Семен Шлосман

профессор / Сколковский институт науки и технологий,
ведущий научный сотрудник / Институт проблем передачи информации им. А.А.Харкевича РАН,
руководитель исследования / Центр теоретической физики в Марселе (CPT)

Профессиональные интересы
алгебраическая топология, математическая физика, терия вероятности, комбинаторика

Основные научные интересы находятся в области строгой статистической механики. Это область математики, включающая в себя теорию случайных полей и теорию вероятностей, которая изучает математические модели кристаллов, жидкостей и газов. Многие работы посвящены модели Изинга — простейшей модели статистической физики, которая предоставляет огромное количество задач разной степени сложности. Многие из них решены, а многие остаются открытыми до сего дня.
Среди научных интересов находится также комбинаторика, особенно асимптотическая комбинаторика и топологическая комбинаторика. Последние несколько лет интересы распространяются и на область теории больших информационных сетей, где применимы некоторые методы статистической физики.

Окончил механико-математический факультет Московского государственного университета в 1972 году. В 1975 году окончил аспирантуру Института проблем передачи информации РАН под руководством Роланда Львовича Добрушина – выдающегося математика, одного из основателей строгой статистической физики.

Публикации

  1. O. Ogievetsky, S. Shlosman, “The four cylinders problem”, In preparation
  2. O. Ogievetsky, S. Shlosman, “The six cylinders problem: D3-symmetry approach”, [ PDF: English, arXiv: 1805.09833 ]
  3. S. Nechaev, K. Polovnikov, S. Shlosman, A. Valov, A. Vladimirov, “Anomalous 1D fluctuations of a simple 2D random walk in a large deviation regime”, [ PDF: English, arXiv: 1805.05014 ]
  4. О. В. Огиевецкий, С. Б. Шлосман, “Плоские разбиения и их пьедестальные многочлены”, Матем. заметки, 103:5 (2018), 745–749
  5. S. Shlosman, Topological Tverberg Theorem: the proofs and the counterexamples”, Russian Mathematical Surveys, 2018, V.73, С. Б. Шлосман, “Топологическая теорема Тверберга: доказательства и контрпримеры”, УМН, 73:2(440) (2018), 175–182 [ PDF: English, arXiv: 1804.03120 ]
  6. D. Abraham, C. M. Newman, S. Shlosman, “A continuum of pure states in the Ising model on a halfplane”, [ PDF: English, arXiv: 1710.05411]
  7. D. Gandolfo, C. Maes, J. Ruiz, S. Shlosman, “Glassy states: the free Ising model on a tree”, [ PDF: English, arXiv: 1709.00543]
  8. S. Shlosman, “Crystals in the Void”, [ PDF: English, arXiv: 1706.08967 ]
  9. D. Gandolfo, C. Maes, J. Ruiz, S. Shlosman, “Spin glass phenomenon as roughening transition”, In preparation
  10. D. Ioffe, S. Shlosman, “Formation of Facets for an Effective Model of Crystal Growth”, [ PDF: English, arXiv: 1704.06760 ]
  11. R. Kusner, W. Kusner, J.C. Lagarias, S. Shlosman, “The twelve spheres problem”, [ PDF: English, arXiv: 1611.10297 ]
  12. S. Pirogov, A. Rybko, S. Shlosman, A. Vladimirov, “Propagation of Chaos and Poisson Hypothesis”, [ PDF: English, arXiv: 1610.08492 ]
  13. F. Baccelli, A. Rybko, S. Shlosman, A. Vladimirov, “Metastability of Queuing Networks with Mobile Servers”, [ PDF: English, arXiv: 1704.02521 ]
  14. F. Baccelli, A. Rybko, S. Shlosman, A. Vladimirov, “Stability, metastability and instability of moving net-works I, II”, In preparation
  15. O. Ogievetsky, S. Shlosman, “Plane partitions and their pedestal polynomials”, [ PDF: English, arXiv: 1412.7666 ]
  16. A. Rybko, S. Shlosman, A. Vladimirov, “Poisson Hypothesis for Open Networks at Low Load”, Markov Processes and Related Fields, v.4 2016, Mosc. Math. J., 17:1 (2017), 145–160 [ PDF: English, arXiv: 1408.7034 ]
  17. A. Rybko, S. Shlosman, “Stationary States of the Generalized Jackson Networks”, Markov Processes and Related Fields, 22, 759-774, 2016. [ PDF: English, arXiv: 1308.1524 ]
