Faculty Publications
Below you can find a comprehensive list of published works of CDISE faculty (last update: July 2022):
Q1 journal publications and A/A*-rank conference proceedings are marked in bold.
20222021202020192018201720162015
- Bondarenko, A., Fröbe, M, Kiesel, J., Syed, S., Gurcke, T., Beloucif, M., Panchenko, A., … , Hagen, M. (2022). Overview of Touché 2022: Argument Retrieval: Extended Abstract. Lecture Notes in Computer Science, vol. 13186, pp. 339 – 346
- Che, H., Wang, J., & Cichocki, A. (2022). Sparse signal reconstruction via collaborative neurodynamic optimization. Neural Networks, vol. 154, pp. 255 – 269.
- Duplyakov, V. M., Morozov, A. D., Popkov, D. O., Shel, E. V., Vainshtein, A. L., Burnaev, E. V., … & Paderin, G. V. (2022). Data-driven model for hydraulic fracturing design optimization. Part II: Inverse problem. Journal of Petroleum Science and Engineering, vol. 208, 109303.
- El Daibani, A., Paggi, J., Kim, K., Laloudakis, Y., Popov, P., Bernhard, S., … & Che, T. (2022). Structure Insights into Biased Signaling of kappa Opioid Receptor. The FASEB Journal, vol. 36.
- Faria, B. F., Palyulin, V. V., & Vishnyakov, A. M. (2022). Free Energies of Polymer Brushes With Mobile Anchors in a Good Solvent Calculated with the Expanded Ensemble Method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, p. 129443.
- Gómez, A., Palyulin, V. V., Ryzhakov, G. V., Brilliantov, N. V., Dubrovin, E. V., Verdaguer, A., & Sort, J. (2022). Measurement of stress distribution at the nanoscale: Towards stress nanotomography. Journal of the Mechanics and Physics of Solids, vol. 164, p. 104895.
- Illarionova, S., Shadrin, D., Ignatiev, V., Shayakhmetov, S., Trekin, A., & Oseledets, I. (2022). Estimation of the Canopy Height Model From Multispectral Satellite Imagery With Convolutional Neural Networks. IEEE Access, vol. 10, pp. 34116-34132.
- Illarionova, S., Shadrin, D., Ignatiev, V., Shayakhmetov, S., Trekin, A., & Oseledets, I. (2022). Augmentation-Based Methodology for Enhancement of Trees Map Detalization on a Large Scale. Remote Sensing, vol. 14(9), p. 2281.
- Kalinov, A., Osinsky, A. I., Matveev, S. A., Otieno, W., & Brilliantov, N. V. (2022). Direct simulation Monte Carlo for new regimes in aggregation-fragmentation kinetics. Journal of Computational Physics, vol. 467, p. 111439.
- Karlov, D., Temnyakova, N., Vasilenko, D., Barygin, O., Dron, M., …, Kostyukevich, Y., Popov, P. (2022). Biphenyl scaffold for the design of NMDA-receptor negative modulators: molecular modeling, synthesis, and biological activity. RSC Medicinal Chemistry.
- Kurilovich, A. A., Mantsevich, V. N., Mardoukhi, Y., Stevenson, K. J., Chechkin, A. V., & Palyulin, V. V. (2022). Non-Markovian diffusion of excitons in layered perovskites and transition metal dichalcogenides. Physical Chemistry Chemical Physics, vol. 24(22), pp. 13941-13950.
- Klyuchnikov, N., Trofimov, I., Artemova, E., Salnikov, M., Fedorov, M., Filippov, A., & Burnaev, E. (2022). NAS-Bench-NLP: neural architecture search benchmark for natural language processing. IEEE Access, vol. 10, pp. 45736-45747.
- Kostyukevich, Y., Sosnin, S., Osipenko, S., Kovaleva, O., Rumiantseva, L., Kireev, A., Fedorov, M. V., … & Nikolaev, E. N. (2022). PyFragMS─ A Web Tool for the Investigation of the Collision-Induced Fragmentation Pathways. ACS omega, vol. 7(11), pp. 9710-9719.
- Kovalenko, E., Shcherbak, A., Somov, A., Bril, E., Zimniakova, O., Semenov, M., & Samoylov, A. (2022). Detecting the Parkinson’s Disease Through the Simultaneous Analysis of Data From Wearable Sensors and Video. IEEE Sensors Journal, v. 22(16), pp. 16430-16439.
- Laselva, O., Petrotchenko, E. V., Hamilton, C. M., Qureshi, Z., Borchers, C. H., Young, R. N., & Bear, C. E. (2022). A protocol for identifying the binding sites of small molecules on the cystic fibrosis transmembrane conductance regulator (CFTR) protein. STAR protocols, vol. 3(2), p. 101258.
- Li, S., Jin, J., Daly, I., Liu, C., & Cichocki, A. (2022). Feature selection method based on Menger curvature and LDA theory for a P300 brain–computer interface. Journal of Neural Engineering, vol. 18(6), p. 066050.
- Liu, C., Jin, J., Daly, I., Sun, H., Huang, Y., Wang, X., & Cichocki, A. (2022). Bispectrum-based hybrid neural network for motor imagery classification. Journal of Neuroscience Methods, vol. 375, p. 109593.
- Lyapina, E., Marin, E., Gusach, A., Orekhov, P., Gerasimov, A., Luginina, A., …, Popov, P. …, & Cherezov, V. (2022). Structural basis for receptor selectivity and inverse agonism in S1P5 receptors. Nature communications, v.3, iss.1.
- Mazyavkina, N., Moustafa, S., Trofimov, I., & Burnaev, E. (2021). Optimizing the Neural Architecture of Reinforcement Learning Agents. In Intelligent Computing (pp. 591-606). Springer, Cham.
- Minin, I. B., Matveev, S. A., Fedorov, M. V., Zacharov, I. E., & Rykovanov, S. G. (2022). Benchmarks of Cuda-Based GMRES Solver for Toeplitz and Hankel Matrices and Applications to Topology Optimization of Photonic Components. Computational Mathematics and Modeling, vol. 32(4), pp. 438 – 452.
- Mohammed, Y., Touw, C. E., Nemeth, B., van Adrichem, R. A., Borchers, C. H., Rosendaal, F. R., … & Cannegieter, S. C. (2022). Targeted proteomics for evaluating risk of venous thrombosis following traumatic lower‐leg injury or knee arthroscopy. Journal of Thrombosis and Haemostasis.
- Nesteruk, S., Illarionova, S., Akhtyamov, T., Shadrin, D., Somov, A., Pukalchik, M., & Oseledets, I. (2022). XtremeAugment: Getting More From Your Data Through Combination of Image Collection and Image Augmentation. IEEE Access, vol. 10, pp. 24010-24028.
- Nikishina, I., Tikhomirov, M., Logacheva, V., Nazarov, Y., Panchenko, A., & Loukachevitch, N. (2022). Taxonomy Enrichment with Text and Graph Vector Representations. arXiv preprint arXiv:2201.08598.
- Noskova, E. S., Zakharov, I. E., Shkandybin, Y. N., & Rykovanov, S. G. (2022). Towards energy-efficient neural network calculations. Computer Optics, vol. 46(1), pp. 160-166.
- Novikov, A., Rakhuba, M., & Oseledets, I. (2022). Automatic differentiation for Riemannian optimization on low-rank matrix and tensor-train manifolds. SIAM Journal on Scientific Computing, vol. 44(2), pp. A843-A869.
- Osinsky, A. I., & Brilliantov, N. V. (2022). Anomalous aggregation regimes of temperature-dependent Smoluchowski equations. Physical Review E, vol. 105(3), p. 034119.
- Osinsky, A., & Brilliantov, N. (2022). Scaling laws in fragmentation kinetics. Physica A: Statistical Mechanics and its Applications, vol. 603, p. 127785.
- Osipenko, S., Nikolaev, E., & Kostyukevich, Y. (2022). Amine additives for improved in-ESI H/D exchange. Analyst.
- Pekov, S. I., Zhvansky, E. S., Eliferov, V. A., Sorokin, A. A., Ivanov, D. G., Nikolaev, E. N., & Popov, I. A. (2022). Determination of brain tissue samples storage conditions for reproducible intraoperative lipid profiling. Molecules, vol. 27(8), p. 2587.
- Peng, Y., Zhang, Y., Kong, W., Nie, F., Lu, B. L., & Cichocki, A. (2022). S 3 LRR: A Unified Model for Joint Discriminative Subspace Identification and Semisupervised EEG Emotion Recognition. Transactions on Instrumentation and Measurement, vol. 71, pp. 1-13.
- Rumiantseva, L., Osipenko, S., Zharikov, A., Kireev, A., Nikolaev, E. N., & Kostyukevich, Y. (2022). Analysis of 16O/18O and H/D Exchange Reactions between Carbohydrates and Heavy Water Using High-Resolution Mass Spectrometry. International Journal of Molecular Sciences, vol. 23(7), p. 3585.
- Samardak, A. S., Ognev, A. V., Kolesnikov, A. G., Stebliy, M. E., Samardak, V. Y., Iliushin, I. G., Yudin, D. I., … & Rogalev, A. (2022). XMCD and ab initio study of interface-engineered ultrathin Ru/Co/W/Ru films with perpendicular magnetic anisotropy and strong Dzyaloshinskii–Moriya interaction. Physical Chemistry Chemical Physics, vol. 24(14), pp. 8225-8232.
- Sevgili, O., Shelmanov, A., Arkhipov, M., Panchenko, A., & Biemann, C. (2020). Neural entity linking: A survey of models based on deep learning. arXiv preprint arXiv:2006.00575.
- Shamraeva, M. A., Pekov, S. I., Bormotov, D. S., Levin, R. E., Larina, I. M., Nikolaev, E. N., & Popov, I. A. (2022). The lightweight spherical samplers for simplified collection, storage, and ambient ionization of drugs from saliva and blood. Acta Astronautica, vol. 195, pp. 556-560.
- Shipitsin, V., Bespalov, I., & Dylov, D. V. (2022). GAFL: Global adaptive filtering layer for computer vision. Computer Vision and Image Understanding, v. 223, 103519.
- Takahashi, K., Sun, Z., Solé-Casals, J., Cichocki, A., Phan, A. H., Zhao, Q., … & Micheletto, R. (2022). Data augmentation for Convolutional LSTM based brain computer interface system. Applied Soft Computing, v. 122, p. 108811.
- Talitckii, A., Kovalenko, E., Shcherbak, A., Anikina, A., Bril, E., Zimniakova, O., Dylov, D., …. & Somov, A. (2022). Comparative Study of Wearable Sensors, Video, and Handwriting to Detect Parkinson’s Disease. IEEE Transactions on Instrumentation and Measurement.
- Tsymboi, O., Kapushev, Y., Burnaev, E., & Oseledets, I. (2022). Denoising Score Matching via Random Fourier Features. IEEE Access, vol. 10, pp. 34154-34169.
- Tursynbek, N., Petiushko, A., & Oseledets, I. (2022). Geometry-inspired top-k adversarial perturbations. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (pp. 3398-3407).
- Yakimov, B. P., Rubekina, A. A., Zherebker, A. Y., Budylin, G. S., Kompanets, V. O., Chekalin, S. V., Nikolaev, E. N., … & Shirshin, E. A. (2022). Oxidation of Individual Aromatic Species Gives Rise to Humic-like Optical Properties. Environmental Science & Technology Letters.
- Zakharova, N. V., Bugrova, A. E., Indeykina, M. I., Fedorova, Y. B., Kolykhalov, I. V., Gavrilova, S. I., Kononikhin, A. S. & Nikolaev. E. N. (2022). Proteomic Markers and Early Prediction of Alzheimer’s Disease. Biochemistry (Moscow), 87(8), 762-776.
- Zimmerer, D., Full, P. M., Isensee, F., Jäger, P., Adler, T., Petersen, J., Dylov, D., … & Maier-Hein, K. (2022). MOOD 2020: A public Benchmark for Out-of-Distribution Detection and Localization on medical Images. IEEE Transactions on Medical Imaging.
- Ahmadi-Asl, S., Abukhovich, S., Asante-Mensah, M.G., Cichocki, A., Phan, A.H., Tanaka, T., Oseledets, I. (2021). Randomized Algorithms for Computation of Tucker Decomposition and Higher Order SVD (HOSVD). IEEE Access, vol 9, 9350569, pp. 28684-28706.
