Student Publications
Below you can find a comprehensive list of published works of CDSE PhD students (last update: October 2021):
Q1 journal publications and A/A*-rank conference proceedings are marked in bold.
2021202020192018201720162015
- Ahmadi-Asl, S., Abukhovich, S., Asante-Mensah, M.G., Cichocki, A., Phan, A.H., Tanaka, T., Oseledets, I. (2021). Randomized Algorithms for Computation of Tucker Decomposition and Higher Order SVD (HOSVD). IEEE Access, vol 9, 9350569, pp. 28684-28706.
- Burkina, M., Nazarov, I., Panov, M., Fedonin, G., & Shirokikh, B. (2021). Inductive Matrix Completion with Feature Selection. Computational Mathematics and Mathematical Physics, vol. 61(5), 719-732.
- Butakov, I. D., Malanchuk, S. V., Neopryatnaya, A. M., Tolmachev, A. D., Andreev, K. V., Kruglik, S. A., … & Frolov, A. A. (2021). High-Dimensional Dataset Entropy Estimation via Lossy Compression. Journal of Communications Technology and Electronics, vol. 66(6), pp. 764-768.
- Faizullin, M., Kornilova, A., Akhmetyanov, A., Ferrer, G. (2021). Twist-n-sync: Software clock synchronization with microseconds accuracy using MEMS-gyroscopes. Sensors (Switzerland), volume 21 (1), 68, pp. 1-19.
- Fursov, I., Morozov, M., Kaploukhaya, N., Kovtun, E., Rivera-Castro, R., Gusev, G., Zaytsev, A., Burnaev, E. (2021). Adversarial Attacks on Deep Models for Financial Transaction Records. arXiv preprint arXiv:2106.08361.
- Gasanov, M, et al. (2021) A New Multi-objective Approach to Optimize Irrigation Using a Crop Simulation Model and Weather History. International Conference on Computational Science. Springer, Cham.
- Gusak, J., Daulbaev, T., Ponomarev, E., Cichocki, A., & Oseledets, I. (2021). Reduced-order modeling of deep neural networks. Computational Mathematics and Mathematical Physics, 61(5), pp. 774-785.
- Holzbaur, L., Kruglik, S., Frolov, A., Wachter-Zeh, A. (2021). Secrecy and Accessibility in Distributed Storage. IEEE Global Communications Conference, GLOBECOM 2020 – Proceedings, 9322434; Virtual, Taipei; Taiwan.
- Holzbaur, L., Kruglik, S., Frolov, A., & Wachter-Zeh, A. (2021). Secure Codes With Accessibility for Distributed Storage. IEEE Transactions on Information Forensics and Security, v.16, pp. 5326-5337.
- Illarionova, S., Trekin, A., Ignatiev, V., Oseledets, I. (2021). Neural-Based Hierarchical Approach for Detailed Dominant Forest Species Classification by Multispectral Satellite Imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol 14, 2021, 9311828, pp. 1810-1820.
- Maksimov I., Rivera-Castro R., Burnaev E. (2021). Addressing Cold Start in Recommender Systems with Hierarchical Graph Neural Networks. Proceedings, 28th IEEE International Conference on Big Data, 937830, pp. 5128 – 513710.
- Malovichko, M., Koshev, N., Yavich, N., A. Razorenova and Fedorov, M. (2021). Electroencephalographic Source Reconstruction by the Finite-Element Approximation of the Elliptic Cauchy Problem in IEEE Transactions on Biomedical Engineering, vol. 68 (6), pp. 1811-1819.
- Kalinov, A., Bychkov, R., Ivanov, A., Osinsky, A.,Yarotsky, D. (2021). Machine Learning-Assisted PAPR Reduction in Massive MIMO. IEEE Wireless Communications Letters, 10(3), pp. 537-541.
- Kardashin A., Uvarov A., Biamonte J. (2021). Quantum Machine Learning Tensor Network States. Frontiers in Physics, vol 8, 586374.
- Kheiri, R. (2021). A projective simulation scheme for partially observable multi-agent systems. Quantum Machine Intelligence, vol 3, 11.
- Korotin, A.A., V’Yugin, V.V., Burnaev, E.V. (2021). Online algorithm for aggregating experts’ predictions with unbounded quadratic loss. Russian Mathematical Surveys, vol 75 (5), pp. 974-977.
- Kozitsin, V., Katser, I., Lakontsev, D. (2021). Online Forecasting and Anomaly Detection Based on the ARIMA Model. Applied Sciences, 11(7), 3194.
- Kruglik, S., Frolov, A. (2021). An Information-Theoretic Approach for Reliable Distributed Storage Systems. Journal of Communications Technology and Electronics, vol 65 (12), pp. 1505-1516.
- Lebedeva, O., Osinsky, A., Petrov, S. (2021). Low-Rank Approximation Algorithms for Matrix Completion with Random Sampling. Computational Mathematics and Mathematical Physics, 61, pp. 799-815.
- Leli, V. M., Osat, S., Tlyachev, T., Dylov, D. V., & Biamonte, J. D. (2021). Deep learning super-diffusion in multiplex networks. Journal of Physics: Complexity, vol. 2(3), 035011.
- Matveev, S.A., Oseledets, I.V., Ponomarev, E.S. et al. (2021) Overview of Visualization Methods for Artificial Neural Networks. Computational Mathematics and Mathematical Physics, 61, pp. 887–899.
- Mazyavkina, N., Moustafa, S., Trofimov, I., & Burnaev, E. (2021). Optimizing the Neural Architecture of Reinforcement Learning Agents. In Intelligent Computing pp. 591-606. Springer, Cham.
- Nesteruk, S., Shadrin, D., Pukalchik, M., Somov, A., Zeidler, C., Zabel, P., Schubert, D. (2021). Image Compression and Plants Classification Using Machine Learning in Controlled-Environment Agriculture: Antarctic Station Use Case. IEEE Sensors Journal, 2021.
- Olaleke, O., Oseledets, I., & Frolov, E. (2021). Dynamic Modeling of User Preferences for Stable Recommendations. In Proceedings of the 29th ACM Conference on User Modeling, Adaptation and Personalization, pp. 262-266.
- Osinsky, A., Ivanov, A., Lakontsev D., Yarotsky, D. (2021). Lower Performance Bound for Beamspace Channel Estimation in Massive MIMO. IEEE Wireless Communications Letters, 10(2), pp. 311-314.
- Osipenko, S., Botashev, K., Nikolaev, E., Kostyukevich, Y. (2021). Transfer learning for small molecule retention predictions. Journal of Chromatography A, vol. 1644, 462119.
- Rabchinskii, M. K., … Kislenko V.A., Pavlov S.V., … & Brunkov, P. N. (2021). Hole-matrixed carbonylated graphene: Synthesis, properties, and highly-selective ammonia gas sensing. Carbon, 172, 236-247.
- Sarycheva, A., Grigoryev, A., Sidorchuk, D., Vladimirov, G., Khaitovich, P., Efimova, O., Gavrilenko, O., Stekolshchikova, E., Nikolaev, E.N., Kostyukevich, Y. (2021). Structure-preserving and perceptually consistent approach for visualization of mass spectrometry imaging datasets. Analytical Chemistry, vol 93 (3), pp. 1677-1685.
- Stasenko, N., Chernova E., Shadrin, D., Ovchinnikov, G., Krivolapov I., & Pukalchik, M. (2021) Deep Learning for improving the storage process: Accurate and automatic segmentation of spoiled areas on apples 2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 2021, pp. 1-6.
- Talitckii, A., Anikina, A., Kovalenko, E., Mayora, O., Osmani, V., Zimniakova, O., Semenov, M., Bril, E., Dylov, D., Somov, A. (2021). Data-driven analysis of parkinson’s disease and its detection at an early stage. ACM International Conference Proceeding Series, 3421953, pp. 419-422, 14th EAI International Conference on Pervasive Computing Technologies for Healthcare, PervasiveHealth 2020; Virtual, Online; United States.