  18. Ф. Баччелли, А. Н. Рыбко, С. Б. Шлосман, “Сети массового обслуживания с подвижными приборами – предел среднего поля”, Пробл. передачи информ., 52:2 (2016), 86–110; Problems Inform. Transmission, 52:2 (2016), 178–199, [ PDF: English, arXiv: 1311.3898 ]
  19. D. Ioffe, S. Shlosman, Y. Velenik, “An invariance principle to Ferrari-Spohn diffusions”, Commun. Math. Phys. 336:2 (2015) 905-932. [ PDF: English, arXiv: 1403.5073 ]
  20. D. Gandolfo, J. Ruiz, S. Shlosman, “A manifold of pure Gibbs states of the Ising model on the Lobachevsky plane”, Commun. Math. Phys. 334:1 (2015) 313-330. [ PDF: English, arXiv: 1310.5898 ]
  21. D. Ioffe, S. Shlosman, F. Toninelli, “Interaction versus entropic repulsion for low temperature Ising polymers”, J. Stat. Physics, 158:5 (2015) 1007-1050. [ PDF: English, arXiv: 1407.3592 ]
  22. С. Б. Шлосман, “Можно ли сделать надежную память из ненадежных элементов?”, Автомат. и телемех., 2013, №10, 15–22; Autom. Remote Control, 74:10 (2013), 1614–1619
  23. R. A. Minlos, E. A. Pechersky, S. A. Pirogov, S. Shlosman, Yu. M. Suhov, “Gibbs random fields on the lattice. Definitions, existence, uniqueness”, From the seminar on Mathematical Statistical Physics in Moscow State University, 1962-1994, Eur. Phys. J. H 37:4 (2012) 571-594
  24. E. Dinaburg, E. A. Pechersky, S. A. Pirogov, S. Shlosman and Yu. M. Suhov, “Contour technics”, From the seminar on Mathematical Statistical Physics in Moscow State University, 1962-1994, Eur. Phys. J. H 37:4 (2012) 619-637
  25. S. Shlosman, “Constructive criteria”, Eur. Phys. J. H 37:4 (2012), 595-603
  26. D. Gandolfo, J. Ruiz, S. Shlosman, “A manifold of pure Gibbs states of the Ising model on a Cayley tree”, J Stat Phys 148: (2012) 999-1005. [ PDF: English, arXiv: 1207.0983 ]
  27. C. Maes, S. Shlosman, “Rotating states in driven clock- and XY-models”, J Stat Phys 144:6 (2011) 1238-1246. [ PDF: English, arXiv: 1107.0370 ]
  28. D. Ioffe, S. Shlosman, “Ising fog drip: the shallow puddle, o(N) deep”, Actes des rencontres du CIRM, 2 no.1: Deviations pour les temps locaux d’auto-intersections (2010), p. 31-36.
  29. J. Bellissard, C. Radin, S. Shlosman, “The characterization of ground states”, J. Phys. A: Math. Theor. 43 (2010) 305001. [ PDF: English, arXiv: 0907.5393 ]
  30. A. Borodin, S. Shlosman, “Gibbs Ensembles of Nonintersecting Paths”, Commun. Math. Phys. 293 (2010) 145-170. [ PDF: English, arXiv: 0804.0564 ]
  31. A. Rybko, S. Shlosman, A. Vladimirov, “Absence of Breakdown of the Poisson Hypothesis I. Closed Networks at Low Load”, Markov Processes and Related Field,
    16 (2010) 267-285. [ PDF: English, arXiv: 0811.3577 ]
  32. A. Rybko, S. Shlosman, A. Vladimirov, “Spontaneous Resonances and the Coherent States of the Queuing Networks”, J Stat Phys 134:1 (2008) 67-104. [ PDF: English, arXiv: 0708.3073 ]
  33. D. Ioffe, S. Shlosman, “Ising model fog drip: the first two droplets”, In: “In and Out of Equilibrium 2″, Progress in Probability 60, 365-382, eds. M.E. Vares, V. Sidoravicius, Birkhauser, 2008. [ PDF: English, arXiv: 0710.5848 ]
  34. A. Rubco, S. Shlosman, “Phase transitions in the queuing networks and the violation of the Poisson hypothesis”, Mosc. Math. J., 8:1 (2008), 159–180
  35. S. Shlosman, Y. Vignaud, “Dobrushin Interfaces via Reflection Positivity”, CMP 276:3 (2007) 827-861. [ PDF: English, arXiv: math-ph/0610060 ]
  36. A.C.D.van Enter, S.B.Shlosman, “First-order transitions for very nonlinear sigma models”, Lewis memorial volume: Markov Processes Relat. Fields 13 (2007) 239-249. [ PDF: English, arXiv: cond-mat/0506730 ]
  37. S. Shlosman, “Wulff Droplets”, in: Encyclopedia of Mathematical Physics, eds. J.-P. Francoise, G.L. Naber and Tsou S.T. Oxford: Elsevier, 2006, vol. 5, pp. 462-464.
