque No. 385 (2016), vii+128 pp. ISBN:2856298486 [ PDF: English, arXiv: 1406.2381v5 ]

2016 / preprints / 001-003

  1. D. Chelkak, A. Glazman, S. Smirnov, “Discrete stress-energy tensor in the loop O(n) model”, [PDF: English, arXiv: 1604.06339 ]
  2. M. Semenyakin, Comment on “Linking spatial distributions of potential and current in viscous electronics”, [ PDF: English, arXiv: 1609.05316 ]
  3. A. Kemppainen, S. Smirnov, “Conformal invariance in random cluster models. II. Full scaling limit as a branching SLE”, [PDF: English, arXiv: 1609.08527 ]