- Talitckii, A., Kovalenko, E., Anikina, A., Zimniakova, O., Semenov, M., Bril, E., Shcherbak, A., Dylov, D.V., Somov, A. (2021). Avoiding Misdiagnosis of Parkinson’s Disease with the Use of Wearable Sensors and Artificial Intelligence. IEEE Sensors Journal, volume 21(3), 9208800, pp. 3738-3747.
- Wang, J., Bulanov, S.V., Chen, M., Lei, B., Zhang, Y., Zagidullin, R., Zorina, V., Yu, W., Leng, Y., Li, R.a, Zepf, M., Rykovanov, S.G. (2021). Relativistic slingshot: A source for single circularly polarized attosecond x-ray pulses. Physical Review E, vol 102 (6), 061201.
- Zamarashkin, N., Osinsky, A. (2021). On the Accuracy of Cross and Column Low-Rank Maxvol Approximations in Average. Computational Mathematics and Mathematical Physics, 61, pp. 786-798.
- Alanov, A., Kochurov, M., Volkhonskiy, D., Yashkov, D., Burnaev, E., & Vetrov, D. (2020). User-Controllable Multi-Texture Synthesis with Generative Adversarial Networks. In Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, 4, pp. 214-221.
- Anokhin, I., Solovev, P., Korzhenkov, D., Kharlamov, A., Khakhulin, T., Silvestrov, A., Nikolenko, S., Lempitsky, V., & Sterkin, G. (2020). High-Resolution Daytime Translation Without Domain Labels. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 7485–7494.
- Amangeldiuly, N., Karlov, D., Fedorov, M.V. (2020). Baseline Model for Predicting Protein–Ligand Unbinding Kinetics through Machine Learning. Journal of Chemical Information and Modeling, 60 (12), pp. 5946–5956.
- Bernstein, A., Burnaev, E. Sharaev, M., Kondrateva, E., Kachan, O. (2020). Topological data analysis in computer vision. In Proceedings of SPIE – The International Society for Optical Engineering, 11433, 114332H.
- Brilliantov, N. V., Osinsky, A. I., & Krapivsky, P. L. (2020). Role of energy in ballistic agglomeration. Physical Review E, 102(4), 042909.
- Bodrova, A., Osinsky, A. & Brilliantov, N. (2020). Temperature distribution in driven granular mixtures does not depend on mechanism of energy dissipation. Scientific Reports, 10(1), 693.
- Boyko, A. I., Matrosov, M. P., Oseledets, I. V., Tsetserukou, D., & Ferrer, G. TT-TSDF: Memory-Efficient TSDF with Low-Rank Tensor Train Decomposition. In IEEE/RSJ Conference on Intelligent Robots and Systems 2020.
- Burkov, E., Pasechnik, I., Grigorev, A., & Lempitsky, V. (2020). Neural Head Reenactment with Latent Pose Descriptors. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 13783–13792.
- Cui, C., Zhang, K., Daulbaev, T., Gusak, J., Oseledets, I., & Zhang, Z. (2020). Active subspace of neural networks: Structural analysis and universal attacks. SIAM Journal on Mathematics of Data Science, 2(4), 1096-1122.
- Daulbaev, T., Katrutsa, A., Markeeva, L., Gusak, J., Cichocki, A., & Oseledets, I. (2020). Interpolation Technique to Speed Up Gradients Propagation in Neural ODEs. Advances in Neural Information Processing Systems, 33.
- Dementieva, D., & Panchenko, A. (2020). Fake News Detection using Multilingual Evidence. In 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA) (pp. 775-776). IEEE.
- Ishimtsev, V., Bokhovkin, A., Artemov, A., Ignatyev, S., Niessner, M., Zorin, D., & Burnaev, E. (2020). CAD-Deform: Deformable Fitting of CAD Models to 3D Scans. In: Vedaldi A., Bischof H., Brox T., Frahm JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12358. Springer, Cham.
- Egiazarian, V., Voynov, O., Artemov, A., Volkhonskiy, D., Safin, A., Taktasheva, M., … & Burnaev, E. (2020). Deep Vectorization of Technical Drawings. In: Vedaldi A., Bischof H., Brox T., Frahm JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12358. Springer, Cham.
- Egorova, E.E., Fernandez, M., Kabatiansky, G.A., Miao, Y. (2020). Existence and Construction of Complete Traceability Multimedia Fingerprinting Codes Resistant to Averaging Attack and Adversarial Noise. Problems of Information Transmission, vol 56 (4), pp. 388-398.
- Faizullin, M., Kornilova, A., Akhmetyanov, A., & Ferrer, G. (2020). Twist-n-Sync: Software Clock Synchronization with Microseconds Accuracy Using MEMS-Gyroscopes. Sensors, 21(1), 68.
- Gasanov, M., Petrovskaia, A., Nikitin, A., Matveev, S., Tregubova, P., Pukalchik, M., & Oseledets, I. (2020). Sensitivity Analysis of Soil Parameters in Crop Model Supported with High-Throughput Computing. In V. V. Krzhizhanovskaya, G. Závodszky, M. H. Lees, J. J. Dongarra, P. M. A. Sloot, S. Brissos, & J. Teixeira (Eds.), Computational Science – ICCS 2020(Vol. 12143, pp. 731–741). Springer International Publishing.
- Giannakopoulos, I., Serrallés, J. E., Daniel, L., Sodickson, D., Polimeridis, A., White, J. K., & Lattanzi, R. (2020). Magnetic-resonance-based electrical property mapping using Global Maxwell Tomography with an 8-channel head coil at 7 Tesla: a simulation study. IEEE Transactions on Biomedical Engineering.
- Gurina, E., Klyuchnikov, N., Zaytsev, A., Romanenkova, E., Antipova, K., Simon, I., Makarov, V., Koroteev, D. (2020). Application of Machine Learning to accidents detection at directional drilling. Journal of Petroleum Science and Engineering, 184, 106519.
- Ivanov, A., Osinsky, A., Lakontsev, D., & Yarotsky, D. (2020). High Performance Interference Suppression in Multi-User Massive MIMO Detector. 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), 1–5.
- Kardashin, A., Uvarov, A., Yudin, D., & Biamonte, J. (2020). Certified variational quantum algorithms for eigenstate preparation. Physical Review A, 102(5), 052610.
- Khrulkov, V., Mirvakhabova, L., Ustinova, E., Oseledets, I., & Lempitsky, V. (2020). Hyperbolic Image Embeddings. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 6417–6427.
- Kislenko V.A., Pavlov S.V., Kislenko S.A. (2020). Influence of defects in graphene on electron transfer kinetics: The role of the surface electronic structure. Electrochimica Acta, 341, 136011.
- Kondrateva E., Belozerova, P., Sharaev, M., … Samotaeva, I. (2020). Machine learning models reproducibility and validation for MR images recognition. In 12th International Conference on Machine Vision (ICMV 2019). Vol. 11433. International Society for Optics and Photonics, 2020.
- Korotin, A., V’yugin, V., & Burnaev, E. (2020). Adaptive hedging under delayed feedback. Neurocomputing, 397, 356-368.
- Koshelev, I., Somov, A., Lefkimmiatis, S. and Rodríguez-Sánchez, A. (2020). Deconvolution of Image Sequences with a Learning FFT-based Approach. 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE), Delft, Netherlands, pp. 1381-1386.
- Koshev, N., Yavich, N., Malovichko, M., Skidchenko, E., & Fedorov (2020). FEM-based Scalp-to-Cortex EEG data mapping via the solution of the Cauchy problem. Journal of Inverse Ill-Posed Problems 28(4), 517–532.
- Kozlovskii, I., & Popov, P. (2020). Spatiotemporal identification of druggable binding sites using deep learning. Communications Biology, 3(1), 618.
- Leli V., Rubashevskii, A., Sarachakov, A., Rogov, O., Dylov, D. (2020). Near-Infrared-to-Visible Vein Imaging via Convolutional Neural Networks and Reinforcement Learning. 16th International Conference on Control, Automation, Robotics and Vision (ICARCV).
- Menshchikov, A., Lopatkin, D., Tsykunov, E., Tsetserukou, D., & Somov, A. (2020). Realizing Body-Machine Interface for Quadrotor Control Through Kalman Filters and Recurrent Neural Network. In 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA) (Vol. 1, pp. 595-602).