  38. S. Shlosman, “Metastable States”, in: Encyclopedia of Mathematical Physics, eds. J.-P. Francoise, G.L. Naber and Tsou S.T. Oxford: Elsevier, 2006, vol. 3, pp. 417-420.
  39. S. Shlosman, “Large Deviations in Equilibrium Statistical Mechanics”, in: Encyclopedia of Mathematical Physics, eds. J.-P. Francoise, G.L. Naber and Tsou S.T. Oxford: Elsevier, 2006, vol. 3, pp. 261-263.
  40. А. А. Владимиров, А. Н. Рыбко, С. Б. Шлосман, “Свойство самоусреднения систем массового обслуживания”, Пробл. передачи информ., 42:4 (2006), 91–103; Problems Inform. Transmission, 42:4 (2006), 344–355, “Self-averaging property of queuing systems”, [ PDF: English, arXiv: math/0510046 ]
  41. T. Bodineau, R. H. Schonmann, S. Shlosman, “3D crystal: how flat its flat facets are?”, Commun Math Phys, 255:3 (2005), 747-766. [ PDF: English, arXiv: math-ph/0401010 ]
  42. А. Н. Рыбко, С. Б. Шлосман, “Пуассоновская гипотеза: комбинаторный аспект”, Пробл. передачи информ., 41:3 (2005), 51–57; Problems Inform. Transmission, 41:3 (2005), 230–236
  43. A. Rybko, S. Shlosman, “Poisson Hypothesis for Information Networks (A study in non-linear Markov processes) I. Domain of Validity”, Mosc. Math. J., 5:3 (2005), 679–704. [ PDF: English, arXiv: math/0406110 ]
  44. A.C.D. van Enter, S.B.Shlosman, “Provable first-order transitions for liquid crystal and lattice gauge models with continuous symmetries”, Comm. Math. Phys., 255:1 (2005), 21-32, . [ PDF: English, arXiv: cond-mat/0306362 ]
  45. S.B. Shlosman, V.A. Zagrebnov, “Magnetostriction Transition”, J. Stat. Phys., 114:3/4 (2004), 563-574. [ PDF: English, arXiv: math-ph/0305026 ]
  46. Ph. Blanchard, D. Gandolfo, J. Ruiz, S. Shlosman, “On the Euler-Poincare Characteristic of the Random Cluster Model”, Markov Processes and Related Fields, 9:4 (2003) 523-545.
  47. A.C.D. van Enter, S.B.Shlosman, “First-order transitions for n-vector models in two and more dimensions; rigorous proof”, Phys. Rev. Lett., 89:28 (2002) 285702. [ PDF: English, arXiv: cond-mat/0205455 ]
  48. D. Ioffe, S. Shlosman, Y. Velenik, “2D models of statistical physics with continuous symmetry: the case of singular interactions”, Comm. Math. Phys., 226:2(2002),433-454. [ PDF: English, arXiv: math/0110127 ]
  49. S. Shlosman, “Applications of the Wulff construction to the number theory”, in Теория представлений, динамические системы, комбинаторные и алгоритмические методы. VII, Зап. научн. сем. ПОМИ, СПб., 292 (2002), 153–160; J. Math. Sci. (N.Y.), 126:2 (2005), 1128–1132. [ PDF: English, arXiv: math-ph/0109027 ]
  50. P. M. Bleher, J. Ruiz, R. H. Schonmann, S. B. Shlosman, V. A. Zagrebnov, “Rigidity of the critical phases on a Cayley tree”, Mosc. Math. J., 1:3 (2001), 345–363.