- Andreev, K., & Frolov, A. (2021, October). On Unsourced Random Access for the MIMO Channel. In 2021 XVII International Symposium” Problems of Redundancy in Information and Control Systems”(REDUNDANCY) pp. 17-21. IEEE.
- Andreev, K., Frolov, A., Svistunov, G., Wu, K., & Liang, J. (2021, October). Deep Neural Network Based Decoding of Short 5G LDPC Codes. In 2021 XVII International Symposium” Problems of Redundancy in Information and Control Systems”(REDUNDANCY) (pp. 155-160). IEEE.
- Andreev, K., Rybin, P., & Frolov, A. (2021, October). Unsourced Random Access Based on List Recoverable Codes Correcting t Errors. In 2021 IEEE Information Theory Workshop (ITW) pp. 1-6. IEEE.
- Appriou, A., Pillette, L., Trocellier, D., Dutartre, D., Cichocki, A., & Lotte, F. (2021). BioPyC, an Open-Source Python Toolbox for Offline Electroencephalographic and Physiological Signals Classification. Sensors, vol. 21(17), p. 5740.
- Babiloni, C., Arakaki, X., Azami, H., Bennys, K., Blinowska, K., Bonanni, L., … Cichocki, A. (2021). Measures of resting state EEG rhythms for clinical trials in Alzheimer’s disease: Recommendations of an expert panel. Alzheimer’s & Dementia.
- Bachurina, V., Sushchinskaya, S., Sharaev, M., Burnaev, E., & Arsalidou, M. (2021). A machine learning investigation of factors that contribute to predicting cognitive performance: Difficulty level, reaction time and eye-movements. Decision Support Systems, p. 113713.
- Balitskiy, G., Frolov, A., & Rybin, P. (2021, October). Linear Programming Decoding of Non-Linear Sparse-Graph Codes. In 2021 XVII International Symposium” Problems of Redundancy in Information and Control Systems”(REDUNDANCY) (pp. 149-154). IEEE.
- Baranovsky, A., Ladyko, A., Shkel, T., Sokolov, S., Strushkevich, N., & Gilep, A. (2021). Transformations, NMR studies and biological testing of some 17β-isoxazolyl steroids and their heterocyclic ring cleavage derivatives. Steroids, vol. 166, 108768.
- Batselier, K., Cichocki, A., & Wong, N. (2021). Meracle: constructive layer-wise conversion of a tensor train into a mera. Communications on Applied Mathematics and Computation, vol. 3(2), pp. 257-279.
- Begicheva, M., & Zaytsev, A. (2021, December). Bank transactions embeddings help to uncover current macroeconomics. In 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA) (pp. 1742-1748). IEEE.
- Belikova, K., Rogov, O. Y., Rybakov, A., Maslov, M. V., & Dylov, D. V. (2021). Deep negative volume segmentation. Scientific Reports, vol. 11(1), pp. 1-11.
- Bokhovkin, A., Ishimtsev, V., Bogomolov, E., Zorin, D., Artemov, A., Burnaev, E., & Dai, A. (2021). Towards Part-Based Understanding of RGB-D Scans. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7484-7494.
- Boyko, A. I., Oseledets, I. V., & Ferrer, G. (2021). TT-QI: Faster value iteration in tensor train format for stochastic optimal control. Computational Mathematics and Mathematical Physics, vol. 61(5), 836-846.
- Brilliantov, N. V., Otieno, W., & Krapivsky, P. L. (2021). Nonextensive Supercluster States in Aggregation with Fragmentation. Physical review letters, vol. 127(25), p. 250602.
- Burkina, M., Nazarov, I., Panov, M., Fedonin, G., & Shirokikh, B. (2021). Inductive Matrix Completion with Feature Selection. Computational Mathematics and Mathematical Physics, vol. 61(5), 719-732.
- Burnaev, E.V. (2021). Bayesian Filtering in a Latent Space to Predict Bank Net Income from Acquiring. In Analysis of Images, Social Networks and Texts: 9th International Conference, AIST 2020, Skolkovo, Moscow, Russia, October 15–16, 2020, Revised Selected Papers (p. 344). Springer Nature.
- Burnaev, E.V. (2021). Time-Series Classification for Industrial Applications: Road Surface Damage Detection Use Case. Journal of Communications Technology and Electronics, vol. 65 (12), pp. 1491-1498.
- Burnaev, E. V., Bernstein, A. V. (2021). Functional Dimension Reduction in Predictive Modeling. Journal of Communications Technology and Electronics, vol. 66(6), pp. 745-753.
- Burnaev, E. V., Bernstein, A. V. (2021). Manifold Modeling in Machine Learning. Journal of Communications Technology and Electronics, vol. 66(6), pp. 754-763.
- Butakov, I. D., Malanchuk, S. V., Neopryatnaya, A. M., Tolmachev, A. D., Andreev, K. V., Kruglik, S. A., … & Frolov, A. A. (2021). High-Dimensional Dataset Entropy Estimation via Lossy Compression. Journal of Communications Technology and Electronics, vol. 66(6), pp. 764-768.
- Bychkov, R., Osinsky, A., Ivanov, A., & Yarotsky, D. (2021). Data-Driven Beams Selection for Beamspace Channel Estimation in Massive MIMO. In 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring) (pp. 1-5). IEEE.
- Chekalina, V., & Panchenko, A. (2021). Retrieving Comparative Arguments using Ensemble Methods and Neural Information Retrieval. CEUR Workshop Proceedings 2936, pp. 2354-2365.
- Dale, D., Voronov, A., Dementieva, D., Logacheva, V., Kozlova, O., Semenov, N., & Panchenko, A. (2021). Text Detoxification using Large Pre-trained Neural Models. arXiv preprint arXiv:2109.08914.
- Dementieva, D., Moskovskiy, D., Logacheva, V., Dale, D., Kozlova, O., Semenov, N., & Panchenko, A. (2021). Methods for Detoxification of Texts for the Russian Language.
- Dementieva, D., Ustyantsev, S., Dale, D., Kozlova, O., Semenov, N., Panchenko, A., & Logacheva, V. (2021). Crowdsourcing of Parallel Corpora: the Case of Style Transfer for Detoxification.
- Duan, F., Jia, H., Zhang, Z., Feng, F., Tan, Y., Dai, Y., Cichocki, A.,… & Solé-Casals, J. (2021). On the robustness of EEG tensor completion methods. Science China Technological Sciences, pp. 1-15.
- Eliferov, V. A., Zhvansky, E. S., Sorokin, A. A., Shurkhay, V. A., Bormotov, D. S., Pekov, S. I., … Nikolaev, E.N., Popov, I. A. (2021). The Role of Lipids in the Classification of Astrocytoma and Glioblastoma Using Mass Spectrometry Tumor Profiling. Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry, vol. 15(2), 153-160.
- Ershov P.V., Kaluzhskiy L.A., Yablokov E.O., Gnedenko O.V., Kavaleuski A.A., Tumilovich A.M., Gilep A.A., Strushkevich N.V., Ivanov A.S. (2021). Application of the SPR biosensor for the analysis of protein—protein interactions in aqueous environment and bilayer lipid membrane as exemplified by P450scc (CYP11A1). Biologicheskie Membrany, vol. 2021 (1), pp. 71 – 80.
- Faizullin, M., Kornilova, A., Akhmetyanov, A., Ferrer, G. (2021). Twist-n-sync: Software clock synchronization with microseconds accuracy using MEMS-gyroscopes. Sensors (Switzerland), vol. 21 (1), 68, pp. 1-19.
- Fedorov, F. S., Yaqin, A., Krasnikov, D. V., Kondrashov, V. A., Ovchinnikov, G., Kostyukevich, Y., … & Nasibulin, A. G. (2021). Detecting cooking state of grilled chicken by electronic nose and computer vision techniques. Food Chemistry, vol. 345, 128747.
- Fokina, D., Iliev, O., & Oseledets, I. (2021, June). Deep Neural Networks and Adaptive Quadrature for Solving Variational Problems. In International Conference on Large-Scale Scientific Computing, (pp. 369-377). Springer, Cham.
- Fursov, I., Morozov, M., Kaploukhaya, N., Kovtun, E., Rivera-Castro, R., Gusev, G., Zaytsev, A., Burnaev, E. (2021). Adversarial Attacks on Deep Models for Financial Transaction Records.
- Gusak, J., Daulbaev, T., Ponomarev, E., Cichocki, A., & Oseledets, I. (2021). Reduced-order modeling of deep neural networks. Computational Mathematics and Mathematical Physics, 61(5), 774-785.
- Holzbaur, L., Kruglik, S., Frolov, A., Wachter-Zeh, A. (2021). Secrecy and Accessibility in Distributed Storage. IEEE Global Communications Conference, GLOBECOM 2020 – Proceedings, 9322434; Virtual, Taipei; Taiwan.
- Ibrahim, S., Lan, C., Chabot, C., Mitsa, G., Buchanan, M., Aguilar-Mahecha, A., … & Borchers, C. H. (2021). Precise Quantitation of PTEN by Immuno-MRM: A Tool To Resolve the Breast Cancer Biomarker Controversy. Analytical chemistry, vol. 93(31), pp. 10816-10824.
- Illarionova, S., Nesteruk, S., Shadrin, D., Ignatiev, V., Pukalchik, M., & Oseledets, I. (2021). MixChannel: Advanced Augmentation for Multispectral Satellite Images. Remote Sensing, vol. 13(11), 2181.
- Illarionova, S., Nesteruk, S., Shadrin, D., Ignatiev, V., Pukalchik, M., & Oseledets, I. (2021). Object-Based Augmentation for Building Semantic Segmentation: Ventura and Santa Rosa Case Study. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1659-1668.
- Illarionova, S., Trekin, A., Ignatiev, V., Oseledets, I. (2021). Neural-Based Hierarchical Approach for Detailed Dominant Forest Species Classification by Multispectral Satellite Imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, 2021, 9311828, pp. 1810-1820.
- Illarionova, S., Shadrin, D., Trekin, A., Ignatiev, V., & Oseledets, I. (2021). Generation of the NIR spectral Band for Satellite Images with Convolutional Neural Networks.
- Isakov, V., Panchenko, A., Toldova, S., & Smirnov, I. RST Discourse Parser for Russian: An Experimental Study of Deep Learning Models. In Analysis of Images, Social Networks and Texts: 9th International Conference, AIST 2020, Skolkovo, Moscow, Russia, October 15–16, 2020, Revised Selected Papers (p. 105). Springer Nature.
- Jin, J., Fang, H., Daly, I., Xiao, R., Miao, Y., Wang, X., & Cichocki, A. (2021). Optimization of Model Training Based on Iterative Minimum Covariance Determinant In Motor-Imagery BCI. International Journal of Neural Systems, vol. 31(07), p. 2150030.
- Jin, J., Sun, H., Daly, I., Li, S., Liu, C., Wang, X., & Cichocki, A. (2021). A Novel Classification Framework Using the Graph Representations of Electroencephalogram for Motor Imagery based Brain-Computer Interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering.
- Kalinov, A., Bychkov, R., Ivanov, A., Osinsky, A., Yarotsky, D. (2021). Machine Learning-Assisted PAPR Reduction in Massive MIMO. IEEE Wireless Communications Letters, vol. 10 (3), 9253674, pp. 537-541.
- Kaluzhskiy, L., Ershov, P., Yablokov, E., Shkel, T., Grabovec, I., Mezentsev, Y., … Strushkevich, N., Ivanov, A. (2021). Human Lanosterol 14-Alpha Demethylase (CYP51A1) Is a Putative Target for Natural Flavonoid Luteolin 7, 3′-Disulfate. Molecules, vol. 26(8), 2237.
- Kan, M., Aliev, R., Rudenko, A., Drobyshev, N., Petrashen, N., Kondrateva, E., Bernstein, A., Burnaev, E. (2021). Interpretation of 3D CNNs for Brain MRI Data Classification. Recent Trends in Analysis of Images, Social Networks and Texts, vol. 1357, pp. 229.
- Kail, R., Burnaev, E., & Zaytsev, A. (2021). Recurrent convolutional neural networks help to predict location of earthquakes. IEEE Geoscience and Remote Sensing Letters.
- Kapushev, Y., Oseledets, I., Burnaev, E. (2021). Tensor completion via Gaussian process-based initialization. SIAM Journal on Scientific Computing, vol. 42 (6), pp. A3812-A3824.
- Kardashin, A., Pervishko, A., Biamonte, J., & Yudin, D. (2021). Numerical hardware-efficient variational quantum simulation of a soliton solution. Physical Review A, vol. 104(2), L020402.