- Mirvakhabova, L., Frolov, E., Khrulkov, V., Oseledets, I., & Tuzhilin, A. (2020). Performance of Hyperbolic Geometry Models on Top-N Recommendation Tasks. Fourteenth ACM Conference on Recommender Systems, 527–532.
- Morozov, A. D., Popkov, D. O., Duplyakov, V. M., Mutalova, R. F., Osiptsov, A. A., Vainshtein, A. L., Burnaev, E. V., Shel, E. V., & Paderin, G. V. (2020). Data-driven model for hydraulic fracturing design optimization: Focus on building digital database and production forecast. Journal of Petroleum Science and Engineering, 194, 107504.
- Osinsky, A. (2020). Low-rank method for fast solution of generalized Smoluchowski equations. Journal of Computational Physics, 422, 109764.
- Osinsky, A., Bodrova, A. & Brilliantov, N. (2020). Size-polydisperse dust in molecular gas: Energy equipartition versus nonequipartition. Physical Review E, 101(2).
- Osinsky, A. & Brilliantov, N. (2020). Temperature distribution in driven granular mixtures does not depend on mechanism of energy dissipation. Scientific Reports, 10(1), 693.
- Osinsky, A., Ivanov, A. & Yarotsky, D. (2020). Theoretical Performance Bound of Uplink Channel Estimation Accuracy in Massive MIMO. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 2020, pp. 4925-4929.
- Osinsky, A., Ivanov, A., Lakontsev, D., Bychkov, R., & Yarotsky, D. (2020). Data-Aided LS Channel Estimation in Massive MIMO Turbo-Receiver. 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), 1–5.
- Osipenko, S., Bashkirova, I., Sosnin, S., Kovaleva, O., Fedorov, M., Nikolaev, E., & Kostyukevich, Y. (2020). Machine learning to predict retention time of small molecules in nano-HPLC. Analytical and Bioanalytical Chemistry.
- Palmieri, A.-M., Kovlakov, E., Bianchi, F., Yudin, D., Straupe, S., Biamonte, J. D. & Kulil, S. (2020). Experimental neural network enhanced quantum tomography. npj Quantum Information, 6.
- Pavlov, S. V., Kislenko, V. A., & Kislenko, S. A. (2020). Fast Method for Calculating Spatially Resolved Heterogeneous Electron-Transfer Kinetics and Its Application to Graphene with Defects. The Journal of Physical Chemistry C, 124(33), 18147-18155.
- Phan, A.-H., Sobolev, K., Sozykin, K., Ermilov, D., Gusak, J., Tichavský, P., Glukhov, V., Oseledets, I., & Cichocki, A.(2020). Stable Low-Rank Tensor Decomposition for Compression of Convolutional Neural Network. In A. Vedaldi, H. Bischof, T. Brox, & J.-M. Frahm (Eds.), Computer Vision – ECCV 2020 (Vol. 12374, pp. 522–539). Springer International Publishing.
- Pronina V., Kokkinos F., Dylov D.V., Lefkimmiatis S. (2020). Microscopy Image Restoration with Deep Wiener-Kolmogorov Filters. In: Vedaldi A., Bischof H., Brox T., Frahm JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12365. Springer, Cham.
- Rabchinskii, M. K., … Pavlov, S.V., Kislenko V.A., … & Brunkov, P. N. (2020). Unveiling a facile approach for large-scale synthesis of N-doped graphene with tuned electrical properties. 2D Materials, 7(4), 045001.
- Razorenova A.M., Chernyshev B.V., Nikolaeva A.Y., Butorina A.V., Prokofyev A.O., Tyulenev N.B., Stroganova T.A. (2020) Rapid Cortical Plasticity Induced by Active Associative Learning of Novel Words in Human Adults. In Frontiers in Neuroscience. 14:895.
- Razorenova A., Yavich N., Malovichko M., Fedorov M., Koshev N., Dylov D.V. (2020) Deep Learning for Non-invasive Cortical Potential Imaging. In: Kia S.M. et al. (eds) Machine Learning in Clinical Neuroimaging and Radiogenomics in Neuro-oncology. MLCN 2020, RNO-AI 2020. Lecture Notes in Computer Science, vol. 12449. Springer, Cham.
- Safin, A. R., Popov, P. A., Kalyabin, D. V., & Nikitov, S. A. (2020). Synthesizer of Discrete Frequency Spectrum Based on an Antiferromagnetic Spintronic Oscillator. Technical Physics Letters, 46(10), 1016–1019.
- Schutski, R., Khakhulin, T., Oseledets, I., & Kolmakov, D. (2020). Simple heuristics for efficient parallel tensor contraction and quantum circuit simulation. Physical Review A, 102(6), 062614.
- Shadrin, D., Pukalchik, M., Kovaleva, E. & Fedorov, M. (2020). Artificial intelligence models to predict acute phytotoxicity in petroleum contaminated soils. Ecotoxicology and Environmental Safety, 194.
- Sosnina, E. A., Sosnin, S., Nikitina, A. A., Nazarov, I., Osolodkin, D. I., & Fedorov, M. V. (2020). Recommender Systems in Antiviral Drug Discovery. ACS Omega, 5(25), 15039–15051.
- Uvarov, A., Biamonte, J. D., & Yudin, D. (2020). Variational quantum eigensolver for frustrated quantum systems. Physical Review B, 102(7), 075104.
- Volkhonskiy, D., Nazarov, I., & Burnaev, E. (2020, January). Steganographic generative adversarial networks. In Proceedings of SPIE – The International Society for Optical Engineering, 11433, art. no. 114333M.
- Zagidullin, R. R., Smirnov, A. P., Matveev, S. A., Shestopalov, Y. V., & Rykovanov, S. G. (2020). Hybrid Parallelism in Finite Volume Based Algorithms in Application to Two-Dimensional Scattering Problem Setting. Computational Mathematics and Modeling, 31(3), 355-363.
- Zherebker, A., Lechtenfeld, O. J., Sarycheva, A., Kostyukevich, Y., Kharybin, O., Fedoros, E. I., & Nikolaev, E. N. (2020). Refinement of Compound Aromaticity in Complex Organic Mixtures by Stable Isotope Label Assisted Ultrahigh-Resolution Mass Spectrometry. Analytical Chemistry, 92(13), 9032–9038.
- Zolotarev, A. M., Hansen, B. J., Ivanova, E. A., Helfrich, K. M., Li, N., Janssen, P. M. L., Mohler, P. J., Mokadam, N. A., Whitson, B. A., Fedorov, M. V., Hummel, J. D., Dylov, D. V., & Fedorov, V. V. (2020). Optical Mapping-Validated Machine Learning Improves Atrial Fibrillation Driver Detection by Multi-Electrode Mapping. Circulation: Arrhythmia and Electrophysiology, 13(10).
- Azimi-Tafreshi, N., Osat, S., & Dorogovtsev, S. N. (2019). Generalization of core percolation on complex networks. Physical Review E, 99 (2).
- Buyval, A. Gabdullin, A., Sozykin K. & Klimchik, A. (2019) Model Predictive Path Integral Control for Car Driving with Autogenerated Cost map Based on Prior Map and Camera Image. In 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 2019, pp. 2109-2114.
- Egiazarian, V., Ignatyev, S., Artemov, A., Voynov, O., Kravchenko, A., Zheng, Y., … & Burnaev, E. (2019). Latent-Space Laplacian Pyramids for Adversarial Representation Learning with 3D Point Clouds. In Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, 4, pp. 421-428.
- Egorov, E., Neklydov, K., Kostoev, R., & Burnaev, E. (2019, July). Maxentropy pursuit variational inference. In International Symposium on Neural Networks (pp. 409-417). Springer, Cham.
- Egorova, E., Fernandez, M., Kabatiansky, G., & Lee, M. H. (2019). Signature codes for weighted noisy adder channel, multimedia fingerprinting and compressed sensing. Designs, Codes and Cryptography, 87(2-3), 455-462.
- Egorova, E., Kabatiansky, G., Krouk, E., & Tavernier, C. (2019, February). A new code-based public-key cryptosystem resistant to quantum computer attacks. In Journal of Physics: Conference Series (Vol. 1163, No. 1, p. 012061). IOP Publishing.
