Hybrid photonics is a new emerging research area at the interface between traditional optoelectronics and quantum technologies that spans a wide range of research areas from fundamental physics to applications of phenomena related to hybrid light-matter excitations and photon-mediated interactions of disparate material systems.
Purpose: optical study of hybrid nano-structures based on colloidal nanocrystals and organic semiconductors; integration of such materials into hybrid optoelectronic devices (light emitting diodes, LEDs, and photovoltaic cells, PVs); study of strong coupling in organic and inorganic microcavity structures; polaritonics and polariton Bose Einstein Condensates; polariton-based quantum simulators
More information about the Hybrid Polaritonics Labs activities is available below and at www.polaritonics.org. Opened positions are accessible here. We are continuously looking for highly motivated individuals at all levels of the academic rank. If you are interested in joining our team please contact Dr. Mael Brossard at .
More information about the Hybrid Polaritonics Labs activities is available at www.polaritonics.org.
Mainly focusing on photovoltaics and solid state lighting applications, the hybrid optoelectronics research on-going in the Hybrid Photonics Labs aims at integrating low-cost colloidal nanocrystalline materials (quantum dots) into existing solid state technologies. While these novel materials can provide very interesting properties (such as very high absorption cross-sections, near-unity luminescence quantum yields and band-gap tuneability), an inherent drawback is the difficulty to extract or inject carriers into these materials. Our research uses various energy transfers such a resonant energy transfer to funnel carriers between monocrystalline emitters and bulk semiconductors. We leverage numerous collaborations with key industrial players to design and produce novel hybrid technologies capable of enhancing the properties of standard optoelectronics devices.
Our research on hybrid PVs is currently focused on several key thin-film photovoltaic technologies, encompassing both traditional materials (thin-film Silicon, Cadmium-Telluride) and emerging systems (Perovskites). Hybrid structure are designed and fabricated in close collaboration with various fabrication research groups and industrial partners in the world such as the University of Liverpool in the UK or NCTU and Arima Corp. in Taiwan. Structure are fully characterized (internal/external quantum efficiency, carrier lifetime, photon conversion efficiency) in our facilities. Advanced spectroscopic techniques such as time-resolved photoluminescence are also used to gain critical insight into the energy transfers occurring between the various materials constituting the hybrid devices (colloidal QD, bulk p-n junction, window layer, etc.). In a recent achievement, we developed new technology that utilizes cheap colloidal quantum dots to recycle the carriers trapped in the top window layer of InGaP solar cells, yielding a 15% relative improvement in photon conversion efficiency.
Schematic representation of a hybrid InGaP solar cell (left) and J-V characteristics (right) of the solar before (black) and after (red) hybridisation.
M. Brossard et al., Adv. Opt. Mat., 2015
Our latest achievement was for instance the demonstration of record color-conversion efficiencies in white LEDs, in collaboration with TSMC and Luxaltek in Taiwan. This was done by designing a completely novel type of LED architecture, integrating complex photonic crystals structures and integrated nanocrystallinne emitters. The Hybrid Photonics Labs in Skoltech allow us to fully characterize these novel materials, but more importantly to further our understanding into how they interact when integrated into devices.
(a) Schematic representation, (b) cross-sectional, and (c) top SEM images of a photonic quasi-crystal LED hybridized with QD color converters.
A televised report of recent achievements on hybrid LEDs can be seen in the following link (41:30).
The Hybrid Photonics Labs currently consist of a large optical laboratory, hosting numerous laser sources and experimental. Several high power amplified Ti:Sapphire laser systems operating at 1 to 300kHz are available with pulse energies up to 5mJ over durations of <50fs to tens of picoseconds. Non-linear optical amplification and mixing can be used to provide users with tunable radiation between 200nm and 10µm. The facilities also houses a versatile collection of high power tunable Ti:Sapphire oscillators with repetition rates up to 80MHz allowing the rapid characterization of excitation wavelength dependent material properties.
The optical laboratories are also supported by ISO 7 (class 10000) cleanrooms. These facilities host an array of basic microfabrication and characterization tools. Closely interlinked with the optical laboratories, the cleanrooms allow users to fabricate and characterize samples before rapidly transferring them into the optical laboratories for further analysis.