  51. S. Shlosman, “The life of amoebas (of the Ising model)”, Markov Proc. Relat. Fields, 7(2001), 113-115.
  52. С. Б. Шлосман, “Конструкция Вульфа в статистической механике и комбинаторике”, УМН, 56:4(340) (2001), 97–128; Russian Math. Surveys, 56:4 (2001), 709–738. [ PDF: English, arXiv: math-ph/0010039 ]
  53. S. Shlosman, M. A. Tsfasman, “Random lattices and random sphere packings: typical properties”, Mosc. Math. J., 1:1 (2001), 73–89. [ PDF: English, arXiv: math-ph/0011040 ]
  54. S. Shlosman, “Metastable states as continuations of Gibbs states”. In:
    Proceedings of XIIIth ICMP, London, 2000, International Press of Boston, pp.143-150
  55. S. Shlosman, “Path Large Deviation and Other Typical Properties of the Low-Temperature Models, with Applications to the Weakly Gibbs States, Markov Processes and Related Fields, 6(2000), 121-134.
  56. S. Shlosman, “Geometric variational problems of statistical mechanics and of combinatorics”, Probabilistic techniques in equilibrium and non¬equilibrium statistical physics, J. Math. Phys. 41, 1364-1370, 2000. [ PDF: English, arXiv: math-ph/0002035 ]
  57. L. Chayes, S. Shlosman, V. Zagrebnov, “Discontinuity of the Magne-tization in Diluted O(n)-Models”, J. Statist. Phys. 98, 537-549, 2000
  58. Ch. Maes, F. Redig, S. Shlosman, A. van Moffaert, “Percolation, Path Large Deviations and Weakly Gibbs States”, Comm. Math. Phys., 209 (2000), 517-545
  59. S. Shlosman, “Metastable states: smooth continuation through the critical point”. In: Statistical Physics. Invited Papers from STATPHYS 20. Physica A, 263, 180-186, 1999
  60. Ch. Maes, S. Shlosman, “Freezing Transition in the Ising Model without Internal Contours”, Probab. Theory Relat. Fields 115, 479-503, 1999
  61. A.C.D. van Enter, Ch. Maes, R. H. Schonmann, S. Shlosman, “The Griffiths Singularity Random Field”, In: “On Dobrushin’s way. From Probability Theory to Statistical Mechanics”, ed. by R.A. Minlos, S. B. Shlosman, Yu.M. Suhov, pp. 51-58, Amer. Math. Soc. Transl. Ser. 2, 198, Amer. Math. Soc., Providence, RI, 2000
  62. A.C.D. van Enter, Ch. Maes, S. Shlosman, “Dobrushin’s program on Gibbsianity restoration: Weakly Gibbsian and Almost Gibbsian random fields”, In: “On Dobrushin’s way. From Probability Theory to Statistical Mechanics”, ed. by R.A. Minlos, S. B. Shlosman, Yu.M. Suhov, pp. 59-70, Amer. Math. Soc. Transl. Ser. 2, 198, Amer. Math. Soc., Providence, RI, 2000
  63. R.L. Dobrushin, S. Shlosman, “”Non-Gibbsian” states and their Gibbs description”, Comm. Math. Phys., 200, 125-179, 1999
  64. A.C.D. van Enter, S. Shlosman, “(Almost) Gibbsian description of the sign-fields of SOS-fields”, J. Stat. Phys., 92, 353-368, 1998
  65. R. H. Schonmann, S. Shlosman, “Wulf droplets and the metastable relaxation of the kinetic Ising models”, Comm. Math. Phys., 194, 389¬462, 1998