- Faqeeh, A., Osat, S., Radicchi, F., & Gleeson, J. P. (2019). Emergence of power laws in noncritical neuronal systems. Physical Review E, 100(1), 010401.
- Georgakis, I. P., Polimeridis, A. G., Lattanzi, R. (2019, May). Ideal Current Patterns for Optimal SNR in Realistic Heterogeneous Head Models. In Proceedings of ISMRM 27th Annual Meeting & Exhibition, Montreal, Canada (p. 1036).
- Giannakopoulos, I.I., Serralles, J.E.C., Zhang, B., Daniel, L., White, J.K., Lattanzi, R. (2019). Electrical properties mapping in a tissue mimicking phantom using Global Maxwell Tomography with a realistic coil model at 7 Tesla. In the 2nd International workshop of Mr-based Electrical Properties mapping (IMEP).
- Giannakopoulos, I.I., Serrallés, J.E., Zhang, B., Daniel, L., White, J.K. and Lattanzi, R. (2019). Global Maxwell Tomography using an 8-channel radiofrequency coil: simulation results for a tissue-mimicking phantom at 7T. In 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (pp. 823-824). IEEE.
- Giannakopoulos I. I., Litsarev M. S. & Polimeridis A. G. (2019). Memory footprint reduction for the FFT-based volume integral equation method via tensor decompositions. In IEEE Transactions on Antennas and Propagation.
- Glebov, A., Matveev, N., Andreev, K., Frolov, A., Turlikov, A. (2019). Achievability Bounds for T-Fold Irregular Repetition Slotted ALOHA Scheme in the Gaussian MAC. In IEEE Wireless Communications and Networking Conference, WCNC.
- Groth, S. P., Polimeridis, A. G., Tambova, A., & White, J. K. (2019). Circulant preconditioning in the volume integral equation method for silicon photonics. Journal of the Optical Society of America A, 36(6).
- Gruenwald, J., Znobishchev, A., Kapeller, C., Kamada, K., Scharinger, J., & Guger, C. (2019). Time-variant linear discriminant analysis improves hand gesture and finger movement decoding for invasive brain-computer interfaces. Frontiers in Neuroscience, 13, 901, 2019.
- Gusak, J., Kholiavchenko, M., Ponomarev, E., Markeeva, L., Blagoveschensky, P., Cichocki, A., & Oseledets, I. (2019). Automated Multi-Stage Compression of Neural Networks. In Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 0-0.
- Iskakov, K., Burkov, E., Lempitsky, V., & Malkov, Y. (2019). Learnable triangulation of human pose. In Proceedings of the IEEE International Conference on Computer Vision, pp. 7718-7727.
- Itkin, I., Gromova, A., Sitnikov, A., Legchikov, D., Tsymbalov, E., Yavorskiy, R., Novikov, A. and Rudakov, K. (2019, April). User-Assisted Log Analysis for Quality Control of Distributed Fintech Applications. In 2019 IEEE International Conference On Artificial Intelligence Testing (AITest) (pp. 45-51). IEEE.
- Ivanov A., Stoliarenko M., Kruglik S., Novichkov S. and Savinov A. (2019). Dynamic Resource Allocation in LEO Satellite. In 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), pp. 930-935.
- Ivanov A., Stoliarenko M., Savinov A. and Novichkov S. (2019). Physical Layer Representation in LEO Satellite with a Hybrid Multi-Beamforming. In 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), pp. 140-145.
- Karlov, D. S., Sosnin, S., Tetko, I. V, & Fedorov, M. V. (2019). Chemical space exploration guided by deep neural networks. RSC Advances, 9(9), 5151–5157.
- Karlov, D.S., Popov, P., Sosnin, S., Fedorov, M.V. (2019). Message passing neural networks scoring functions for structure-based drug discovery. In: Tetko, I. V., Kůrková, V., Karpov, P., & Theis, F. (Eds.) Artificial Neural Networks and Machine Learning – ICANN 2019: Workshop and Special Sessions. Lecture Notes in Computer Science.
- Katrutsa, A., Daulbaev, T., & Oseledets, I. (2019). Black-box learning of multigrid parameters. Journal of Computational and Applied Mathematics, 112524.
- Katser I., Kozitsin V., Maksimov I. (2019). NPP equipment fault detection methods. Izvestiya vuzov. Yadernaya Energetika, 4.
- Klyuchnikov, N., Mottin, D., Koutrika, G., Müller, E., & Karras, P. (2019). Figuring out the User in a Few Steps: Bayesian Multifidelity Active Search with Cokriging. In Kdd.
- Klyuchnikov, N., Zaytsev, A., Gruzdev, A., Ovchinnikov, G., Antipova, K., Ismailova, L., Muravleva, E., Burnaev, E., Semenikhin, A., Cherepanov, A. & Koryabkin, V. (2019). Data-driven model for the identification of the rock type at a drilling bit. Journal of Petroleum Science and Engineering, 178, 506-516.
- Khromov, N., Korotin, A., Lange, A., Stepanov, A., Burnaev, E., & Somov, A. (2019). Esports Athletes and Players: a Comparative Study. IEEE Pervasive Computing, 18(3), 31-39.
- Kokkinos, F., & Lefkimmiatis, S. (2019). Iterative residual CNNs for burst photography applications. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 5929-5938).
- Kokkinos, F., & Lefkimmiatis, S. (2019). Iterative Joint Image Demosaicking and Denoising Using a Residual Denoising Network. In IEEE Transactions on Image Processing, 28(8), 4177-4188.
- Korepanova, D., Kruglik, S., Madhwal, Y., Myaldzin, T., Prokhorov, I., Shiyanov, I., Vorobyov, S. and Yanovich, Y. (2019). Blockchain-Based Solution to Prevent Postage Stamps Fraud. 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), 171–175.
- Korotin, A., Khromov, N., Stepanov, A., Lange, A., Burnaev, E., & Somov, A. (2019). Towards Understanding of eSports Athletes’ Potentialities: The Sensing System for Data Collection and Analysis. 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Leicester, United Kingdom, 2019, pp. 1804-1810.
- Kostyukevich, Y.I., Vladimirov, G., Stekolschikova, E., Ivanov, D.G., Yablokov, A., Zherebker, A.Y., Sosnin, S., Orlov, A., Fedorov, M., Khaitovich, P. and Nikolaev, E.N. (2019). Hydrogen/deuterium exchange aids compounds identification for LC-MC and MALDI imaging lipidomics. Analytical Chemistry.
- Kruglik, S., Madhwal, Y., Vorobyov, S., Yanovich, Y. (2019). Fractional Reservation Based Mempool Processing in Blockchains. In Proceedings of the 2019 2nd International Conference on Blockchain Technology and Applications, Xi’an, China.
- Kruglik, S., Nazirkhanova, K., & Frolov, A. (2019). New bounds and generalizations of locally recoverable codes with availability. IEEE Transactions on Information Theory, 65(7), 4156-4166.
- Kruglik, S., Rybin, P., Frolov, A. (2019). On the secrecy capacity of distributed storage with locality and availability. IEEE Vehicular Technology Conference
- Kuzina, A., Egorov, E., & Burnaev, E. (2019). Bayesian generative models for knowledge transfer in MRI semantic segmentation problems. Frontiers in neuroscience, 13, 844.
- Marshakov, E., Balitskiy, G., Andreev, K., Frolov, A. (2019). A polar code-based unsourced random access for the Gaussian MAC. In IEEE Vehicular Technology Conference.
- Menshchikov, A., Ermilov, D., Dranitsky, I., Kupchenko, L., Panov, M., Fedorov, M., & Somov, A. (2019). Data-Driven Body-Machine Interface for Drone Intuitive Control through Voice and Gestures. In IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society, Vol. 1, pp. 5602-5609.
- Menshchikov, A., & Somov, A. (2019). Morphing wing with compliant aileron and slat for unmanned aerial vehicles. Physics of Fluids, 31(3), 037105.
- Minin, Iu. B., Dubrov, M. N., Shevchenko, V. M. (2019). Method and Apparatus for Precision laser interference measurements of distances and displacements. Rus. Patent No. 2721667. Moscow: Federal Service for Intellectual Property (Rospatent).