- Khrulkov, V., Mirvakhabova, L., Oseledets, I., & Babenko, A. (2021). Latent Transformations via NeuralODEs for GAN-based Image Editing. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 14428-14437).
- Kislenko, V. A., Pavlov, S. V., Fedorov, M. V., & Kislenko, S. A. (2021). New Aspects of Enhancing the Graphene Capacitance by Defects in Aqueous Electrolytes and Ionic Liquids. JETP Letters, pp. 1-7.
- Kobelski, A., Osinenko, P., & Streif, S. (2021). Experimental verification of an online traction parameter identification method. Control Engineering Practice, vol. 113, 104837.
- Kornilova, A., Salnikov, M., Novitskaya, O., Begicheva, M., Sevriugov, E., Shcherbakov, K., … & Dylov, D. V. (2021). Deep Learning Framework For Mobile Microscopy. In 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 324-328. IEEE.
- Korotin, A., V’yugin, V., & Burnaev, E. (2021). Mixability of integral losses: A key to efficient online aggregation of functional and probabilistic forecasts. Pattern Recognition, vol. 120, 108175.
- Korotin, A.A., V’Yugin, V.V., Burnaev, E.V. (2021). Online algorithm for aggregating experts’ predictions with unbounded quadratic loss. Russian Mathematical Surveys, vol. 75 (5), pp. 974-977.
- Korotin, A., Li, L., Genevay, A., Solomon, J. M., Filippov, A., & Burnaev, E. (2021). Do neural optimal transport solvers work? a continuous wasserstein-2 benchmark. Advances in Neural Information Processing Systems, vol. 34, pp. 14593-14605.
- Kostyukevich, Y., Osipenko, S., Rindin, K., Zherebker, A., Kovaleva, O., Rumiantseva, L., … & Nikolaev, E. (2021). Analysis of the Bio-oil Produced by the Hydrothermal Liquefaction of Biomass Using High-Resolution Mass Spectrometry and Isotope Exchange. Energy & Fuels, vol. 35(15), pp. 12208-12215.
- Kovalenko, E., Talitckii, A., Anikina, A., Shcherbak, A., Zimniakova, O., Semenov, M., Bril, E., Dylov, D.V., Somov, A. (2021). Distinguishing Between Parkinson’s Disease and Essential Tremor Through Video Analytics Using Machine Learning: a Pilot Study. IEEE Sensors Journal.
- Kozitsin, V., Katser, I., Lakontsev, D. (2021). Online Forecasting and Anomaly Detection Based on the ARIMA Model. Applied Sciences, vol. 11(7), 3194.
- Kozlovskii, I., & Popov, P. (2021). Protein–Peptide Binding Site Detection Using 3D Convolutional Neural Networks. Journal of Chemical Information and Modeling, vol. 61(8), pp. 3814-3823.
- Kozlovskii, I., & Popov, P. (2021). Structure-based deep learning for binding site detection in nucleic acid macromolecules. NAR genomics and bioinformatics, vol. 3(4), lqab111.
- Krasnov, L., Khokhlov, I., Fedorov, M. V., & Sosnin, S. (2021). Transformer-based artificial neural networks for the conversion between chemical notations. Scientific Reports, vol. 11(1), pp. 1-10.
- Kruglik, S., Frolov, A. (2021). An Information-Theoretic Approach for Reliable Distributed Storage Systems. Journal of Communications Technology and Electronics, vol. 65 (12), pp. 1505-1516.
- Kumbhakar, S. C., Peresetsky, A., Shchetynin, Y., & Zaytsev, A. (2021). Technical efficiency and inefficiency: Reliability of standard SFA models and a misspecification problem. Econometrics and Statistics.
- Kurilovich, A. A., Mantsevich, V. N., Stevenson, K. J., Chechkin, A. V., & Palyulin, V. V. (2021, November). Trapping-influenced photoluminescence intensity decay in semiconductor nanoplatelets. In Journal of Physics: Conference Series. Vol. 2015, No. 1, p. 012103. IOP Publishing.
- Kushnareva, L., Cherniavskii, D., Mikhailov, V., Artemova, E., Barannikov, S., Bernstein, A., … & Burnaev, E. (2021). Artificial Text Detection via Examining the Topology of Attention Maps. arXiv preprint arXiv:2109.04825.
- Lange, A., Somov, A., Stepanov, A., & Burnaev, E. (2021). Building a Behavioral Profile and Assessing the Skill of Video Game Players. IEEE Sensors Journal, vol. 22(1), pp. 481-488.
- Larchenko, M. A., Osinenko, P., Yaremenko, G., & Palyulin, V. V. (2021). A study of first-passage time minimization via Q-learning in heated gridworlds. IEEE Access, vol. 9, pp. 159349-159363.
- Larina, I. M., Brzhzovsky, A. G., Nosovsky, A. M., Indeykina, M. I., Kononikhin, A. S., Nikolaev, E. N., & Orlov, O. I. (2021). Oxidative Posttranslational Modifications of Blood Plasma Proteins of Cosmonauts after a Long-Term Flight: Part II. Human Physiology, vol. 47(4), pp. 438-447.
- Laselva, O., Qureshi, Z., Zeng, Z. W., Petrotchenko, E. V., Ramjeesingh, M., Hamilton, C. M., Borchers, C.H. & Bear, C. E. (2021). Identification of binding sites for ivacaftor on the cystic fibrosis transmembrane conductance regulator. Iscience, vol. 24(6), 102542.
- Lei, B., Seipt, D., Shi, M., Liu, B., Wang, J., Zepf, M., & Rykovanov, S. G. (2021). Relativistic modified Bessel-Gaussian beam generated from plasma-based beam braiding. Physical Review A, vol. 104(2), L021501.
- Leli, V.M., Rubashevskii, A., Sarachakov, A., Rogov, O., Dylov, D.V. (2021). Near-Infrared-to-Visible Vein Imaging via Convolutional Neural Networks and Reinforcement Learning. 16th IEEE International Conference on Control, Automation, Robotics and Vision, ICARCV 2020;9305503, pp. 434-441, Virtual, Shenzhen; China.
- Leli, V. M., Osat, S., Tlyachev, T., Dylov, D. V., & Biamonte, J. D. (2021). Deep learning super-diffusion in multiplex networks. Journal of Physics: Complexity, vol. 2(3), 035011.
- Li F.K.K., Gale R.T., Petrotchenko E.V., Borchers C.H., Brown E.D., Strynadka N.C.J. (2021). Crystallographic analysis of TarI and TarJ, a cytidylyltransferase and reductase pair for CDP-ribitol synthesis in Staphylococcus aureus wall teichoic acid biogenesis. Journal of Structural Biology, vol. 213 (2), 107733.
- Li, S., Jin, J., Daly, I., Wang, X., Lam, H. K., & Cichocki, A. (2021). Enhancing P300 based character recognition performance using a combination of ensemble classifiers and a fuzzy fusion method. Journal of Neuroscience Methods, vol. 362, 109300.
- Liu, C., Jin, J., Xu, R., Li, S., Zuo, C., Sun, H., … & Cichocki, A. (2021). Distinguishable spatial-spectral feature learning neural network framework for motor imagery-based brain–computer interface. Journal of Neural Engineering, vol. 18(4), p. 0460e4.
- Matveev, S. A., Oseledets, I. V., Ponomarev, E. S., & Chertkov, A. V. (2021). Overview of Visualization Methods for Artificial Neural Networks. Computational Mathematics and Mathematical Physics, vol. 61(5), 887-899.
- Maksimov I., Rivera-Castro R., Burnaev E. (2021). Addressing Cold Start in Recommender Systems with Hierarchical Graph Neural Networks. Proceedings, 28th IEEE International Conference on Big Data, 937830, pp. 5128 – 513710.
- Malovichko, M., Koshev, N., Yavich, N., A. Razorenova and Fedorov, M. (2021). Electroencephalographic Source Reconstruction by the Finite-Element Approximation of the Elliptic Cauchy Problem in IEEE Transactions on Biomedical Engineering, vol. 68, no. 6, pp. 1811-1819.
- Markeeva, L., Tsybulin, I., & Oseledets, I. (2021). QTT-isogeometric solver in two dimensions. Journal of Computational Physics, 424, 109835.
- Makhotin, I., Orlov, D., Koroteev, D., Burnaev, E., Karapetyan, A., & Antonenko, D. (2021). Machine learning for recovery factor estimation of an oil reservoir: a tool for de-risking at a hydrocarbon asset evaluation. Petroleum.
- Maslova, N. S., Mantsevich, V. N., Luchkin, V. N., Palyulin, V. V., Arseyev, P. I., & Sokolov, I. M. (2021). Quantum interference effects in multi-channel correlated tunneling structures. Scientific reports, vol. 11(1), pp. 1-11.
- Matveev, S.A., Oseledets, I.V., Ponomarev, E.S. et al. (2021) Overview of Visualization Methods for Artificial Neural Networks. Computational Mathematics and Mathematical Physics, 61, pp. 887–899.
- Matveev, A., Artemov, A., Zorin, D., & Burnaev, E. (2021). 3D Parametric Wireframe Extraction Based on Distance Fields. arXiv preprint arXiv:2107.06165.
- Mao, Y., Jin, J., Xu, R., Li, S., Miao, Y., Cichocki, A. (2021). The Influence of Visual Attention on the Performance of A Novel Tactile P300 Brain-Computer Interface with Cheeks-Stim Paradigm. International Journal of Neural Systems.
- Markeeva, L., Tsybulin, I., & Oseledets, I. (2021). QTT-isogeometric solver in two dimensions. Journal of Computational Physics, vol. 424, 109835.
- Mazyavkina, N., Moustafa, S., Trofimov, I., & Burnaev, E. (2021). Optimizing the Neural Architecture of Reinforcement Learning Agents. In Intelligent Computing pp. 591-606. Springer, Cham.
- Mazyavkina, N., Sviridov, S., Ivanov, S., & Burnaev, E. (2021). Reinforcement learning for combinatorial optimization: A survey. Computers & Operations Research, 105400.
- Melentev, N., Somov, A., Burnaev, E., Strelnikova, I., Strelnikova, G., Melenteva, E., Menshchikov, A. (2021). ESports Players Professional Level and Tiredness Prediction using EEG and Machine Learning. Proceedings of IEEE Sensors, vol. 2020-October, 25, 9278704, IEEE Sensors, SENSORS 2020; Virtual, Rotterdam; Netherlands.
- Miao, Y., Chen, S., Zhang, X., Jin, J., Xu, R., Daly, I., Jia, J., Wang, X., Cichocki, A., Jung, T.-P. (2021). BCI-Based Rehabilitation on the Stroke in Sequela Stage. Neural Plasticity, vol. 2020, 8882764.
- Michaelian N. , Sadybekov A., Besserer-Offroy E., Han G.W., Krishnamurthy H., Zamlynny B.A., Fradera X., Siliphaivanh P., Presland J., Spencer K.B., Soisson S.M., Popov P. (2021). Structural insights on ligand recognition at the human leukotriene B4 receptor 1. Nature Communications, vol. 12(1), pp. 1-12.
- Mohammed, Y., Bhowmick, P., Michaud, S. A., Sickmann, A., & Borchers, C. H. (2021). Mouse Quantitative Proteomics Knowledgebase: reference protein concentration ranges in 20 mouse tissues using 5000 quantitative proteomics assays. Bioinformatics.
- Mohammed, Y., Michaud, S. A., Pětrošová, H., Yang, J., Ganguly, M., Schibli, D., … & Borchers, C. H. (2021). Proteotyping of knockout mouse strains reveals sex-and strain-specific signatures in blood plasma. NPJ systems biology and applications, vol. 7(1), pp. 1-23.
- Morozov, A., Zgyatti, D., & Popov, P. (2021). Equidistant and Uniform Data Augmentation for 3D Objects. IEEE Access, 10, 3766-3774.
- Munari, A., Frolov, A. (2021). Average Age of Information of Irregular Repetition Slotted ALOHA. IEEE Global Communications Conference, GLOBECOM 2020 – Proceedings, 9322355; Virtual, Taipei; Taiwan.
- Nedorezov, V. G., Rykovanov, S. G., & Savel’ev-Trofimov, A. B. (2021). Nuclear photonics: results and prospects. Physics-Uspekhi, vol. 64(12), p. 1214.
- Nesteruk, S., Shadrin, D., Pukalchik, M., Somov, A., Zeidler, C., Zabel, P., Schubert, D. (2021). Image Compression and Plants Classification Using Machine Learning in Controlled-Environment Agriculture: Antarctic Station Use Case. IEEE Sensors Journal.