[/su_spoiler]
Polariton simulator:
Title: “Matter wave coupling of spatially separated and unequally pumped polariton condensates”
Authors: KP Kalinin, PG Lagoudakis, NG Berloff
Source: Physical Review B 97 (9), 094512 (2018)
Title: “Exotic states of matter with polariton chains”
Authors: K. Kalinin, P. G. Lagoudakis, and N. G. Berloff
Source: Physical Review B 97, 161101 (2018)
Title: “Giant vortices of controlled multiplicity in polariton lattices”
Authors: K. Kalinin, M. Silva, J. D. Töpfer, W. Langbein, N. G. Berloff, and P. G. Lagoudakis
Source: arXiv:1710.03451 (2017)
Title: “Simulating the spectral gap with polariton graphs”
Authors: K. Kalinin, P. G. Lagoudakis, and N. G. Berloff
Source: arXiv:1709.04683 (2017)
Title: “A Polariton Graph Simulator”
Authors: P.G.Lagoudakis, and N.G. Berloff
Source: New Journal of Physics 19 125008 (2017)
Title: “Realizing the classical XY Hamiltonian in polariton simulators”
Authors: N.G. Berloff, M Silva, K Kalinin, A Askitopoulos, J.D. Töpfer, P Cilibrizzi, W Langbein, and P.G. Lagoudakis
Source: Nature Materials 16, 1120–1126 (2017)
Title: “Nontrivial Phase Coupling in Polariton Multiplets”
Authors: H. Ohadi, R. L. Gregory, T. Freegarde, Y. G. Rubo, A. V. Kavokin, N. G. Berloff, and P. G. Lagoudakis
Source: Physical Review X 6, 031032 (2016)
Polariton circuits:
Title: Tunable optical spin Hall effect in a liquid crystal microcavity
Authors: Lekenta, Katarzyna; Król, Mateusz; Mirek, Rafał; Łempicka, Karolina; Daniel, Mazur, Rafał; Morawiak, Przemysław; Kula, Przemysław; Piecek, Wiktor, Lagoudakis, Pavlos G.; Piętka, Barbara & Szczytko, Jacek
Source: Light: Science & Applications 7, 74 (2018)
Title: All-optical quantum fluid spin beam splitter
Authors: A. Askitopoulos, A. V. Nalitov, E. S. Sedov, L. Pickup, E. D. Cherotchenko, Z. Hatzopoulos, P. G. Savvidis, A. V. Kavokin, and P. G. Lagoudakis
Source: Physical Review B 97, 235303 (2018)
Title: “Optical bistability under non-resonant excitation in spinor polariton condensates”
Authors: L. Pickup, K. Kalinin, A. Askitopoulos, Z. Hatzopoulos, P. G. Savvidis, N. G. Berloff, P.G. Lagoudakis,
Source: Physical Review Letters 120, 225301 (2018)
Title: “Bosonic cascades of indirect excitons”
Authors: A.V. Nalitov, S. De Liberato, P.G. Lagoudakis, P.G. Savvidis, and A.V. Kavokin
Source: Superlattices and Microstructures 108, pp. 27-31 (2017)
Title: “Nonresonant optical control of a spinor polariton condensate”
Authors: A. Askitopoulos, K. Kalinin, T.C.H. Liew, P. Cilibrizzi, Z. Hatzopoulos, P.G. Savvidis, N. G. Berloff, and P.G. Lagoudakis.
Source: Physical Review B 93, 205307 (2016)
Title: “Half-skyrmion spin textures in polariton microcavities”
Authors: P. Cilibrizzi, H. Sigurdsson, T.C.H. Liew, H. Ohadi, A. Askitopoulos, S. Brodbeck, C. Schneider, I. A Shelykh, S. Höfling, J. Ruostekoski, and P.G. Lagoudakis
Source: Physical Review B 94, 045315 (2016)
Title: “Lasing in Bose-Fermi mixtures”
Authors: V.P. Kochereshko, M.V. Durnev, L. Besombes, H. Mariette, V.F. Sapega, A. Askitopoulos, I.G. Savenko, T.C.H. Liew, I.A. Shelykh, A.V. Platonov, S.I. Tsintzos, Z. Hatzopoulos, P.G. Savvidis, V.K. Kalevich, M.M. Afanasiev, V.A. Lukoshkin, C. Schneider, M. Amthor, C. Metzger, M. Kamp, S. Hoefling, P.G. Lagoudakis, and A. Kavokin
Source: Nature Scientific Reports 6, 20091 (2016)
Title: “Polariton Spin Whirls”
Authors: P. Cilibrizzi, H. Sigurdsson, T.C.H. Liew, H. Ohadi, S. Wilkinson, A. Askitopoulos, I.A. Shelykh, and P.G. Lagoudakis.