- Minin, Iu., Shevchenko, V.M., & Dubrov, M.N. (2019). Development and Investigation of Precision Laser-Interferometric Meter for Distance and Displacement Monitoring. In 2019 IEEE 8th International Conference on Advanced Optoelectronics and Lasers (CAOL) (pp. 220-224)
- Neklyudov, K., Egorov, E., & Vetrov, D. P. (2019). The Implicit Metropolis-Hastings Algorithm. In Advances in Neural Information Processing Systems (pp. 13932-13942).
- Nikitin, A., Fastovets, I., Shadrin, D., Pukalchik, M., & Oseledets, I. (2019). Bayesian optimization for seed germination. Plant Methods, 15(1), 43.
- Pavlov, S., Artemov, A., Sharaev, M., Bernstein, A., Burnaev, E. (2019). Weakly supervised fine-tuning approach for brain tumor segmentation problem. In Proceedings of IEEE International Conference on Machine Learning and Applications, ICMLA, 8999129, pp. 1600-1605.
- Pavlov S.V., Nazmutdinov R.R., Fedorov M.V., Kislenko S.A. (2019). Role of graphene edges in the electron transfer kinetics: Insight from theory and molecular modeling. The Journal of Physical Chemistry, 123(11). 6627-6634.
- Pominova, M., Kondrateva, E., Sharaev, M., Bernstein, A., Pavlov, S., & Burnaev, E. (2019, December). 3D Deformable Convolutions for MRI classification. In 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA), pp. 1710-1716.
- Pominova, M., Kuzina, A., Kondrateva, E., Sushchinskaya, S., Burnaev, E., Yarkin, V., & Sharaev, M. (2019, October). Ensemble of 3D CNN regressors with data fusion for fluid intelligence prediction. In Challenge in Adolescent Brain Cognitive Development Neurocognitive Prediction (pp. 158-166). Springer, Cham.
- Ponomarev, E. S., Oseledets, I. V., & Cichocki, A. S. (2019). Using Reinforcement Learning in the Algorithmic Trading Problem. Journal of Communications Technology and Electronics, 64(12), pp. 1450-1457.
- Popov, P., Kozlovskii, I. and Katritch, V. (2019). Computational design for thermostabilization of GPCRs. Current Opinion in Structural Biology, 55, pp. 25-33.
- Proskura, P., Zaytsev, A., Braslavsky, I., Egorov, E., Burnaev, E. (2019). Usage of Multiple RTL Features for Earthquakes Prediction. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 556-565.
- Prutyanov V., Melentev, N., Lopatkin, D., Menshchikov, A., and Somov, A. (2019). Developing IoT Devices Empowered by Artificial Intelligence: Experimental Study, Global IoT Summit (GIoTS).
- Pukalchik, M. A., Katrutsa, A. M., Shadrin, D., Terekhova, V. A., & Oseledets, I. V. (2019). Machine learning methods for estimation of the indicators of phosphogypsum influence in soil. Journal of Soils and Sediments, 1-12.
- Rivera-Castro, R., Nazarov, I., Xiang, Y., Pletneev, A., Maksimov, I., & Burnaev, E. (2019, July). Demand forecasting techniques for build-to-order lean manufacturing supply chains. In International Symposium on Neural Networks. pp. 213-222.
- Rivera-Castro, R., Nazarov, I., Xiang, Y., Maksimov, I., Pletnev, A., Burnaev, E. (2019). An industry case of large-scale demand forecasting of hierarchical components. In Proceedings of 18thIEEE International Conference on Machine Learning and Applications, ICMLA, 8999262, pp. 134-139.
- Rivera-Castro, R., Pilyugina, P., & Burnaev, E. (2019). Topological Data Analysis for Portfolio Management of Cryptocurrencies. In International Conference on Data Mining Workshops (ICDMW), pp. 238-243.
- Rivera-Castro, R., Pletnev, A., Pilyugina, P., Diaz, G., Nazarov, I., Zhu, W., Burnaev, E. (2019). Topology-Based Clusterwise Regression for User Segmentation and Demand Forecasting. IEEE International Conference on Data Science and Advanced Analytics (DSAA), Washington, DC, USA, pp. 326-336.
- Serralles, J. E., Giannakopoulos, I., Zhang, B., Ianniello, C., Cloos, M. A., Polimeridis, A.G., White, J.K., Sodickson, D.K., Daniel, L., Lattanzi, R. & Lattanzi, R. (2019). Noninvasive Estimation of Electrical Properties from Magnetic Resonance Measurements via Global Maxwell Tomography and Match Regularization. IEEE Transactions on Biomedical Engineering.
- Shadrin, D., Chashchin, A., Ovchinnikov, G. & Somov, A. (2019, May). System Identification-Soilless Growth of Tomatoes. In 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) (pp. 1-6). IEEE.
- Shadrin, D., Menshchikov, Somov, A. & Fedorov, M.(2019). Enabling Precision Agriculture through Embedded Sensing with Artificial Intelligence. IEEE Transactions on Instrumentation and Measurement, pp. 1-10.
- Shadrin, D., Menshchikov, A., Ermilov, D. & Somov, A. (2019). Designing Future Precision Agriculture: Detection of Seeds Germination Using Artificial Intelligence on a Low-Power Embedded System. IEEE Sensors Journal, pp. 1-10.
- Sharaev, M., Artemov, A., Kondrateva, E., Ivanov, S., Sushchinskaya, S., Bernstein, A., Cichocki, A., Burnaev, E. (2019). Learning connectivity patterns via graph Kernels for fMRI-based depression diagnostic. IEEE International Conference on Data Mining Workshops, ICDMW, pp.308-314.
- Sharaev, M., Artemov, A., Kondrateva, E., Sushchinskaya, S., Burnaev, E., Bernstein, A., Akzhigitov, R., Andreev, A. (2019). MRI-Based diagnostics of depression concomitant with epilepsy: In search of the potential biomarkers. In Proceedings of IEEE 5th International Conference on Data Science and Advanced Analytics, DSAA, pp.555-564.
- Shelmanov, A., Liventsev, V., Kireev, D., Khromov, N., Panchenko, A., Fedulova, I., & Dylov, D. V. (2019, November). Active Learning with Deep Pre-trained Models for Sequence Tagging of Clinical and Biomedical Texts. In 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (pp. 482-489). IEEE.
- Shi, Z., Tsymbalov, E., Dao, M., Suresh, S., Shapeev, A., & Li, J. (2019). Deep elastic strain engineering of bandgap through machine learning. Proceedings of the National Academy of Sciences, 116(10), 4117-4122.
- Shysheya, A., Zakharov, E., Aliev, K.-A., Bashirov, R., Ivakhnenko, A., Burkov, E., Ulyanov, D., Malkov, Yu., Iskakov, K., Pasechnik, I., Vakhitov, A., Lempitsky, V. (2019). Textured Neural Avatars. CVF/IEEE Computer Vision and Pattern Recognition (CVPR), Long Beach, CA.
- Smolyakov, D., Korotin, A., Erofeev, P., Papanov, A., & Burnaev, E. (2019, March). Meta-learning for resampling recommendation systems. In Eleventh International Conference on Machine Vision (ICMV 2018) (Vol. 11041, p. 110411S). International Society for Optics and Photonics.
- Smolyakov, D., Sviridenko, N., Ishimtsev, V., Burikov, E., & Burnaev, E. (2019, July). Learning ensembles of anomaly detectors on synthetic data. In International Symposium on Neural Networks (pp. 292-306). Springer, Cham.
- Sosnin, S., Vashurina, M., Withnall, M., Karpov, P., Fedorov, M., & Tetko, I. V. (2019). A Survey of Multi‐task learning methods in chemoinformatics. Molecular informatics, 38(4), 1800108.
- Stepanov, A., Lange, A., Khromov, N., Korotin, A., Burnaev, E., & Somov, A. (2019). Sensors and Game Synchronization for Data Analysis in eSports. 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), Helsinki, Finland, 2019, pp. 933-938.
- Taktasheva, M., Matveev, A., Artemov, A., Burnaev, E. (2019). Learning to approximate directional fields defined over 2D planes. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11832 LNCS, pp. 367-374.