- Nikitin, A., Tregubova, P., Shadrin, D., Matveev, S., Oseledets, I., & Pukalchik, M. (2021). Regulation-based probabilistic substance quality index and automated geo-spatial modeling for water quality assessment. Scientific reports, vol. 11(1), pp. 1-14.
- Novikov, G., Panov, M., & Oseledets, I. (2021, September). Dataset Reduction via Bias-Variance Minimization. In 2021 5th Scientific School Dynamics of Complex Networks and their Applications (DCNA) (pp. 143-146). IEEE.
- Olaleke, O., Oseledets, I., & Frolov, E. (2021). Dynamic Modeling of User Preferences for Stable Recommendations. In Proceedings of the 29th ACM Conference on User Modeling, Adaptation and Personalization, pp. 262-266.
- Oseledets, I. V., & Kharyuk, P. V. (2021). Structuring data with block term decomposition: Decomposition of joint tensors and variational block term decomposition as a parametrized mixture distribution model. Computational Mathematics and Mathematical Physics, vol. 61(5), 816-835.
- Osinenko, P. (2021). Towards a constructive framework for control theory. IEEE Control Systems Letters.
- Osinenko, P., & Dobriborsci, D. (2021). Effects of Sampling and Prediction Horizon in Reinforcement Learning. IEEE Access.
- Osinenko, P., & Yaremenko, G. (2021, December). On stochastic stabilization of sampled systems. In 2021 60th IEEE Conference on Decision and Control (CDC) (pp. 5326-5331). IEEE.
- Osinsky, A., Ivanov, A., Lakontsev D., Yarotsky, D. (2021). Lower Performance Bound for Beamspace Channel Estimation in Massive MIMO. IEEE Wireless Communications Letters, vol. 10(2), pp. 311-314.
- Osinsky, A., Ivanov, A., & Yarotsky, D. (2021). Efficient Performance Bound for Channel Estimation in Massive MIMO Receiver. IEEE Transactions on Wireless Communications.
- Osinsky, A., Ivanov, A., & Yarotsky, D. (2021, September). Spatial Denoising for Sparse Channel Estimation in Coherent Massive MIMO. In 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall) (pp. 1-5). IEEE.
- Osipenko, S., Botashev, K., Nikolaev, E., Kostyukevich, Y. (2021). Transfer learning for small molecule retention predictions. Journal of Chromatography A, vol. 1644, 462119.
- Osinsky, A., Bychkov, R., Ivanov, A., & Yarotsky, D. (2021, April). Adaptive channel interpolation in high-speed massive mimo. In 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring) (pp. 1-5). IEEE.
- Paradezhenko, G. V., Yudin, D., & Pervishko, A. A. (2021). Random iron-nickel alloys: from first principles to dynamic spin-fluctuation theory. arXiv preprint arXiv:2106.08765.
- Pastushkova, L. K., Rusanov, V. B., Goncharova, A. G., Nosovskiy, A. M., Luchitskaya, E. S., Kashirina, D. N., … & Nikolaev, E. N. (2021). Blood Plasma Proteins Associated With Heart Rate Variability in Cosmonauts Who Have Completed Long-Duration Space Missions. Frontiers in physiology, vol. 12, pp. 760875-760875.
- Pekov, S., Bormotov, D., Nikitin, P., Sorokin, A., Shurkhay, V., Eliferov, V., Zavorotnyuk, D., Potapov, A., Nikolaev, E., Popov, I. (2021). Rapid estimation of tumor cell percentage in brain tissue biopsy samples using inline cartridge extraction mass spectrometry. Analytical and Bioanalytical Chemistry, vol. 413 (11), pp. 2913 – 2922.
- Pekov, S. I., Sorokin, A. A., Kuzin, A. A., Bocharov, K. V., Bormotov, D. S., Shivalin, A. S., Nikolaev, E., … & Popov, I. A. (2021). Analysis of phosphatidylcholines alterations in human glioblastoma multiform tissues ex vivo. Biomeditsinskaia Khimiia, vol. 67(1), pp. 81-87.
- Peng, Y., Qin, F., Kong, W., Ge, Y., Nie, F., & Cichocki, A. (2021). GFIL: A Unified Framework for the Importance Analysis of Features, Frequency Bands and Channels in EEG-based Emotion Recognition. IEEE Transactions on Cognitive and Developmental Systems.
- Percy, A. J., & Borchers, C. H. (2021). Detailed Method for Performing the ExSTA Approach in Quantitative Bottom-Up Plasma Proteomics. Methods in Molecular Biology (Clifton, NJ), vol. 2228, pp. 353-384.
- Petrotchenko, E. V., & Borchers, C. H. (2021). Protein Chemistry Combined with Mass Spectrometry for Protein Structure Determination. Chemical Reviews.
- Petrovskaia, A., Ryzhakov, G., & Oseledets, I. (2021). Optimal soil sampling design based on the maxvol algorithm.
- Ponomarev, E., Matveev, S., Oseledets, I., & Glukhov, V. (2021). Latency Estimation Tool and Investigation of Neural Networks Inference on Mobile GPU. Computers, vol. 10(8), p. 104.
- Potapova, S.G., Artemov, A.V., Sviridov, S.V., Musatkina, D.A., Zorin, D.N., Burnaev, E.V. (2021). Next Best View Planning via Reinforcement Learning for Scanning of Arbitrary 3D Shapes. Journal of Communications Technology and Electronics, vol. 65 (12), pp. 1484-1490.
- Rakhimov, R., Bogomolov, E., Notchenko, A., Mao, F., Artemov, A., Zorin, D., & Burnaev, E. (2021). Making DensePose fast and light. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1869-1877.
- Ruijter, M., Petrillo, V., Teter, T. C., Valialshchikov, M., & Rykovanov, S. (2021). Signatures of the Carrier Envelope Phase in Nonlinear Thomson Scattering. Crystals, vol. 11(5), 528.
- Sarycheva, A., Grigoryev, A., Nikolaev, E. N., Kostyukevich, Y. (2021). Robust Simulation Of Imaging Mass Spectrometry Data. In ECMS, pp. 192-198.
- Sarycheva, A., Grigoryev, A., Sidorchuk, D., Vladimirov, G., Khaitovich, P., Efimova, O., Gavrilenko, O., Stekolshchikova, E., Nikolaev, E.N., Kostyukevich, Y. (2021). Structure-preserving and perceptually consistent approach for visualization of mass spectrometry imaging datasets. Analytical Chemistry, vol. 93 (3), pp. 1677-1685.
- Schmidt, P., Osinenko, P., Streif, S. (2021). On inf-convolution-based robust practical stabilization under computational uncertainty. IEEE Transactions on Automatic Control.
- Sedighin, F., Cichocki, A., Phan, H.A. (2021). Adaptive Rank Selection for Tensor Ring Decomposition. IEEE Journal on Selected Topics in Signal Processing.
- Serpa, J. J., Popov, K. I., Petrotchenko, E. V., Dokholyan, N. V., & Borchers, C. H. (2021). Structure of prion β‐oligomers as determined by short‐distance crosslinking constraint‐guided discrete molecular dynamics simulations. Proteomics, 2000298.
- Sharaev, M., Melnikova-Pitskhelauri, T., Smirnov, A., Bozhenko, A., Yarkin, V., Bernshtein, A., Burnaev, E., Petrov, P., Pitskhelauri, D., Orlov, V., Pronin, I. (2021). Brain Cognitive Architectures Mapping for Neurosurgery: Resting-State fMRI and Intraoperative Validation. Advances in Intelligent Systems and Computing, vol. 1310, pp. 466-471, 11th Annual International Conference on Brain-Inspired Cognitive Architectures for Artificial Intelligence, BICA*AI 2020; Natal; Brazil.
- Shelmanov, A., Puzyrev, D., Kupriyanova, L., Belyakov, D., Larionov, D., Khromov, N., Dylov, D. & Panchenko, A. (2021). Active learning for sequence tagging with deep pre-trained models and bayesian uncertainty estimates.
- Shelmanov, A., Tsymbalov, E., Puzyrev, D., Fedyanin, K., Panchenko, A., & Panov, M. (2021). How Certain is Your Transformer?. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Vol, pp. 1833-1840.
- Shvetsova, N., Bakker, B., Fedulova, I., Schulz, H., & Dylov, D. V. (2021). Anomaly Detection in Medical Imaging With Deep Perceptual Autoencoders. IEEE Access, vol. 9, pp. 118571-118583.
- Sirazitdinov, I., Lenga, M., Baltruschat, I. M., Dylov, D. V., & Saalbach, A. (2021). Landmark Constellation Models For Central Venous Catheter Malposition Detection. In 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 1132-1136. IEEE.
- Smerdov A., Somov A., Burnaev E., Zhou B., Lukowicz P. (2021). Detecting Video Game Player Burnout with the Use of Sensor Data and Machine Learning. IEEE Internet of Things Journal, Article in press.
- Somov, A., Kovalska, E., Baldycheva, A. (2021). Wireless Graphene Temperature Sensor. Proceedings of IEEE Sensors, vol 2020-October, 25, 9278581, IEEE Sensors, SENSORS 2020; Virtual, Rotterdam; Netherlands.
- Stasenko, N., Chernova E., Shadrin, D., Ovchinnikov, G., Krivolapov I., & Pukalchik, M. (2021) Deep Learning for improving the storage process: Accurate and automatic segmentation of spoiled areas on apples 2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), vol. 2021, pp. 1-6.
- Sukharev, I., Shumovskaia, V., Fedyanin, K., Panov, M., Berestnev, D. (2021). EWS-GCN: Edge weight-shared graph convolutional network for transactional banking data. Proceedings – 20th IEEE International Conference on Data Mining, ICDM, vol 2020-November, 9338368, pp. 1268-1273; Virtual, Sorrento; Italy.
- Sushko, T., Kavaleuski, A., Grabovec, I., Kavaleuskaya, A., Vakhrameev, D., Bukhdruker, S., Marin, E., Kuzikov, A., Masamrekh, R., Shumyantseva, V., Tsumoto, K., Borshchevskiy, V., Gilep, A., Strushkevich, N. (2021). A new twist of rubredoxin function in M. tuberculosis. Bioorganic Chemistry, vol. 109, 104721.
- Sun, H., Jin, J., Xu, R., & Cichocki, A. (2021). Feature Selection Combining Filter and Wrapper Methods for Motor-Imagery Based Brain–Computer Interfaces. International Journal of Neural Systems, vol. 31(09), p. 2150040.
- Sun, Z., Li, B., Duan, F., Jia, H., Wang, S., Liu, Y., Cichocki, A., Caiafa, C.F., Sole-Casals, J. (2021). WLnet: Towards an Approach for Robust Workload Estimation Based on Shallow Neural Networks. IEEE Access, vol. 9, 9293273, pp. 3165-3173.
- Swain, N., Shahzad, M., Paradezhenko, G. V., Pervishko, A. A., Yudin, D., & Sengupta, P. (2021). Skyrmion-driven topological Hall effect in a Shastry-Sutherland magnet. Physical Review B, vol. 104(23), p. 235156.
- Talitckii, A., Anikina, A., Kovalenko, E., Mayora, O., Osmani, V., Zimniakova, O., Semenov, M., Bril, E., Dylov, D., Somov, A. (2021). Data-driven analysis of parkinson’s disease and its detection at an early stage. ACM International Conference Proceeding Series, 3421953, pp. 419-422, 14th EAI International Conference on Pervasive Computing Technologies for Healthcare, PervasiveHealth 2020; Virtual, Online; United States.
- Talitckii, A., Anikina, A., Kovalenko, E., Shcherbak, A., Mayora, O., Zimniakova, O., Dylov, D., Somov, A. (2021). Defining Optimal Exercises for Efficient Detection of Parkinson’s Disease Using Machine Learning and Wearable Sensors. IEEE Transactions on Instrumentation and Measurement.
- Talitckii, A., Kovalenko, E., Anikina, A., Zimniakova, O., Semenov, M., Bril, E., Shcherbak, A., Dylov, D.V., Somov, A. (2021). Avoiding Misdiagnosis of Parkinson’s Disease with the Use of Wearable Sensors and Artificial Intelligence. IEEE Sensors Journal, vol. 21(3), 9208800, pp. 3738-3747.
- Tichavsky, P., Phan, H.A., Cichocki, A. (2021). Krylov-Levenberg-Marquardt Algorithm for Structured Tucker Tensor Decompositions. IEEE Journal on Selected Topics in Signal Processing.