  66. L. Chayes, R.Kotecky, S. Shlosman, “Staggered Phases in Diluted Systems with Continuous Spins”, Commun. Math. Phys., 189, 631-640, 1997
  67. A.C.D. van Enter, R. Fernandez, R. Schonmann, S. Shlosman, “Complete analyticity of the 2D Potts model above the critical temperature”, Commun. Math. Phys. 189, 373-393, 1997
  68. Р. Л. Добрушин, С. Б. Шлосман, “Гиббсовское описание “негиббсовских” полей”, УМН, 52:2(314) (1997), 45–58; Russian Math. Surveys, 52:2 (1997), 285–297
  69. R.H. Schonmann, S. Shlosman, “Constrained variational problem with applications to the Ising model”, J. Stat. Phys. 83(1996), 867-905
  70. L. Chayes, R.Kotecky, S. Shlosman, “Aggregation and Intermediate Phases in Dilute Spin-Systems”, Commun. Math. Phys., 171, 203-232, 1995
  71. R.H. Schonmann, S. Shlosman, “Complete analyticity for 2D Ising completed”, Commun. Math. Phys., 170(1995), 453-482
  72. K. Khanin, A. Mazel, S. Shlosman, Ya. Sinai, “Loop condensation effects in the behavior of the random walks”, In: The Dynkin Festschrift. Markov processes and their applications. M.I.Freidlin, ed., Progress in Probability, v.34, Birkhauser, 167-184, 1994
  73. R. L. Dobrushin, S. Shlosman, “Droplet condensation in the Ising model: moderate deviations point of view”, Proceedings of the NATO Advanced Study Institute: “Probability theory of spatial disorder and phase transition”, G. Grimmett ed., Kluwer Academic Publishers, vol. 20, pp. 17-34, 1994
  74. R. L. Dobrushin, S. Shlosman, “Large and moderate deviations in the Ising model”, In: “Probability contributions to statistical mechanics”, R. L. Dobrushin ed., “Advances in Soviet Mathematics”, v.18, pp.91— 220, AMS, Providence, RI, 1994
  75. R. L. Dobrushin, R. Kotecky, S. Shlosman, “A microscopic justification of the Wulff construction”, J. Stat. Phys., 72(1993), 1-14
  76. S. Shlosman, “Simple random walks: new developments”, In: Proceedings of the NATO Advanced Research Workshop “On three levels. Micro, meso and macroscopic approaches in physics”, M. Fannes, Ch. Maes, A. Verbeure ed., Leuven, Belgium, 1993. NATO ASI Series, Series B: Physics v.324, 233-237
  77. Ch. Maes, S. Shlosman, “When is an interacting particle system ergodic?”, Comm. Math. Phys., 151(1993), 447-466
  78. Ch. Maes, S. Shlosman, “Constructive criteria for the ergodicity of interacting particle systems”, Cellular automata and cooperative systems (Les Houches, 1992), 451-461, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 396, Kluwer Acad. Publ., Dordrecht, 1993
  79. R.L. Dobrushin, R. Kotecky, S. B. Shlosman, “Wulff construction: a global shape from local interaction”, AMS translations series, Providence (Rhode Island), 1992
  80. R.L. Dobrushin, S. Shlosman, “Large deviation behavior of statistical mechanics models in the multiphase regime”, Proceedings of the X-th Congress on Math.Phys., Leipzig 1991, K.Schmudgen ed., 328-332, Springer, Berlin, 1992.