- Tsymbalov E., Makarychev S., Shapeev A., Panov M. (2019). Deeper Connections between Neural Networks and Gaussian Processes Speed-up Active Learning. Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. Main track. pp. 3599-3605.
- Ustinova, D., Glebov, A., Rybin, P., & Frolov, A. (2019, September). Efficient concatenated same codebook construction for the random access gaussian MAC. In 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall) (pp. 1-5). IEEE.
- Uvarov, A. V., Gavrilov, S. S., Kulakovskii, V. D. & Gippius, N. A. (2019). Stochastic and deterministic switches in a bistable polariton micropillar under short optical pulses Phys. Rev. A 99, 033837.
- Velichkovsky B.B., Khromov N., Korotin A., Burnaev E., Somov A. (2019). Visual Fixations Duration as an Indicator of Skill Level in eSports. In: Lamas D., Loizides F., Nacke L., Petrie H., Winckler M., Zaphiris P. (eds) Human-Computer Interaction – INTERACT 2019. INTERACT 2019. Lecture Notes in Computer Science, vol 11746. Springer, Cham
- Voynov, O., Artemov, A., Egiazarian, V., Notchenko, A., Bobrovskikh, G., Burnaev, E., & Zorin, D. (2019). Perceptual deep depth super-resolution. In Proceedings of the IEEE International Conference on Computer Vision, pp. 5653-5663.
- Yaubatyrov, R. R., Kotezhekov, V. S., Babin, V. M., and Nuzhin E. E. (2019). Technology for optimizing reservoir pressure maintenance system based on hybrid modeling (Russian). PRONeft Journal, pp. 30–36.
- Zacharov, I., Arslanov, R., Gunin, M., Stefonishin, D., Bykov, A., Pavlov, S., Panarin, O., Maliutin, A., Rykovanov, S., Fedorov, M. (2019). “Zhores” – Petaflops supercomputer for data-driven modeling, machine learning and artificial intelligence installed in Skolkovo Institute of Science and Technology. Open Engineering,9 (1), pp. 512-520.
- Zakharov, E., Shysheya, A., Burkov, E., Lempitsky, V. (2019). Few-Shot Adversarial Learning of Realistic Neural Talking Head Models. CVF/IEEE International Conference on Computer Vision (ICCV), Seoul, pp. 9459-9468.
- Asante-Mensah, M. G., & Cichocki, A. (2018, November). Medical Image De-noising Using Deep Networks. In 2018 IEEE International Conference on Data Mining Workshops (ICDMW) (pp. 315-319). IEEE.
- Bernstein, A., Akzhigitov, R., Kondrateva, E., Sushchinskaya, S., Samotaeva, I., & Gaskin, V. (2018). MRI brain imagery processing software in data analysis. Trans. Mass-Data Analysis of Images and Signals, 9(1), 3-17. ISBN: 978-3-942952-57-6 (Corresponding author)
- Burkov, E., & Lempitsky, V. (2018). Deep Neural Networks with Box Convolutions. Advances in Neural Information Processing Systems, 31, 6214-6224.
- Egorova, E. E., Potapova, V. S. (2018). Compositional restricted multiple access channel. Problems of Information Transmission, 54(2), 116-123.
- Faqeeh, A., Osat, S., & Radicchi, F. (2018). Characterizing the analogy between hyperbolic embedding and community structure of complex networks. Physical review letters, 121(9), 098301.
- Georgakis I.P., Polimeridis, A.G., Lattanzi, R. (2018, June). Ultimate Intrinsic Transmit Efficiency for RF Shimming, Proceedings of Joint Annual Meeting ISMRM-ESMRMB, Paris, France (p. 0139).
- Giannakopoulos, I. I., Litsarev, M. S., & Polimeridis, A. G. (2018, July). 3D cross-Tucker approximation in FFT-based volume integral equation methods. In 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting (pp. 2507-2508). IEEE.
- Gordin, V. A., & Tsymbalov, E. A. (2018). Compact difference scheme for parabolic and Schrödinger-type equations with variable coefficients. Journal of Computational Physics, 375, 1451-1468.
- Gordin, V. A., & Tsymbalov, E. A. (2018). A Fourth-Order Accurate Difference Scheme for a Differential Equation with Variable Coefficients. Mathematical Models and Computer Simulations, 10(1), 79-88.
- Ivanov, S., & Burnaev, E. (2018). Anonymous walk embeddings. 35th International Conference on Machine Learning, ICML 2018, 5, 3448–3457.
- Ivanov, S., Durasov, N., & Burnaev, E. (2018, November). Learning Node Embeddings for Influence Set Completion. In 2018 IEEE International Conference on Data Mining Workshops (ICDMW) (pp. 1034-1037). IEEE.
- Ivanov, A., Kruglik, S., & Lakontsev, D. (2018, June). Cloud MIMO for Smart Parking System. IEEE 87th Vehicular Technology Conference (VTC Spring) (pp. 1-4). IEEE.
- Ivanov, A., Yarotsky, D., Stoliarenko, M. & Frolov, A., (2018, October). Smart Sorting in Massive MIMO Detection. In 2018 14th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob) (pp. 1-6). IEEE.
- Kachan, O., Yanovich, Y., & Abramov, E. (2018). Vector fields alignment on manifolds via contraction mappings, Uchenye Zapiski Kazanskogo Universiteta: Seriya Fiziko-Matematicheskie Nauki, 160(2), 300-308.
- Khrulkov, V., & Oseledets, I. (2018). Art of singular vectors and universal adversarial perturbations. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 8562-8570).
- Khrulkov, V., & Oseledets, I. (2018). Desingularization of bounded-rank matrix sets. SIAM Journal on Matrix Analysis and Applications, 39(1), 451-471.
- Kokkinos, F., & Lefkimmiatis, S. (2018). Deep image demosaicking using a cascade of convolutional residual denoising networks. In Proceedings of the European Conference on Computer Vision (ECCV) (pp. 303-319).
- Kruglik, S., Nazirkhanova, K., & Frolov, A. (2018, June). On Distance Properties of (r, t, x)-LRC Codes. IEEE International Symposium on Information Theory (ISIT) (pp. 1336-1339).
- Kruglik, S., Potapova, V., & Frolov, A. (2018, May). On Performance of Multilevel Coding. Schemes Based on Non-Binary LDPC Codes. European Wireless 2018; 24th European Wireless Conference (pp. 1-4).
- Kruglik, S. A., Potapova, V. S., & Frolov, A. A. (2018). A Method for Constructing Parity-Check Matrices of Quasi-Cyclic LDPC Codes Over GF (q). Journal of Communications Technology and Electronics, 63(12), 1524-1529.
- Lebedev, V., & Lempitsky, V. (2018). Speeding-up convolutional neural networks: A survey. Bulletin of the Polish Academy of Sciences. Technical Sciences, 66(6).
- Menshchikov A. (2018). Development of adaptive wing with double hinge aileron for unmanned aerial vehicles. Austrian Journal of Natural and Technical Science, 150-159.
- Menshchikov, A., & Somov, A. (2018, June). Mixed Reality Glasses: Low-Power IoT System for Digital Augmentation of Video Stream in Visual Recognition Applications. In 2018 IEEE 13th International Symposium on Industrial Embedded Systems (SIES) (pp. 1-8). IEEE.
- Morales, M. E., Tlyachev, T., & Biamonte, J. (2018). Variational learning of Grover’s quantum search algorithm. Physical Review A, 98(6), 062333.
- Munkhoeva, M., Kapushev, Y., Burnaev, E., & Oseledets, I. (2018). Quadrature-based features for kernel approximation. Advances in Neural Information Processing Systems (NIPS), 9147-9156.
- Minin, Y., Dubrov, M., & Krupnik, E. (2018). Precision laser-interferometric meter of distances and displacements. Journal of Instrument Engineering (Izvestia vuzov. Priborostroenie), 61(10), 892-896.
- Minin, Y., Dubrov, M., & Krupnik, E. (2018). The Construction Principle Development of Precision Laser-Interferometric Meter of Distances and Displacements. In 2018 Engineering and Telecommunication (EnT-MIPT) (pp. 113-117).