- Tokareva, A.O., Chagovets, V.V., Kononikhin, A.S., Starodubtseva, N.L., Nikolaev, E.N., Frankevich, V.E. (2021). Comparison of the effectiveness of variable selection method for creating a diagnostic panel of biomarkers for mass spectrometric lipidome analysis. Journal of Mass Spectrometry, vol. 56 (3), e4702.
- Tsukanov, A. A., Senjkevich, A. M., Fedorov, M. V., & Brilliantov, N. V. (2021). How risky is it to visit a supermarket during the pandemic?. Plos one, vol. 16(7), e0253835.
- Valialshchikov, M. A., Kharin, V. Y., & Rykovanov, S. G. (2021). Narrow bandwidth gamma comb from nonlinear Compton scattering using the polarization gating technique. Physical Review Letters, vol. 126(19), 194801.
- Valialshchikov, M. A., Ruijter, M., & Rykovanov, S. G. (2021). On the Usage of Tapered Undulators in the Measurement of Interference in the Intensity-Dependent Electron Mass Shift. Crystals, vol. 11(5), 486.
- Valialshchikov, M. A., Kharin, V. Y., & Rykovanov, S. G. (2021). Polarisation gating technique in nonlinear Compton scattering: effect of radiation friction and electron beam nonideality. Quantum Electronics, vol. 51(9), p. 812.
- Vanaret, C., Seufert, P., Schwientek, J., Karpov, G., Ryzhakov, G., Oseledets, I., Asprion, N., Bortz, M. (2021). Two-phase approaches to optimal model-based design of experiments: how many experiments and which ones?. Computers and Chemical Engineering, vol. 146, 10721.
- Varaksa, T., Bukhdruker, S., Grabovec, I., Marin, E., Kavaleuski, A., Gusach, A., Kovalev, K., Maslov, I., Luginina, A., Zabelskii, D., Astashkin, R., Shevtsov, M., Smolskaya, S., Kavaleuskaya, A., Shabunya, P., Baranovsky, A., Dolgopalets, V., Charnou, Y., Savachka, A., Litvinovskaya, R., Hurski, A., Shevchenko, E., Rogachev, A., Mishin, A., Gordeliy, V., Gabrielian, A., Hurt, D.E., Nikonenko, B., Majorov, K., Apt, A., Rosenthal, A., Gilep, A., Borshchevskiy, V., Strushkevich, N. (2021). Metabolic Fate of Human Immunoactive Sterols in Mycobacterium tuberculosis. Journal of Molecular Biology, vol. 433 (4), 1667.
- Vasilyeva, A. D., Ivanov, V. S., Yurina, L. V., Indeykina, M. I., Bugrova, A. E., Kononikhin, A. S., … &Nikolaev E.N. (2021, November). Peroxide-Induced Damage to Plasminogen Molecules. In Doklady Biochemistry and Biophysics (Vol. 501, No. 1, pp. 419-423). Pleiades Publishing.
- Velikanov, M., & Yarotsky, D. (2021). Explicit loss asymptotics in the gradient descent training of neural networks. Advances in Neural Information Processing Systems, vol. 34, pp. 2570-2582.
- Vypirailenko, D., Kiseleva, E., Shadrin, D., & Pukalchik, M. (2021, May). Deep learning techniques for enhancement of weeds growth classification. In 2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) (pp. 1-6).
- Vostrikov, S., Somov, A., Gotovtsev, P., & Magno, M. (2021). Comprehensive modelling framework for a low temperature gradient thermoelectric generator. Energy Conversion and Management, vol. 247, p. 114721.
- Wang, J., Bulanov, S.V., Chen, M., Lei, B., Zhang, Y., Zagidullin, R., Zorina, V., Yu, W., Leng, Y., Li, R., Zepf, M., Rykovanov, S.G. (2021). Relativistic slingshot: A source for single circularly polarized attosecond x-ray pulses. Physical Review E, vol. 102 (6), 061201.
- Wang, Z., Jin, J., Xu, R., Liu, C., Wang, X., & Cichocki, A. (2021). Efficient Spatial Filters Enhance SSVEP Target Recognition Based on Task-Related Component Analysis. IEEE Transactions on Cognitive and Developmental Systems.
- Yarotsky, D. (2021). Universal approximations of invariant maps by neural networks. Constructive Approximation, pp. 1-68.
- Yarotsky, D., Ivanov, A., Bychkov, R., Osinsky, A., Savinov, A., Trefilov, M., & Lyashev, V. (2021). Machine Learning-Assisted Channel Estimation in Massive MIMO Receiver. In 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring) (pp. 1-5). IEEE.
- Yudina E., Petrovskaia A., Shadrin D., Tregubova P., Chernova E., Pukalchik M., Oseledets I. (2021). Optimization of water quality monitoring networks using metaheuristic approaches: Moscow region use case. Water (Switzerland), vol. 13 (17), 888.
- Zainulina, E., Chernyavskiy, A., & Dylov, D. V. (2021). No-reference denoising of low-dose CT projections. In 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 77-81. IEEE.
- Zakharova, N., Kozyr, A., Ryabokon, A. M., Indeykina, M., Strelnikova, P., Nikоlaev, E.N., … & Kononikhin, A. S. (2021). Mass spectrometry based proteome profiling of the exhaled breath condensate for lung cancer biomarkers search. Expert Review of Proteomics, (just-accepted).
- Zamarashkin, N. L., Oseledets, I. V., & Tyrtyshnikov, E. E. (2021). New Applications of Matrix Methods. Computational Mathematics and Mathematical Physics, vol. 61(5), 669-673.
- Zaucha, J., Heinzinger, M., Kulandaisamy, A., Kataka, E., Salvádor, Ó. L., Popov, P., … & Frishman, D. (2021). Mutations in transmembrane proteins: diseases, evolutionary insights, prediction and comparison with globular proteins. Briefings in Bioinformatics, vol. 22(3), bbaa132.
- Zavorotnyuk, D. S., Pekov, S. I., Sorokin, A. A., Bormotov, D. S., Levin, N., Zhvansky, E., Nikolaev, E. … & Popov, I. A. (2021). Lipid Profiles of Human Brain Tumors Obtained by High-Resolution Negative Mode Ambient Mass Spectrometry. Data, vol. 6(12), 132.
- Zhang, X., Jin, J., Xu, R., Miao, Y., Cichocki, A. (2021). Effects of the combination of block-shape and face flashing stimuli on a P300 brain computer interface. Proceedings – 2020 Chinese Automation Congress, CAC 2020, 9327160, pp. 1898-1904; Shanghai; China.
- Zherebker A., Kostyukevich Y., Volkov D.S., Chumakov R.G., Friederici L., Ruger C.P., Kononikhin A., Kharybin O., Korochantsev A., Zimmermann R., Perminova I.V., Nikolaev E. (2021). Speciation of organosulfur compounds in carbonaceous chondrites. Scientific Reports, vol. 11 (1), 7410.
- Akter, M. S., Islam, M. R., Iimura, Y., Sugano, H., Fukumori, K., Wang, D., … & Cichocki, A. (2020). Multiband entropy-based feature-extraction method for automatic identification of epileptic focus based on high-frequency components in interictal iEEG. Scientific Reports, 10(1), 1-17.
- Alanov, A., Kochurov, M., Volkhonskiy, D., Yashkov, D., Burnaev, E., & Vetrov, D. (2020). User-Controllable Multi-Texture Synthesis with Generative Adversarial Networks. In Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, 4, pp. 214-221.
- Aliev KA., Sevastopolsky A., Kolos M., Ulyanov D., Lempitsky V. (2020) Neural Point-Based Graphics. In: Vedaldi A., Bischof H., Brox T., Frahm JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12367. Springer, Cham.
- Aliev, R., Kondrateva, E., Sharaev, M., Bronov, O., Marinets, A., Subbotin, S., … Bernshtein, A., Burnaev, E. (2020). Convolutional neural networks for automatic detection of Focal Cortical Dysplasia.
- Aly, R., Acharya, S., Ossa, A., Köhn, A., Biemann, C., & Panchenko, A. (2020). Every child should have parents: A taxonomy refinement algorithm based on hyperbolic term embeddings. In Proceedings of the ACL 2019 – 57th Annual Meeting of the Association for Computational Linguistics, 4811-4817.
- Amangeldiuly, N., Karlov, D., Fedorov, M.V. (2020). Baseline Model for Predicting Protein–Ligand Unbinding Kinetics through Machine Learning. Journal of Chemical Information and Modeling, 60 (12), pp. 5946–5956.
- Anokhin, I., Solovev, P., Korzhenkov, D., Kharlamov, A., Khakhulin, T., Silvestrov, A., Nikolenko, S., Lempitsky, V., & Sterkin, G. (2020). High-Resolution Daytime Translation Without Domain Labels. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 7485–7494.
- Artemenkov, A., & Panov, M. (2020). NCVis: Noise Contrastive Approach for Scalable Visualization. Proceedings of The Web Conference 2020, 2941–2947.
- Babiloni, C., Barry, R.J., Başar, E., Blinowska, K.J., Cichocki, A., Drinkenburg, W.H.I.M., Klimesch, W., Knight, R.T., Lopes da Silva, F., Nunez, P., Oostenveld, R., Jeong, J., Pascual-Marqui, R., Valdes-Sosa, P., Hallett, M. (2020). International Federation of Clinical Neurophysiology (IFCN) – EEG research workgroup: Recommendations on frequency and topographic analysis of resting-state EEG rhythms. Part 1: Applications in clinical research studies. Clinical Neurophysiology, 131(1), 285-307.
- Babiloni, C., Blinowska, K., Bonanni, L., Cichocki, A., De Haan, W., Del Percio, C., Dubois, B., Escudero, J., Fernández, A., Frisoni, G., Guntekin, B., Hajos, M., Hampel, H., Ifeachor, E., Kilborn, K., Kumar, S., Johnsen, K., Johannsson, M., Jeong, J., LeBeau, F., Lizio, R., Lopes da Silva, F., Maestú, F., McGeown, W.J., McKeith, I., Moretti, D.V., Nobili, F., Olichney, J., Onofrj, M., Palop, J.J., Rowan, M., Stocchi, F., Struzik, Z.M., Tanila, H., Teipel, S., Taylor, J.P., Weiergräber, M., Yener, G., Young-Pearse, T., Drinkenburg, W.H., Randall, F. (2020). What electrophysiology tells us about Alzheimer’s disease: a window into the synchronization and connectivity of brain neurons. Neurobiology of Aging, 85, 58-73.
- Bakulin, I., Zabirova, A., Lagoda, D., Poydasheva, A., Cherkasova, A., Pavlov, N., … Fedorov, M., Gnedovskaya, E, Suponeva, N. & Gnedovskaya, E. (2020). Combining HF rTMS over the Left DLPFC with Concurrent Cognitive Activity for the Offline Modulation of Working Memory in Healthy Volunteers: A Proof-of-Concept Study. Brain Sciences, 10(2), 83.
- Barabanau, I., Artemov, A., Burnaev, E., & Murashkin, V. (2020). Monocular 3d object detection via geometric reasoning on keypoints. In Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, 5, pp. 652-659.
- Belomestny, D., Schoenmakers, J., Spokoiny, V., & Zharkynbay, B. (2020). Optimal stopping via reinforced regression. Communications in Mathematical Sciences, 18(1), 109–121.
- Bernstein, A., Burnaev, E. Sharaev, M., Kondrateva, E., Kachan, O. (2020). Topological data analysis in computer vision. In Proceedings of SPIE – The International Society for Optical Engineering, 11433, 114332H
- Bodrova, A., Osinsky, A. & Brilliantov, N. (2020). Temperature distribution in driven granular mixtures does not depend on mechanism of energy dissipation. Scientific Reports, 10(1), 693.
- Bondarenko, A., Braslavski, P., Völske, M., Aly, R., Fröbe, M., Panchenko, A., Biemann, C., Stein, B., Hagen, M. (2020). Comparative web search questions. In 3th ACM International Conference on Web Search and Data Mining, WSDM 2020, Houston, United States.
- Bondarenko, A., Hagen, M., Potthast, M., Wachsmuth, H., Beloucif, M., Biemann, C., Panchenko, A., & Stein, B. (2020). Touché: First Shared Task on Argument Retrieval. In J. M. Jose, E. Yilmaz, J. Magalhães, P. Castells, N. Ferro, M. J. Silva, & F. Martins (Eds.), Advances in Information Retrieval (Vol. 12036, pp. 517–523). Springer International Publishing.