Source: Physical Review B 92, 155308 (2015)
Title: “Robust platform for engineering pure-quantum-state transitions in polariton condensates”
Authors: A. Askitopoulos, T.C.H. Liew, H. Ohadi, Z. Hatzopoulos, P.G. Savvidis, and P.G. Lagoudakis
Source: Physical Review B 92, 035305 (2015)
Title: “Spin noise spectroscopy of a single quantum well microcavity”
Author(s): S.V. Poltavtsev, I.I. Ryzhov, M.M. Glazov, G.G. Kozlov, V.S. Zapasskii, A.V. Kavokin, P.G. Lagoudakis, D.S. Smirnov, and E.L. Ivchenko
Source: Physical Review B 89, 081304 (2014)
Title: “Optics of spin-noise-induced gyrotropy of an asymmetric microcavity”
Author(s): S.V. Poltavtsev, I.I. Ryzhov, R.V. Cherbunin, A.V. Mikhailov, N.E. Kopteva, G.G. Kozlov, K.V. Kavokin, V.S. Zapasskii, P.G. Lagoudakis, and A.V. Kavokin
Source: Physical Review B 89, 205308 (2014)
Title: “Polariton condensation in an optically induced two-dimensional potential”
Author(s): A. Askitopoulos, H. Ohadi, A.V. Kavokin, Z. Hatzopoulos, P.G. Savvidis, and P.G. Lagoudakis
Source: Physical Review B 88, 041308 (2013)
Title: “Nonlinear optical spin Hall effect and long-range spin transport in polariton lasers”
Author(s): E. Kammann, T.C.H. Liew, H. Ohadi, P. Cilibrizzi, P. Tsotsis, Z. Hatzopoulos, P.G. Savvidis, A.V. Kavokin, P.G. Lagoudakis
Source: Physical Review Letters 109, 036404 (2012)
Title: “Spontaneous symmetry breaking in a polariton and photon laser”
Author(s): H. Ohadi, E. Kammann, T.C.H. Liew, K.G. Lagoudakis, A.V. Kavokin, P.G. Lagoudakis
Source: Physical Review Letters 109, 016404 (2012)
Title: “Optical analogue of the spin Hall effect in a photonic cavity”
Author(s): M. Maragkou, C. E. Richards, T. Ostatnický, A.J.D. Grundy, J. Zajac, M. Hugues, W. Langbein, and P.G. Lagoudakis
Source: Optics Letters, 36 (7), pp. 1095-1097 (2011)
Ambient polaritonics:
Title: “Collective Optomechanical Effects in Cavity Quantum Electrodynamics”
Authors: E. Cortese, P.G. Lagoudakis, and S. De Liberato
Source: Physical Review Letters 119, 043604 (2017)
Title: “Hybrid organic-inorganic polariton laser”
Authors: G.G. Paschos, N. Somaschi, S.I. Tsintzos, D. Coles, J.L. Bricks, Z. Hatzopoulos, D.G. Lidzey, P.G. Lagoudakis, and P.G. Savvidis
Source: Nature Scientific Reports 7, 11377 (2017)
Title: “A yellow polariton condensate in a dye filled microcavity”
Authors: T. Cookson, K. Georgiou, A. Zasedatelev, R.T. Grant, T. Virgili, M. Cavazzini, F.Galeotti, C. Clark, N.G. Berloff, D.G. Lidzey, and P.G. Lagoudakis
Source: Advanced Optical Materials 1700203 (2017)
Title: “Exciton-mediated superconductivity”
Authors: A. Kavokin and P.G. Lagoudakis
Source: Nature Materials 15, 599–600 (2016)
Title: “Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity”
Author(s): D.M. Coles, N. Somaschi, P. Michetti, C. Clark, P.G. Lagoudakis, P.G. Savvidis, and D.G. Lidzey
Source: Nature Materials 13, 712–719 (2014)