- Minin, Y., Nuzhin,E.E., Boyko, A.I., Litsarev, M.S., & Oseledets.I.V. (2018). Evolutionary Structural Optimization Algorithm Based on FFT-JVIE Solver for Inverse Design of Wave Devices. In 2018 Engineering and Telecommunication (EnT-MIPT) (pp. 146-150). DOI: 10.1109/EnT-MIPT.2018.00040.
- Novoselov, S., Shulipa, A., Kremnev, I., Kozlov, A., Shchemelinin, V. (2018). On deep speaker embeddings for text-independent speaker recognition. Proceedings of Odyssey 2018 The Speaker and Language Recognition Workshop, 378-385.
- Novoselov, S., Shchemelinin, V., Shulipa, A., Kozlov, A., Kremnev, I. (2018). Triplet Loss Based Cosine Similarity Metric Learning for Text-independent Speaker Recognition. Proceedings of Interspeech 2018, 2242-2246.
- Nouretdinov, I., Volkhonskiy, D., Lim, P., Toccaceli, P., Gammerman, A. (2018). Inductive Venn-Abers Predictive Distribution. Proceedings of Machine Learning Research, 91, 1-22.
- Nuzhin, E., Yaubatyrov, R., Kotezhekov, V., & Babin, V. (2018, October). Applicability Analysis of Optimization Algorithms for Oil Fields Development Control. In SPE Russian Petroleum Technology Conference. Society of Petroleum Engineers.
- Osat, S., & Radicchi, F. (2018). Observability transition in multiplex networks. Physica A: Statistical Mechanics and its Applications, 503, 745-761.
- Pominova, M., Artemov, A., Sharaev, M., Kondrateva, E., Bernstein, A., & Burnaev, E. (2018, November). Voxelwise 3d convolutional and recurrent neural networks for epilepsy and depression diagnostics from structural and functional MRI data. In 2018 IEEE International Conference on Data Mining Workshops (ICDMW) (pp. 299-307). IEEE.
- Rivera, R.C., Nazarov, I., & Burnaev, E. (2018, November). Towards forecast techniques for business analysts of large commercial data sets using matrix factorization methods. Journal of Physics: Conference Series, 1117(1), p. 012010. IOP Publishing.
- Sharaev, M., Andreev, A., Artemov, A., Burnaev, E., Kondratyeva, E., Sushchinskaya, S., … & Bernstein, A. (2018, September). Pattern recognition pipeline for neuroimaging data. In IAPR Workshop on Artificial Neural Networks in Pattern Recognition (pp. 306-319). Springer, Cham.
- Sharaev, M., Artemov, A., Kondrateva, E., Ivanov, S., Sushchinskaya, S., Bernstein, A., Cichocki, A. & Burnaev, E. (2018, November). Learning Connectivity Patterns via Graph Kernels for fMRI-Based Depression Diagnostics. In 2018 IEEE International Conference on Data Mining Workshops (ICDMW) (pp. 308-314). IEEE.
- Sharaev, M., Artemov, A., Kondrateva, E., Sushchinskaya, S., Burnaev, E., Bernstein, A., … & Andreev, A. (2018, October). Mri-based diagnostics of depression concomitant with epilepsy: in search of the potential biomarkers. In 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA) (pp. 555-564). IEEE.
- Shadrin, D. G., Kulikov, V., & Fedorov, M. (2018). Instance segmentation for assessment of plant growth dynamics in artificial soilless conditions. BMVC, p. 329.
- Shadrin, D., Somov, A., Podladchikova, T., & Gerzer, R. (2018, May). Pervasive agriculture: Measuring and predicting plant growth using statistics and 2D/3D imaging. IEEE International Instrumentation and Measurement Technology Conference (I2MTC) (pp. 1-6).
- Simonov, M., Akhmetov, A., Temirchev, P., Koroteev, D., Kostoev, R., Burnaev, E., & Oseledets, I. (2018, October). Application of Machine Learning Technologies for Rapid 3D Modelling of Inflow to the Well in the Development System. In SPE Russian Petroleum Technology Conference. Society of Petroleum Engineers.
- Smolyakov, D., Sviridenko, N., Burikov, E., & Burnaev, E. (2018, Sept). Anomaly pattern recognition with privileged Information for sensor fault detection. IAPR Workshop on Artificial Neural Networks in Pattern Recognition (pp. 320-332). Springer, Cham.
- Sosnin, S., Karlov, D., Tetko, I.V. and Fedorov, M.V., (2018). Comparative study of multitask toxicity modeling on a broad chemical space. Journal of chemical information and modeling, 59(3), pp.1062-1072.
- Sosnin, S., Misin, M., Palmer, D. S., & Fedorov, M. V. (2018). 3D matters! 3D-RISM and 3D convolutional neural network for accurate bioaccumulation prediction. Journal of Physics: Condensed Matter, 30(32), 32LT03.
- Sosnina, E. A., Osolodkin, D. I., Radchenko, E. V., Sosnin, S., & Palyulin, V. A. (2018). Influence of descriptor implementation on compound ranking based on multiparameter assessment. Journal of Chemical Information and Modeling, 58(5), 1083-1093.
- Somov, A., Shadrin, D., Fastovets, I., Nikitin, A., Matveev, S., & Hrinchuk, O. (2018). Pervasive agriculture: IoT-Enabled greenhouse for plant growth control. IEEE Pervasive Computing, 17(4), 65-75.
- Sungatullina, D., Zakharov, E., Ulyanov, D., & Lempitsky, V. (2018). Image manipulation with perceptual discriminators. In Proceedings of the European Conference on Computer Vision (ECCV) (pp. 579-595).
- Tambova, A., S. P. Groth, J. K., White and Polimeridis, A. G. (2018, Sept). Adiabatic absorbers in photonics simulations with the volume integral equation method. Journal of Lightwave Technology, 36(17), 3765-3777.
- Tsymbalov, E., Panov, M., & Shapeev, A. (2018, July). Dropout-Based Active Learning for Regression. In International Conference on Analysis of Images, Social Networks and Texts (pp. 247-258). Springer, Cham.
- Ulyanov, D., Vedaldi, A., & Lempitsky, V. (2018, April). It takes (only) two: Adversarial generator-encoder networks. In Thirty-Second AAAI Conference on Artificial Intelligence (pp. 1250-1257).
- Ulyanov, D., Vedaldi, A., & Lempitsky, V. (2018). Deep image prior. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 9446-9454).
- Volkhonskiy, D., Sudakov, O., Muravleva, E., Orlov, D., Belozerov, B., Burnaev, E., Koroteev, D. (2018). Reconstruction of 3D porous media from 2D slices. Advances in Water Resources.
- Yucel, A. C., Bagci, H., Georgakis, I. P., Athanasios, G., White, J. K. (2018, March). An FFT-accelerated inductance extractor for voxelized structures. International Applied Computational Electromagnetics Society Symposium (ACES) (pp. 1-2).
- Yucel, A.C., Georgakis, I.P., Polimeridis, A.G., Bagcı, H., White, J.K. (2018). VoxHenry: FFT-accelerated inductance extraction for voxelized geometries. IEEE Transactions on Microwave Theory and Techniques, 66(4), 1723-35.
- Baranov, A., Burnaev, E., Derkach, D., Klyuchnikov, N., Lantwin, O., Ustyuzhanin, A. & Zaitsev, A. (2017). IOP: Optimising the active muon shield for the SHiP experiment at CERN. Journal of Physics: Conference Series, 934, 012050.
- Boyko, A. I., Oseledets, I. V., & Gippius, N. A. (2017, May). Towards solving Lippmann-Schwinger integral equation in 2D with polylogarithmic complexity with quantized tensor train decomposition. In 2017 Progress In Electromagnetics Research Symposium-Spring (PIERS) (pp. 2329-2333). IEEE.
- Egorova, E., & Kabatiansky, G. (2017, August). Analysis of two tracing traitor schemes via coding theory. In International Castle Meeting on Coding Theory and Applications (pp. 84-92). Springer, Cham.