- Bondarenko, A., Fröbe, M., Beloucif, M., Gienapp, L., Ajjour, Y., Panchenko, A., Biemann, C., Stein, B., Wachsmuth, H., Potthast, M., & Hagen, M. (2020). Overview of Touché 2020: Argument Retrieval: Extended Abstract. In A. Arampatzis, E. Kanoulas, T. Tsikrika, S. Vrochidis, H. Joho, C. Lioma, C. Eickhoff, A. Névéol, L. Cappellato, & N. Ferro (Eds.), Experimental IR Meets Multilinguality, Multimodality, and Interaction (Vol. 12260, pp. 384–395). Springer International Publishing.
- Brilliantov, N. V., Abutuqayqah, H., Tyukin, I. Y., & Matveev, S. A. (2020). Swirlonic state of active matter. Scientific Reports, 10(1), 16783.
- Brilliantov, N. V., Osinsky, A. I., & Krapivsky, P. L. (2020). Role of energy in ballistic agglomeration. Physical Review E, 102(4), 042909.
- Brilliantov, N. V., Rubí, J. M., & Budkov, Y. A. (2020). Molecular fields and statistical field theory of fluids: Application to interface phenomena. Physical Review E, 101(4), 042135.
- Bukhdruker, S., Varaksa, T., Grabovec, I., Marin, E., Shabunya, P., Kadukova, M., Grudinin, S., Kavaleuski, A., Gusach, A., Gilep, A., Borshchevskiy, V., & Strushkevich, N. (2020). Hydroxylation of Antitubercular Drug Candidate, SQ109, by Mycobacterial Cytochrome P450. International Journal of Molecular Sciences, 21(20), 7683.
- Burgess, S., Wang, Z., Vishnyakov, A., Neimark, A.V. (2020). Adhesion, intake, and release of nanoparticles by lipid bilayers. Journal of Colloid and Interface Science, 561, 58-70.
- Burkov, E., Pasechnik, I., Grigorev, A., & Lempitsky, V. (2020). Neural Head Reenactment with Latent Pose Descriptors. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 13783–13792.
- Burnaev, E. (2020, November). Generalization Bound for Imbalanced Classification. In International Conference on Stochastic Methods (pp. 107-119). Springer, Cham.
- Burnaev, E. (2020). Time-series classification for industrial applications: A brake pad wear prediction use case. IOP Conference Series: Materials Science and Engineering, 904, 012012.
- Bychkova, A.V., Lopukhova, M.V., Wasserman, L.A., Pronkin, P.G., Degtyarev, Y.N., Shalupov, A.I., Vasilyeva, A.D., Yurina, L.V., Kovarski, A.L., Kononikhin, A.S., Nikolaev, E.N. (2020). Interaction between immunoglobulin G and peroxidase-like iron oxide nanoparticles: Physicochemical and structural features of the protein. Biochimica et Biophysica Acta – Proteins and Proteomics, 1868(1).
- Chen, D., Han, J., Yang, J., Schibli, D., Zhang, Z., & Borchers, C. H. (2020). Supermolecule-assisted imaging of low-molecular-weight quaternary-ammonium compounds by MALDI-MS of their non-covalent complexes with cucurbit[7]uril. RSC Advances, 10(56), 34261–34265.
- Chen, Z., Jin, J., Daly, I., Zuo, C., Wang, X., & Cichocki, A. (2020). Effects of Visual Attention on Tactile P300 BCI. Computational Intelligence and Neuroscience, 2020.
- Cui, C., Zhang, K., Daulbaev, T., Gusak, J., Oseledets, I., & Zhang, Z. (2020). Active subspace of neural networks: Structural analysis and universal attacks. SIAM Journal on Mathematics of Data Science, 2(4), 1096-1122.
- De Giorgi, M., Jarrett, K.E., Burton, J.C., Doerfler, A.M., Hurley, A., Li, A., Hsu, R.H., Furgurson, M., Patel, K.R., Han, J., Borchers, C.H., Lagor, W.R.(2020). Depletion of essential isoprenoids and ER stress induction following acute liver-specific deletion of HMG-CoA reductase. Journal of Lipid Research, 61(12), 1675-1686.
- Dementieva, D., & Panchenko, A. (2020). Fake News Detection using Multilingual Evidence. In 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA) (pp. 775-776). IEEE.
- Dmitriev, A. A., Kezimana, P., Rozhmina, T. A., Zhuchenko, A. A., Povkhova, L. V., Pushkova, E. N., Novakovskiy, R. O., Pavelek, M., Vladimirov, G. N., Nikolaev, E. N., Kovaleva, O. A., Kostyukevich, Y. I., Chagovets, V. V., Romanova, E. V., Snezhkina, A. V., Kudryavtseva, A. V., Krasnov, G. S., & Melnikova, N. V. (2020). Genetic diversity of SAD and FAD genes responsible for the fatty acid composition in flax cultivars and lines. BMC Plant Biology, 20(S1), 301.
- Duan, F., Huang, Z., Sun, Z., Zhang, Y., Zhao, Q., Cichocki, A., Yang, Z., & Sole-Casals, J. (2020). Topological Network Analysis of Early Alzheimer’s Disease Based on Resting-State EEG. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(10), 2164–2172.
- Egiazarian, V., Voynov, O., Artemov, A., Volkhonskiy, D., Safin, A., Taktasheva, M., … & Burnaev, E. (2020). Deep Vectorization of Technical Drawings. In: Vedaldi A., Bischof H., Brox T., Frahm JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12358. Springer, Cham.
- Eliferov, V. A., Zhvansky, E. S., Sorokin, A. A., Shurkhay, V. A., Bormotov, D. S., Pekov, S. I., Nikitin, P. V., Ryzhova, M. V., Kulikov, E. E., Potapov, A. A., Nikolaev, E. N., & Popov, I. A. (2020). The role of lipids in the classification of astrocytoma and glioblastoma using MS tumor profiling. Biomeditsinskaya Khimiya, 66(4), 317–325.
- Ers, H., Lembinen, M., Mišin, M., Seitsonen, A. P., Fedorov, M. V., & Ivaništšev, V. B. (2020). Graphene–Ionic Liquid Interfacial Potential Drop from Density Functional Theory-Based Molecular Dynamics Simulations. The Journal of Physical Chemistry C, 124(36), 19548–19555.
- Eshghi, A., Pistawka, A.J., Liu, J., Chen, M., Sinclair, N.J.T., Hardie, D.B., Elliott, M., Chen, L., Newman, R., Mohammed, Y., Borchers, C.H. (2020) Concentration determination of > 200 proteins in dried blood spots for biomarker discovery and validation. Molecular and Cellular Proteomics, 19(3), 540-553.
- Fedoseeva, E. V., Patsaeva, S. V., Khundzhua, D. A., Pukalchik, M. A., & Terekhova, V. A. (2020). Effect of Exogenic Humic Substances on Various Growth Endpoints of Alternaria alternata and Trichoderma harzianum in the Experimental Conditions. Waste and Biomass Valorization, 1-12.
- Fokina, D., Muravleva, E., Ovchinnikov, G., & Oseledets, I. (2020). Microstructure synthesis using style-based generative adversarial networks. Physical Review E, 101(4), 043308.
- Froehlich, B. C., Popp, R., Sobsey, C. A., Ibrahim, S., LeBlanc, A. M., Mohammed, Y., Aguilar‐Mahecha, A., Poetz, O., Chen, M. X., Spatz, A., Basik, M., Batist, G., Zahedi, R. P., & Borchers, C. H. (2020). Systematic Optimization of the iMALDI Workflow for the Robust and Straightforward Quantification of Signaling Proteins in Cancer Cells. PROTEOMICS – Clinical Applications, 2000034.
- Fursov, I., Zaytsev, A., Kluchnikov, N., Kravchenko, A., & Burnaev, E. (2020). Gradient-based adversarial attacks on categorical sequence models via traversing an embedded world.
- Gaither, C., Popp, R., Mohammed, Y., & Borchers, C. H. (2020). Determination of the concentration range for 267 proteins from 21 lots of commercial human plasma using highly multiplexed multiple reaction monitoring mass spectrometry. The Analyst, 145(10), 3634–3644.
- Gasanov, M., Petrovskaia, A., Nikitin, A., Matveev, S., Tregubova, P., Pukalchik, M., & Oseledets, I. (2020). Sensitivity Analysis of Soil Parameters in Crop Model Supported with High-Throughput Computing. In V. V. Krzhizhanovskaya, G. Závodszky, M. H. Lees, J. J. Dongarra, P. M. A. Sloot, S. Brissos, & J. Teixeira (Eds.), Computational Science – ICCS 2020 (Vol. 12143, pp. 731–741). Springer International Publishing.
- Gaspar, V. P., Ibrahim, S., Sobsey, C. A., Richard, V. R., Spatz, A., Zahedi, R. P., & Borchers, C. H. (2020). Direct and Precise Measurement of Bevacizumab Levels in Human Plasma Based on Controlled Methionine Oxidation and Multiple Reaction Monitoring. ACS Pharmacology & Translational Science, 3(6), 1304-1309.
- Gil-Ureta, F., Pietroni, N., & Zorin, D. (2020). Reinforcement of General Shell Structures. ACM Transactions on Graphics, 39(5), 1–19.
- Gong, S., Xing, K., Cichocki, A., & Li, J. (2020). Deep Learning in EEG: Advance of the Last Ten-Year Critical Period.
- Ibrahim, S., Froehlich, B. C., Aguilar-Mahecha, A., Aloyz, R., Poetz, O., Basik, M., Batist, G., Zahedi, R. P., & Borchers, C. H. (2020). Using Two Peptide Isotopologues as Internal Standards for the Streamlined Quantification of Low-Abundance Proteins by Immuno-MRM and Immuno-MALDI. Analytical Chemistry, 92(18), 12407–12414.
- Ishimtsev, V., Bokhovkin, A., Artemov, A., Ignatyev, S., Niessner, M., Zorin, D., & Burnaev, E. (2020). CAD-Deform: Deformable Fitting of CAD Models to 3D Scans. In: Vedaldi A., Bischof H., Brox T., Frahm JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12358. Springer, Cham.
- Ivanov, A., Lakontsev, D., Fisenko, A., & Ushakov, A. (2020). Soft Decision Decoding in Mud Pulse Telemetry System. 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), 1–5.
- Ivanov, A., Osinsky, A., Lakontsev, D., & Yarotsky, D. (2020). High Performance Interference Suppression in Multi-User Massive MIMO Detector. 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), 1–5.
- Ivanov, D. G., Indeykina, M. I., Pekov, S. I., Bugrova, A. E., Kechko, O. I., Iusupov, A. E., Kononikhin, A. S., Makarov, A. A., Nikolaev, E. N., & Popov, I. A. (2020). Relative Quantitation of Beta-Amyloid Peptide Isomers with Simultaneous Isomerization of Multiple Aspartic Acid Residues by Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 31(1), 164–168.
- Ivanov, D. G., Pekov, S. I., Bocharov, K. V., Bormotov, D. S., Spasskiy, A. I., Zhvansky, E. S., Sorokin, A. A., Eliferov, V. A., Zavorotnyuk, D. S., Tkachenko, S. I., Khaliullin, I. G., Kuksin, A. Yu., Shurkhay, V. A., Kononikhin, A. S., Nikolaev, E. N., & Popov, I. A. (2020). Novel Mass Spectrometric Utilities for Assisting in Oncological Surgery. Russian Journal of Physical Chemistry B, 14(3), 483–487.
- Ivanov, F., Kabatiansky, G., Krouk, E., & Rumenko, N. (2020). A New Code-Based Cryptosystem. In M. Baldi, E. Persichetti, & P. Santini (Eds.), Code-Based Cryptography (Vol. 12087, pp. 41–49). Springer International Publishing.
- Jin, J., Liu, C., Daly, I., Miao, Y., Li, S., Wang, X., & Cichocki, A. (2020). Bispectrum-Based Channel Selection for Motor Imagery Based Brain-Computer Interfacing. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(10), 2153–2163.
- Jones, F. M., Arteta, C., Zisserman, A., Lempitsky, V., Lintott, C. J., & Hart, T. (2020). Processing citizen science-and machine-annotated time-lapse imagery for biologically meaningful metrics. Scientific Data, 7(1), 1-15.
- Kabatiansky, G., & Egorova, E. (2020). Adversarial multiple access channels and a new model of multimedia fingerprinting coding. 2020 IEEE Conference on Communications and Network Security (CNS), 1–5.