  81. A. Messager, S. Miracle-Sole, J. Ruiz, S. Shlosman, “Interfaces in Potts model. II. Antonov rule and the rigidity of the order-disorder interface”, Comm. Math. Phys., 140 (1991), 275-290
  82. L.Laanait, A. Messager, S. Miracle-Sole, J. Ruiz, S. Shlosman, “Interfaces in Potts model. I. Pirogov-Sinai theory of the Fortuin-Kasteleyn representation”, Comm. Math. Phys., 140(1991), 81-91
  83. Ch. Maes, S. Shlosman, “Ergodicity of probabilistic cellular automata: a constructive criterion”, Comm. Math. Phys., 135 (1991), 233¬251
  84. S. Shlosman, “The droplet in the tube: a case of phase transition in the canonical ensemble”, Comm. Math. Phys., 125:1 (1989), 81-90
  85. S. Shlosman, “Wulff construction justified”, IXth International Congress on Mathematical Physics (Swansea, 1988), 384-387, Hilger, Bristol, 1989
  86. С. Б. Шлосман, “Калибровочно-инвариантное задание калибровочных полей”, ТМФ, 77:1 (1988), 77–87; Theoret. and Math. Phys., 77:1 (1988), 1056–1063
  87. R.L. Dobrushin, R. Kotecky, S. Shlosman, “Equilibrium crystal shapes – a microscopic proof of the Wulff construction”, Stochastic methods in mathematics and physics (Karpacz, 1988), 221–229, World Sci. Publishing, Teaneck, NJ, 1989
  88. С. Б. Шлосман, “Соотношения между семиинвариантами случайных полей с притяжением”, Теория вероятн. и ее примен., 33:4 (1988), 694–705; Theory Probab. Appl., 33:4 (1988), 645–655
  89. S. Shlosman, “Gaussian behavior of the critical Ising model in dimensions >4″, Dokl. Akad. Nauk SSSR, 303:6 (1988) 1350-1352
  90. R.L. Dobrushin, S. Shlosman, “Thermodynamic inequalities for the surface tension and the geometry of the Wulff construction”, In: Ideas and methods in quantum and statistical physics (Oslo, 1988), 461-483, Cambridge Univ. Press, Cambridge, 1992
  91. R.L. Dobrushin, S. Shlosman, “Completely Analytical Interactions: Constructive description”, J. Stat. Phys., 46 (1987), 983-1014
  92. S. Shlosman. “Bounds on the Ursell functions for attractive random fields”, Dokl. Akad. Nauk SSSR, 294:6 (1987) 1354-1357
  93. S. Shlosman, “Random graph representations and signs of the Ursell functions”, Dokl. Akad. Nauk SSSR, 292:5 (1987), 1074-1107
  94. Е. А. Печерский, С. Б. Шлосман, “Низкотемпературные фазовые переходы в системах с одним основным состоянием”, ТМФ, 70:3 (1987), 462–468; Theoret. and Math. Phys., 70:3 (1987), 325–330
  95. S. Shlosman, “Graph coloring: a way to variety of new correlation inequalities”, VIIIth international congress on mathematical physics (Marseille, 1986), 839-847, World Sci. Publishing, Singapore, 1987
  96. S. Shlosman, “Signs of the Ising model Ursell functions”, Comm. Math. Phys., 102 (1986) 679-686
  97. С. Б. Шлосман, “Необычные аналитические свойства некоторых решетчатых моделей: дополнение теории Ли–Янга”, ТМФ, 69:2 (1986), 273–278; Theoret. Math. Phys., 69:2 (1986), 1147–1150
  98. С. Б. Шлосман, “Единственность и полупространственная неединственность гиббсовских состояний в чешских моделях”, ТМФ, 66:3 (1986), 430–444; Theoret. Math. Phys., 66:3 (1986), 284–293
  99. С. Б. Шлосман, “Метод отражательной положительности в математической теории фазовых переходов первого рода”, УМН, 41:3(249) (1986), 69–111; Russian Math. Surveys, 41:3 (1986), 83–134
  100. R.L. Dobrushin, J. Kolafa, S. Shlosman, “Phase diagram of the two-dimensional Ising antiferromagnet (computer assisted proof)”, Comm. Math. Phys. 102 (1986), 89-103
  101. R.L. Dobrushin, S. Shlosman, “The problem of translation-invariance of Gibbs states at low temperatures”, Math. Phys. Rev., 5 (1985), 53-195, Soviet Sci. Rev. Sect. C: Math. Phys. Rev., 5, Harwood Academic Publ., Chur, 1985
  102. R.L. Dobrushin, S. Shlosman, “Completely analytical Gibbs fields”, In: Statistical physics and dynamical systems (Koszeg, 1984), 371-404, Progr. Phys., 10, Birkhouser-Boston, Mass., 1985
  103. R.L. Dobrushin, S. Shlosman, “Constructive criterion for the uniqueness of the Gibbs field”, In: Statistical physics and dynamical sys¬tems (Koszeg, 1984), 347-370, Progr. Phys., 10, Birkhouser-Boston, Mass., 1985
  104. S. Shlosman, “The influence of the non-commutativity on limit theorems”, Z. Wahrsch. verw. Gebiete, 65(1984), 627-636
  105. С. Б. Шлосман, “Отражательная положительность и модели с неограниченным спином”, ТМФ, 59:1 (1984), 154–160; Theoret. Math. Phys., 59:1 (1984), 421–425
  106. S. Shlosman, “Non-translation-invariant states in two dimension”, Comm. Math. Phys., 87(1983), 497-504
  107. R.Kotecky, S. Shlosman, “First-Order Phase Transitions in Large Entropy Lattice Models”, Commun. Math. Phys., 83, 493-515, 1982.