- Fonarev, A., Hrinchuk, O., Gusev, G., Serdyukov, P., & Oseledets, I. (August, 2017). Riemannian Optimization for Skip-Gram Negative Sampling. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers, pp. 2028-2036).
- Frolov, E. and Oseledets, I. (2017). Tensor methods and recommender systems. WIREs Data Mining Knowledge Discovery, 7(3).
- Georgakis, I. P., & Polimeridis, A. G. (March, 2017). Reduction of volume-volume integrals arising in Galerkin JM-VIE formulations to surface-surface integrals. In 2017 11th European Conference on Antennas and Propagation (EUCAP) (pp. 324-326). IEEE.
- Ivanov, S., Theocharidis, K., Terrovitis, M., & Karras, P. (2017, August). Content recommendation for viral social influence. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 565-574). ACM.
- Katrutsa, A., & Strijov, V. (2017). Comprehensive study of feature selection methods to solve multicollinearity problem according to evaluation criteria. Expert Systems with Applications, 76, 1-11.
- Kononenko, D., Ganin, Y., Sungatullina, D., & Lempitsky, V. (2017). Photorealistic monocular gaze redirection using machine learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(11), 2696-2710.
- Kruglik, S., Dudina, M., Potapova, V., & Frolov, A. (2017, November). On one generalization of LRC codes with availability. In 2017 IEEE Information Theory Workshop (ITW) (pp. 26-30). IEEE.
- Khrulkov, V., Rakhuba, M., & Oseledets, I. (2017, May). Vico-Greengard-Ferrando quadratures in the tensor solver for integral equations. In Electromagnetics Research Symposium-Spring (PIERS) (pp. 2334-2339). IEEE.
- Kruglik, S., & Frolov, A. (2017, June). Bounds and constructions of codes with all-symbol locality and availability. In 2017 IEEE International Symposium on Information Theory (ISIT) (pp. 1023-1027). IEEE.
- Kuzmin, A., Mikushin, D., & Lempitsky, V. (Sept., 2017). End-to-End learning of cost-volume aggregation for real-time dense stereo. 27th International Workshop on Machine Learning for Signal Processing (MLSP) (pp. 1-6).
- Notchenko, A., Kapushev, Y., & Burnaev, E. (July, 2017). Large-scale shape retrieval with sparse 3D convolutional neural networks. In International Conference on Analysis of Images, Social Networks and Texts (pp. 245-254). Springer, Cham.
- Osat, S., Faqeeh, A., & Radicchi, F. (2017). Optimal percolation on multiplex networks. Nature communications, 8(1), 1540.
- Rivera, R., & Burnaev, E. (2017, November). Forecasting of commercial sales with large scale Gaussian Processes. In 2017 IEEE International Conference on Data Mining Workshops (ICDMW) (pp. 625-634). IEEE.
- Serralles J.E.C., Georgakis I.P., Polimeridis A.G., Daniel L., White J.K., Sodickson D.K., Lattanzi R. (April, 2017). Volumetric Reconstruction of Tissue Electrical Properties from B1+ and MR Signals Using Global Maxwell Tomography: Theory and Simulation Results. In Proceedings of ISMRM 25th Annual Meeting & Exhibition, Honolulu, HI, USA (p. 3647).
- Tambova, A., Guryev, G., & Polimeridis, A. G.. (2017). On the Fully Numerical Evaluation of Singular Integrals Over Coincident Quadrilateral Patches. 11th European Conference on Antennas and Propagation (EuCap), Paris.
- Tambova, A., Litsarev, M., Guryev, G. and Polimeridis, A. G. (2017). On the Generalization of DIRECTFN for Singular Integrals Over Quadrilateral Patches. IEEE Transaction on Antennas and Propagation, 66(1), 304-314.
- Ulyanov, D., Vedaldi, A., & Lempitsky, V. (2017). Improved texture networks: Maximizing quality and diversity in feed-forward stylization and texture synthesis. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 6924-6932).
- Ustinova, E., Ganin, Y., & Lempitsky, V. (2017, August). Multi-region bilinear convolutional neural networks for person re-identification. In 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS) (pp. 1-6). IEEE.
- Vakhitov, A., Kuzmin, A., & Lempitsky, V. (2017). Set2Model networks: Learning discriminatively to learn generative models. In Proceedings of the IEEE International Conference on Computer Vision (pp. 357-366).
- Burnaev, E., & Nazarov, I. (2016, December). Conformalized kernel ridge regression. In 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA) (pp. 4552). IEEE.
- Burnaev, E., & Smolyakov, D. (December, 2016). One-class SVM with privileged information and its application to malware detection. IEEE 16th International Conference on Data Mining Workshops (ICDMW) (pp. 273-280).
- Frolov, E., Oseledets, I. (2016). Fifty shades of ratings: How to Benet from Negative Feedback in Top-n Recommendations Tasks. Proceedings of the 10th ACM Conference on Recommender Systems (pp. 91-98).
- Fonarev, A., Mikhalev, A., Serdyukov, P., Gusev, G., & Oseledets, I. (December, 2016). Efficient Rectangular Maximal-Volume Algorithm for Rating Elicitation in Collaborative Filtering. 16th International Conference on Data Mining (pp. 141-150).
- Ganin, Y., Kononenko, D., Sungatullina, D., Lempitsky, V. (2016). DeepWarp: Photorealistic image re-synthesis for gaze manipulation. European Conference on Computer Vision (pp. 311-326). Springer International Publishing.
- Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M. and Lempitsky, V. (2016). Domain-adversarial training of neural networks, The Journal of Machine Learning Research, JMLR, 17(1), 2096-2030.
- Grinchuk, O., Lebedev, V., & Lempitsky, V. (2016). Learnable visual markers. Advances in Neural Information Processing Systems, 4150–4158.
- Ivanov, S., & Karras, P. (2016, October). Harvester: Influence optimization in symmetric interaction networks. In 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA) (pp. 61-70). IEEE.
- Kabatiansky, G., Fernandez, M., & Egorova, E. (2016, December). Multimedia fingerprinting codes resistant against colluders and noise. In 2016 IEEE International Workshop on Information Forensics and Security (WIFS) (pp. 1-5). IEEE.
- Kuzmin, A., Zhang, X., Finche, J., Feigin, M., Anthony, B. W., & Lempitsky, V. (April, 2016). Fast low-cost single element ultrasound reflectivity tomography using angular distribution analysis. IEEE 13th International Symposium on Biomedical Imaging (ISBI) (pp. 1021-1024).
- Lebedev, V., & Lempitsky, V. (2016). Fast ConvNets using group-wise brain damage. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2554-2564).
- Oseledets, I. V., Ovchinnikov, G. V., & Katrutsa, A. M. (2016). Fast, memory-efficient low-rank approximation of SimRank. Journal of Complex Networks, 5(1), 111-126.
- Struminsky, K., Kruglik, S., Vetrov, D., & Oseledets, I. (2016, October). A new approach for sparse Bayesian channel estimation in SCMA uplink systems. In 2016 8th International Conference on Wireless Communications & Signal Processing (WCSP) (pp. 1-5). IEEE.
- Ulyanov, D., Lebedev, V., Vedaldi, A., & Lempitsky, V. S. (2016, June). Texture Networks: Feed-forward Synthesis of Textures and Stylized Images. In International Conference on Machine Learning (ICML), 1(2), p. 4.
- Ustinova, E., & Lempitsky, V. (2016). Learning deep embeddings with histogram loss. In Advances in Neural Information Processing Systems (pp. 4170-4178).
- Katrutsa, A. M., & Strijov, V. V. (2015). Stress test procedure for feature selection algorithms. Chemometrics and Intelligent Laboratory Systems, 142, 172-183.
- Kononenko, D., Lempitsky, V. (2015). Learning to look up: Realtime monocular gaze correction using machine learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 4667-4675).
- Kuzmin, A., Zakrzewski, A. M., Anthony, B. W., & Lempitsky, V. (2015). Multi-frame elastography using a handheld force-controlled ultrasound probe. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 62(8), 1486-1500.
- Zhang, X., Fincke, J., Kuzmin, A., Lempitsky, V., & Anthony, B. (August, 2015). A single element 3D ultrasound tomography system. In 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), (pp. 5541-5544). IEEE.