Title: “Polariton condensates: Going soft”
Author(s): P.G. Lagoudakis
Source: Nature Materials 13, 227-228 (2014)
Title: “Imaging the polariton relaxation bottleneck in strongly coupled organic semiconductor microcavities”
Author(s): D.M. Coles, R.T. Grant, D.G. Lidzey, C. Clark, and P.G. Lagoudakis
Source: Physical Review B 88, 121303 (2013)
Title: “Characterizing the Electroluminescence Emission from a Strongly Coupled Organic Semiconductor Microcavity LED”
Author(s): N. Christogiannis, N. Somaschi, P. Michetti, D.M. Coles, P.G. Savvidis, P.G. Lagoudakis, and D.G. Lidzey
Source: Advanced Optical Materials 1, 503–509 (2013)
Title: “Ultrafast polariton population build-up mediated by molecular phonons in organic microcavities”
Author(s): N. Somaschi, L. Mouchliadis, D. Coles, I.E. Perakis, D.G. Lidzey, P.G. Lagoudakis, and P.G. Savvidis
Source: Applied Physics Letters 99, 143303 (2011)
Hybrid Optoelectronics:
Title: “In-Depth Analysis of Excitation Dynamics in Dye-Sensitized Upconversion Core and Core/Active Shell Nanoparticles”
Authors: S. Alyatkin, E. rena-Horno, B. Chen, O. Muskens, A. G. Kanaras, and P. G. Lagoudakis
Source: Journal of Physical Chemistry C 122 (31), 18177-18184 (9 August 2018)
Title: “Colloidal Synthesis of CsX Nanocrystals (X = Cl, Br, I)”
Authors: P. J. Shaw, M. Meyns, Y. Zuo, A. Grau-Carbonell, P. G. Lagoudakis, M. D. B. Charlton, S. Marti-Sanchez, J. Arbiol, A. Cabot, and A. G. Kanaras
Source: Nanomaterials 8 (7) 506 (July 2018)
Title: “Photonic crystals for optimal color conversion in light-emitting diodes: a semi-analytical approach”
Authors: C. Valagiannopoulos, P. G. Lagoudakis
Source: Journal of the Optical Society of America B – Optical Physics 35 (50), 1105-1112 (1 May 2018)
Title: “In-depth analysis of chloride treatments for thin-film CdTe solar cells”
Authors: J. D. Major, M. Al Turkestani, L. Bowen, M. Brossard, C. Li, P. Lagoudakis, S. J. Pennycook, L. J. Phillips, R. E. Treharne, and K. Durose
Source: Nature Communications 7, 13231 (2016)
Title: “Hybrid photonic crystal light-emitting diode renders 123% color conversion effective quantum yield”
Authors: C. Krishnan, M. Brossard, K-Y Lee, J-K Huang, C-H Lin, H-C Kuo, M.D.B. Charlton, and P.G. Lagoudakis
Source: Optica 3, 503-509 (2016)
Title: “Novel Non‐radiative Exciton Harvesting Scheme Yields a 15% Efficiency Improvement in High‐Efficiency III–V Solar Cells”
Authors: M. Brossard, C.‐Y. Hong, M. Hung, P. Yu, M. D. B. Charlton, P. G. Savvidis, and P. G. Lagoudakis
Source: Advanced Optical Materials 3, 263–269 (2015)
Title: “Highly Efficient Flexible Hybrid Nanocrystal-Cu(In,Ga)Se2 (CIGS) Solar Cells”
Authors: Y.-K. Liao, M. Brossard, D.-H. Hsieh, T.-N. Lin, M. D. B. Charlton, S.-J. Cheng, C.-H. Chen, J.-L. Shen, L.-T. Cheng, T.-P. Hsieh, F.-I Lai, S.-Y. Kuo, H.-C. Kuo, P. G. Savvidis, and P. G. Lagoudakis
Source: Advanced Energy Materials 5, 1401280 (2014)