    Also: R. Kotecky, S.B. Shlosman, “Existence of first-order transi¬tions for Potts models”, In: S. Albeverio, Ph. Combe, M. Sirigue-Collins (eds.), Proc. of the International Workshop—Stochastic Processes in Quantum Theory and Statistical Physics, Lecture Notes in Physics 173, 248-253, Springer-Verlag, Berlin-Heidelberg-New York, 1982
  108. I. Barany, S. Shlosman, A.Szucs, “On a topological generalization of a theorem of Tverberg”, J. London Math. Society (2), 23 (1981), 158-164
  109. R.L. Dobrushin, S. Shlosman, “Phases corresponding to the local minima of the energy”, Selecta Math. Soviet. 1:4(1981), 317-338
  110. С. Б. Шлосман, “Предельные теоремы теории вероятностей для компактных топологических групп”, Теория вероятн. и ее примен., 25:3 (1980), 614–619; Theory Probab. Appl., 25:3 (1981), 604–609
  111. R.L. Dobrushin, S. Shlosman, “Nonexistence of one- and two-dimensional Gibbs fields with noncompact group of continuous symme¬tries”, In: Multicomponent random systems, pp. 199-210, Adv. Probab. Related Topics, 6, Dekker, New York, 1980
  112. S. Shlosman,”Phase transitions for two-dimensional models with isotropic short range interactions and continuous symmetry”, Comm. Math. Phys. 71(1980), 207-212
  113. S. Shlosman: Correlation inequalities for antiferromagnets, J. Stat. Phys. 22(1980), 59-64
  114. S. Shlosman, “Continuous models with continuous symmetries in two di-mensions”, Random fields, Vol. I, II (Esztergom, 1979), 949-966, Colloq. Math. Soc. Janos Bolyai, 27, North-Holland, Amsterdam-New York, 1981
  115. P.Major, S. Shlosman, “A local limit theorem for the convolution of probability measures on a compact connected group”, Z. Wahrsch. verw. Gebiete, 50(1979), 137-148
  116. С. Б. Шлосман, “Корреляционные неравенства и их приложения”, Итоги науки и техн. Сер. Теор. вероятн. Мат. стат. Теор. кибернет., 16, ВИНИТИ, М., 1979, 5–37; J. Soviet Math., 15:2 (1981), 79–101
  117. S. Shlosman, “Decay of correlations in two-dimensional models with continuous symmetry group”, Theor. Math. Phys. 37:3 (1978), 1118-1121 (1979)
  118. С. Б. Шлосман, “Неразрушение непрерывной симметрии в двумерных моделях статистической физики”, ТМФ, 33:1 (1977), 86–94; Theoret. Math. Phys., 33:1 (1977), 897–902
  119. S. Shlosman, “Limit theorem of the probability theory on compact Lie group”, Dokl. Acad. Nauk SSSR, 222 (1975), 306-308
  120. R.L. Dobrushin, S. Shlosman, “Absence of breakdown of continuous symmetry in two-dimensional models of statistical physics”, Comm. Math. Phys. 42 (1975), 31-40
  121. С. Б. Шлосман, “Гладкие структуры на комплексах Пуанкаре”, Изв. АН СССР. Сер. матем., 37:4 (1973), 917–930; Math. USSR-Izv., 7:4 (1973), 919–932
  122. С. Б. Шлосман, “Подмногообразия коразмерности один и простой гомотопический тип”, Матем. заметки, 12:2 (1972), 167–175; Math. Notes, 12:2 (1972), 536–540
  123. A. Rybko, S. Shlosman, “Poisson Hypothesis for Information Networks II. Cases of Violations and Phase Transitions”, Mosc. Math. J., 5:4 (2005), 927–959. [ PDF: English, arXiv: math-ph/0410053 ]