- Kardashin, A., Uvarov, A., Yudin, D., & Biamonte, J. (2020). Certified variational quantum algorithms for eigenstate preparation. Physical Review A, 102(5), 052610.
- Karlov, D. S., Sosnin, S., Fedorov, M. V., & Popov, P. (2020). graphDelta: MPNN Scoring Function for the Affinity Prediction of Protein–Ligand Complexes. ACS omega, 5(10), 5150-5159.
- Kashirina, D. N., Pastushkova, L. Kh., Brzhozovskiy, A. G., Goncharova, A. G., Nosovsky, A. M., Custaud, M.-A., Navasiolava, N. M., Kononikhin, A. S., Nikolaev, E. N., & Larina, I. M. (2020). Research of the Plasma Protein Profile in Comparison with the Biochemical Parameters of Blood of Volunteers in a 21-Day Head Down Bed Rest. Human Physiology, 46(4), 423–431.
- Kashirina, Daria N., Brzhozovskiy, A. G., Pastushkova, L. Kh., Kononikhin, A. S., Borchers, C. H., Nikolaev, E. N., & Larina, I. M. (2020). Semiquantitative Proteomic Research of Protein Plasma Profile of Volunteers in 21-Day Head-Down Bed Rest. Frontiers in Physiology, 11, 678.
- Katrutsa, A., Daulbaev, T., Oseledets, I. (2020). Black-box learning of multigrid parameters. Journal of Computational and Applied Mathematics, 368.
- Kharyuk, P., Nazarenko, D., Oseledets, I., Rodin, I., Shpigun, O., Tsitsilin, A., & Lavrentyev, M. (2020). Author Correction: Employing fingerprinting of medicinal plants by means of LC-MS and machine learning for species identification task. Scientific Reports, 10(1), 11482.
- Khodajou-Chokami, H., Bitarafan, A., Dylov, D. V., Soleymani Baghshah, M., & Hosseini, S. A. (2020). Personalized Computational Human Phantoms via a Hybrid Model-based Deep Learning Method. 2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA), 1–6.
- Khrulkov, V., Mirvakhabova, L., Ustinova, E., Oseledets, I., & Lempitsky, V. (2020). Hyperbolic Image Embeddings. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 6417–6427.
- Kondrateva, E., Belozerova, P., Sharaev, M., Burnaev, E., Bernstein, A., Samotaeva, I. (2020). Machine learning models reproducibility and validation for MR images recognition. In Proceedings of SPIE – The International Society for Optical Engineering, 114330Z
- Koposov, D., Semenova, M., Somov, A., Lange, A., Stepanov, A., & Burnaev, E. (2020). Analysis of the Reaction Time of eSports Players through the Gaze Tracking and Personality Trait. 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE), 1560–1565.
- Koshelev, I., Somov, A., Lefkimmiatis, S., & Rodriguez-Sanchez, A. (2020). Deconvolution of Image Sequences with a Learning FFT-based Approach. 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE), 1381–1386.
- Koshev, N., Yavich, N., Malovichko, M., Skidchenko, E., & Fedorov, M. (2020). FEM-based Scalp-to-Cortex EEG data mapping via the solution of the Cauchy problem. Journal of Inverse and Ill-Posed Problems, 0(0).
- Kovalska, E., Baldycheva, A., & Somov, A. (2020). Wireless graphene-enabled wearable temperature sensor. Journal of Physics: Conference Series, 1571, 012001.
- Kozlovskii, I., & Popov, P. (2020). Spatiotemporal identification of druggable binding sites using deep learning. Communications Biology, 3(1), 618.
- Kriuchevskyi, I., Palyulin, V. V., Milkus, R., Elder, R. M., Sirk, T. W., & Zaccone, A. (2020). Scaling up the lattice dynamics of amorphous materials by orders of magnitude. Physical Review B, 102(2), 024108.
- Krylov, D., Tachet, R., Laroche, R., Rosenblum, M., & Dylov, D. V. (2020). Reinforcement Learning Framework for Deep Brain Stimulation Study. IJCAI International Joint Conference on Artificial Intelligence 2021, pp. 2847-2854.
- Kulikov, V., & Lempitsky, V. (2020). Instance Segmentation of Biological Images Using Harmonic Embeddings. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 3842–3850.
- Kurilovich, A. A., Mantsevich, V. N., Stevenson, K. J., Chechkin, A. V., & Palyulin, V. V. (2020). Complex diffusion-based kinetics of photoluminescence in semiconductor nanoplatelets. Physical Chemistry Chemical Physics, 22(42), 24686–24696.
- Kutuzov, A., Dorgham, M., Oliynyk, O., Biemann, C., & Panchenko, A. (2020). Making fast graph-based algorithms with graph metric embeddings. Proceedings of the ACL 2019 – 57th Annual Meeting of the Association for Computational Linguistics, 3349-3355.
- Lehky, S. R., Phan, A. H., Cichocki, A., & Tanaka, K. (2020). Face representations via Tensorfaces of various complexities. Neural Computation, 32(2), 281-329.
- Leitner, A., Bonvin, A. M. J. J., Borchers, C. H., Chalkley, R. J., Chamot-Rooke, J., Combe, C. W., Cox, J., Dong, M.-Q., Fischer, L., Götze, M., Gozzo, F. C., Heck, A. J. R., Hoopmann, M. R., Huang, L., Ishihama, Y., Jones, A. R., Kalisman, N., Kohlbacher, O., Mechtler, K., … Rappsilber, J. (2020). Toward Increased Reliability, Transparency, and Accessibility in Cross-linking Mass Spectrometry. Structure, S0969212620303361.
- Leli V., Rubashevskii, A., Sarachakov, A., Rogov, O., Dylov, D. (2020). Near-Infrared-to-Visible Vein Imaging via Convolutional Neural Networks and Reinforcement Learning. 16th International Conference on Control, Automation, Robotics and Vision (ICARCV).
- Li, M., Ferguson, Z. A. H., Schneider, T., Langlois, T., Zorin, D., Panozzo, D., Jiang, C., & Kaufman, D. M. (2020). Incremental potential contact: Intersection-and inversion-free, large-deformation dynamics. ACM Transactions on Graphics, 39(4).
- Liu, Q., Jiao, Y., Miao, Y., Zuo, C., Wang, X., Cichocki, A., & Jin, J. (2020). Efficient representations of EEG signals for SSVEP frequency recognition based on deep multiset CCA. Neurocomputing, vol. 378, 36-44.
- Logacheva, E., Suvorov, R., Khomenko, O., Mashikhin, A., & Lempitsky, V. (2020). DeepLandscape: Adversarial Modeling of Landscape Videos. In European Conference on Computer Vision (pp. 256-272). Springer, Cham.
- Logacheva, V., Teslenko, D., Shelmanov, A., Remus, S., Ustalov, D., Kutuzov, A., … & Panchenko, A. (2020). Word sense disambiguation for 158 languages using word embeddings only. In LREC 2020 – 12th International Conference on Language Resources and Evaluation, Conference Proceedings, pp. 5943-5952.
- Makepeace, K. A., Mohammed, Y., Rudashevskaya, E. L., Petrotchenko, E. V., Vögtle, F. N., Meisinger, C., … & Borchers, C. H. (2020). Improving Identification of In-organello Protein-Protein Interactions Using an Affinity-enrichable, Isotopically Coded, and Mass Spectrometry-cleavable Chemical Crosslinker. Molecular & Cellular Proteomics, 19(4), 624-639.
- Matveev, A., Artemov, A., Zorin, D., & Burnaev, E. (2020). Geometric Attention for Prediction of Differential Properties in 3D Point Clouds. In F.-P. Schilling & T. Stadelmann (Eds.), Artificial Neural Networks in Pattern Recognition (Vol. 12294, pp. 113–124). Springer International Publishing.
- Menshchikov, A., Lopatkin, D., Tsykunov, E., Tsetserukou, D., & Somov, A. (2020). Realizing Body-Machine Interface for Quadrotor Control Through Kalman Filters and Recurrent Neural Network. 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), 595–602.
- Michaud, S. A., Pětrošová, H., Jackson, A. M., McGuire, J. C., Sinclair, N. J., Ganguly, M., … & Borchers, C. H. (2020). Process and Workflow for Preparation of Disparate Mouse Tissues for Proteomic Analysis. Journal of Proteome Research, 20(1)
- Mirvakhabova, L., Frolov, E., Khrulkov, V., Oseledets, I., & Tuzhilin, A. (2020). Performance of Hyperbolic Geometry Models on Top-N Recommendation Tasks. Fourteenth ACM Conference on Recommender Systems, 527–532.
- Morozov, A. D., Popkov, D. O., Duplyakov, V. M., Mutalova, R. F., Osiptsov, A. A., Vainshtein, A. L., Burnaev, E. V., Shel, E. V., & Paderin, G. V. (2020). Data-driven model for hydraulic fracturing design optimization: Focus on building digital database and production forecast. Journal of Petroleum Science and Engineering, 194, 107504.
- Muravleva, E., Oseledets, I., & Koroteev, D. (2020). Model order reduction in viscoplastic flow modelling using proper orthogonal decomposition and neural networks. In Proceedings of the 6th European Conference on Computational Mechanics: Solids, Structures and Coupled Problems, ECCM 2018 and 7th European Conference on Computational Fluid Dynamics, ECFD 2018, pp. 2475-2487.
- Nabieva, E., Sharma, S. M., Kapushev, Y., Garushyants, S. K., Fedotova, A. V., Moskalenko, V. N., Serebrenikova, T. E., Glazyrina, E., Kanivets, I. V., Pyankov, D. V., Neretina, T. V., Logacheva, M. D., Bazykin, G. A., & Yarotsky, D. (2020). Accurate fetal variant calling in the presence of maternal cell contamination. European Journal of Human Genetics.
- Negrín, R., Ferrer, G., Iñiguez, M., Duboy, J., Saavedra, M., Larraín, N. R., Jabes, N., & Barahona, M. (2020). Robotic-assisted surgery in medial unicompartmental knee arthroplasty: Does it improve the precision of the surgery and its clinical outcomes? Systematic review. Journal of Robotic Surgery.
- Nesteruk, S., Shadrin, D., Kovalenko, V., Rodriguez-Sanchez, A., & Somov, A. (2020). Plant Growth Prediction through Intelligent Embedded Sensing. 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE), 411–416.
- Novikov, A., Izmailov, P., Khrulkov, V., Figurnov, M., Oseledets, I. (2020). Tensor train decomposition on tensorflow (T3F). Journal of Machine Learning Research, 21.
- Osinenko, P., & Streif, S. (2020). On constructive extractability of measurable selectors of set-valued maps. IEEE Transactions on Automatic Control.
- Osinsky, A., Bodrova, A.S., Brilliantov, N.V. (2020). Size-polydisperse dust in molecular gas: Energy equipartition versus nonequipartition. Physical Review E, 101(2).
- Osinsky, A., Ivanov, A., Lakontsev, D., Bychkov, R., & Yarotsky, D. (2020). Data-Aided LS Channel Estimation in Massive MIMO Turbo-Receiver. 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), 1–5.
- Osinsky, A., Ivanov, A., & Yarotsky, D. (2020). Bayesian Approach to Channel Interpolation in Massive MIMO Receiver. IEEE Communications Letters, 24(12), 2751-2755.
- Osipenko, S., Bashkirova, I., Sosnin, S., Kovaleva, O., Fedorov, M., Nikolaev, E., & Kostyukevich, Y. (2020). Machine learning to predict retention time of small molecules in nano-HPLC. Analytical and Bioanalytical Chemistry.
- Pan, J., Xie, Q., Qin, P., Chen, Y., He, Y., Huang, H., Wang, F., Ni, X., Cichocki, A., Yu, R., & Li, Y. (2020). Prognosis for patients with cognitive motor dissociation identified by brain-computer interface. Brain, 143(4), 1177–1189.
- Paradezhenko, G. V., Gascoigne, C., & Brilliantov, N. V. (2020). Gaussian polymer chains in a harmonic potential: The path integral approach. Journal of Physics A: Mathematical and Theoretical, 53(42), 425005.
- Pastushkova, L.H., Rusanov, V.B., Orlov, O.I., Goncharova, A.G., Chernikova, A.G., Kashirina, D.N., Kussmaul, A.R., Brzhozovskiy, A.G., Kononikhin, A.S., Kireev, K.S., Nosovsky, A.M., Nikolaev, E.N., Larina, I.M. (2020). The variability of urine proteome and coupled biochemical blood indicators in cosmonauts with different preflight autonomic status. Acta Astronautica, 168, 204-210.
- Patel, P., Santo, K. P., Burgess, S., Vishnyakov, A., & Neimark, A. V. (2020). Stability of Lipid Coatings on Nanoparticle-Decorated Surfaces. ACS nano.
- Peng, Y., Li, Q., Kong, W., Zhang, J., Lu, B.-L., & Cichocki, A. (2020). Joint Semi-Supervised Feature Auto-Weighting and Classification Model for EEG-Based Cross-Subject Sleep Quality Evaluation. ICASSP 2020 – 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 946–950.
- Peng, Y., Li, Q., Kong, W., Qin, F., Zhang, J., & Cichocki, A. (2020). A joint optimization framework to semi-supervised RVFL and ELM networks for efficient data classification. Applied Soft Computing, 97, 106756.
- Pervishko, A. A., Yudin, D., Kumar Gudelli, V., Delin, A., Eriksson, O., & Guo, G.-Y. (2020). Localized surface electromagnetic waves in CrI 3 -based magnetophotonic structures. Optics Express, 28(20), 29155.
- Phan, A.-H., Cichocki, A., Oseledets, I., Calvi, G. G., Ahmadi-Asl, S., & Mandic, D. P. (2020). Tensor Networks for Latent Variable Analysis: Higher Order Canonical Polyadic Decomposition. IEEE Transactions on Neural Networks and Learning Systems, 31(6), 2174–2188.
- Phan, A.-H., Sobolev, K., Sozykin, K., Ermilov, D., Gusak, J., Tichavský, P., Glukhov, V., Oseledets, I., & Cichocki, A. (2020). Stable Low-Rank Tensor Decomposition for Compression of Convolutional Neural Network. In A. Vedaldi, H. Bischof, T. Brox, & J.-M. Frahm (Eds.), Computer Vision – ECCV 2020 (Vol. 12374, pp. 522–539). Springer International Publishing.
- Pronina V., Kokkinos F., Dylov D.V., Lefkimmiatis S. (2020). Microscopy Image Restoration with Deep Wiener-Kolmogorov Filters. In: Vedaldi A., Bischof H., Brox T., Frahm JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12365. Springer, Cham.
- Puchkin, N., & Spokoiny, V. (2020). An adaptive multiclass nearest neighbor classifier. ESAIM: Probability and Statistics, 24, 69–99.
- Pukalchik, M., Kydralieva, K., Yakimenko, O., Terekhova, V. (2020). Effect of organic substances on wheat (Triticum spp.) productivity and soil enzyme functional stability under drought stress conditions. Research on Crops, 21(2)
- Qiu, Y., Zhou, G., Zhang, Y., & Cichocki, A. (2020). Canonical polyadic decomposition (CPD) of big tensors with low multilinear rank. Multimedia Tools and Applications.
- Razorenova A., Yavich N., Malovichko M., Fedorov M., Koshev N., Dylov D.V. (2020) Deep Learning for Non-invasive Cortical Potential Imaging. In: Kia S.M. et al. (eds) Machine Learning in Clinical Neuroimaging and Radiogenomics in Neuro-oncology. MLCN 2020, RNO-AI 2020. Lecture Notes in Computer Science, vol. 12449. Springer, Cham.
- Richard, V. R., Zahedi, R. P., Eintracht, S., & Borchers, C. H. (2020). An LC-MRM assay for the quantification of metanephrines from dried blood spots for the diagnosis of pheochromocytomas and paragangliomas. Analytica Chimica Acta, 1128, 140–148.
- Safin, A. R., Popov, P. A., Kalyabin, D. V., & Nikitov, S. A. (2020). Synthesizer of Discrete Frequency Spectrum Based on an Antiferromagnetic Spintronic Oscillator. Technical Physics Letters, 46(10), 1016–1019.
- Santo, K.P., Vishnyakov, A. (2020). Reversible aggregation of particles with short oligomeric sidechains at the surface studied with Langevin dynamics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 586
- Schutski, R., Lykov, D., & Oseledets, I. (2020). Adaptive algorithm for quantum circuit simulation. Physical Review A, 101(4), 042335.
- Schutski, R., Khakhulin, T., Oseledets, I., & Kolmakov, D. (2020). Simple heuristics for efficient parallel tensor contraction and quantum circuit simulation. Physical Review A, 102(6), 062614.
- Sedighin, F., Cichocki, A., Yokota, T., & Shi, Q. (2020). Matrix and Tensor Completion in Multiway Delay Embedded Space Using Tensor Train, With Application to Signal Reconstruction. IEEE Signal Processing Letters, 27, 810–814.
- Shadrin, D., Menshchikov, A., Somov, A., Bornemann, G., Hauslage, J., & Fedorov, M. (2020). Enabling Precision Agriculture Through Embedded Sensing With Artificial Intelligence. IEEE Transactions on Instrumentation and Measurement, 69(7), 4103–4113.
- Shadrin, D., Podladchikova, T., Ovchinnikov, G., Pavlov, A., Pukalchik, M., & Somov, A. (2020). Kalman Filtering for Accurate and Fast Plant Growth Dynamics Assessment. 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 1–6.
- Shadrin, D., Pukalchik, M., Kovaleva, E., Fedorov, M. (2020). Artificial intelligence models to predict acute phytotoxicity in petroleum contaminated soils. Ecotoxicology and Environmental Safety, 194.
- Sharaev, M., Melnikova-Pitskhelauri, T., Smirnov, A., Bozhenko, A., Yarkin, V., Bernshtein, A., … & Pronin, I. (2020). Brain Cognitive Architectures Mapping for Neurosurgery: Resting-State fMRI and Intraoperative Validation. In Biologically Inspired Cognitive Architectures Meeting (pp. 466-471). Springer, Cham.
- Sharaevskaya A. Y., Popov P. A., Osokin S. A. (2020). Numerical simulation of magnetostatic waves propagation in coupled meander-type magnon crystals. Izvestiya VUZ. Applied Nonlinear Dynamics, 28(4), pp. 425-434.
- Shelmanov, A., Liventsev, V., Kireev, D., Khromov, N., Panchenko, A., Fedulova, I., & Dylov, D. V. (2019). Active Learning with Deep Pre-trained Models for Sequence Tagging of Clinical and Biomedical Texts. 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 482–489.
- Shi, Q., Yin, J., Cai, J., Cichocki, A., Yokota, T., Chen, L., Yuan, M. and Zeng, J. (2020). Block Hankel tensor ARIMA for multiple short time series forecasting. Accepted for presentation in the AAAI- 20 conference on AI in New York in Feb 2020.
- Shumovskaia, V., Fedyanin, K., Sukharev, I., Berestnev, D., & Panov, M. (2020). Linking Bank Clients using Graph Neural Networks Powered by Rich Transactional Data. IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA), Sydney, Australia, 2020, pp. 787-788.
- Smirnov, A. S., Melnikova-Pitskhelauri, T. V., Sharaev, M. G., Zhukov, V. Yu., Pogosbekyan, E. L., Afandiev, R. M., Bozhenko, A. A., Yarkin, V. E., Chekhonin, I. V., Buklina, S. B., Bykanov, A. E., Ogurtsova, A. A., Kulikov, A. S., Bernshtein, A. V., Burnaev, E. V., Pitskhelauri, D. I., & Pronin, I. N. (2020). Resting-state fMRI in preoperative non-invasive mapping in patients with left hemisphere glioma. Voprosy Neirokhirurgii Imeni N.N. Burdenko, 84(4), 17.
- Snorovikhina, V., & Zaytsev, A. (2020). Unsupervised anomaly detection for discrete sequence healthcare data.
- Sosnina, E. A., Sosnin, S., Nikitina, A. A., Nazarov, I., Osolodkin, D. I., & Fedorov, M. V. (2020). Recommender Systems in Antiviral Drug Discovery. ACS Omega, 5(25), 15039–15051.
- Starodubtseva, N., Nizyaeva, N., Baev, O., Bugrova, A., Gapaeva, M., Muminova, K., … Nikolaev, E. & Sukhikh, G. (2020). SERPINA1 Peptides in Urine as A Potential Marker of Preeclampsia Severity. International Journal of Molecular Sciences, 21(3), 914.
- Subramanian, V., Ratkova, E., Palmer, D., Engkvist, O., Fedorov, M., & Llinas, A. (2020). Multisolvent Models for Solvation Free Energy Predictions Using 3D-RISM Hydration Thermodynamic Descriptors. Journal of Chemical Information and Modeling, 60(6), 2977–2988.
- Sushnikova, D. A., & Oseledets, I. V. (2020). Simple non-extensive sparsification of the hierarchical matrices. Advances in Computational Mathematics, 46(4), 52.
- Temirchev, P., Simonov, M., Kostoev, R., Burnaev, E., Oseledets, I., Akhmetov, A., Margarit, A., Sitnikov, A., Koroteev, D. (2020). Deep neural networks predicting oil movement in a development unit. Journal of Petroleum Science and Engineering, 184.
- Temnyakova, N. S., Vasilenko, D. A., Barygin, O. I., Dron, M. Y., Averina, E. B., Grishin, Y. K., Grigoriev, V. V., Palyulin, V. A., Fedorov, M. V., & Karlov, D. S. (2020). Ifenprodil-like NMDA receptor modulator based on the biphenyl scaffold. Mendeleev Communications, 30(3), 342–343.
- Tietze, S., Zepf, M., Rykovanov, S. G., & Yeung, M. (2020). Propagation effects in multipass high harmonic generation from plasma surfaces. New Journal of Physics, 22(9), 093048.
- Tokareva, A.O., Chagovets, V.V., Starodubtseva, N.L., Nazarova, N.M., Nekrasova, M.E., Kononikhin, A.S., Frankevich, V.E., Nikolaev, E.N., Sukhikh, G.T. (2020). Feature selection for OPLS discriminant analysis of cancer tissue lipidomics data. Journal of Mass Spectrometry, 55(1).
- Tozoni, D. C., Dumas, J., Jiang, Z., Panetta, J., Panozzo, D., & Zorin, D. (2020). A low-parametric rhombic microstructure family for irregular lattices. ACM Transactions on Graphics, 39(4).
- Tichavsky, P., Phan, A.-H., & Cichocki, A. (2020). Weighted Krylov-Levenberg-Marquardt Method for Canonical Polyadic Tensor Decomposition. ICASSP 2020 – 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 3917–3921.
- Tyurin, A., Alferova, V., Paramonov, A., Shuvalov, M., Kudryakova, G., Rogozhin, E., Zherebker, A., Nikolaev, N. & Korshun, V. A. (2021). Gausemycins A, B–cyclic lipoglycopeptides from Streptomyces sp. Angewandte Chemie.
- Uvarov, A., Biamonte, J. D., & Yudin, D. (2020). Variational quantum eigensolver for frustrated quantum systems. Physical Review B, 102(7), 075104.
- Vasilyeva, A. D., Yurina, L. V., Leonova, V. B., Azarova, D. Yu., Bugrova, A. E., Konstantinova, T. S., Indeykina, M. I., Kononikhin, A. S., Nikolaev, E. N., & Rosenfeld, M. A. (2020). Oxidative Modification of Coagulation Factor XIII: Structural and Functional Aspects. Russian Journal of Physical Chemistry B, 14(3), 468–478.
- Vasilyeva, A.D., Yurina, L.V., Bugrova, A.E., Indeykina, M.I., Kononikhin, A.S., Schegolikhin, A.N., Ivanov, V.S., Nikolaev, E.N., Rosenfeld, M.A. (2020). The Nature of Resistance of the Coagulation Factor XIII Structure to Hypochlorite-Induced Oxidation. In Doklady Biochemistry and Biophysics (Vol. 495, No. 1, pp. 276-281).
- Vasilyeva, A., Yurina, L., Shchegolikhin, A., Indeykina, M., Bugrova, A., Kononikhin, A., Nikolaev, E., & Rosenfeld, M. (2020). The Structure of Blood Coagulation Factor XIII Is Adapted to Oxidation. Biomolecules, 10(6), 914.
- Volkhonskiy, D., Nazarov, I., & Burnaev, E. (2020, January). Steganographic generative adversarial networks. In Proceedings of SPIE – The International Society for Optical Engineering, 11433, art. no. 114333M.
- Vishnyakov, A., Weathers, T., Hosangadi, A., Chiew, Y.C. (2020). Molecular models for phase equilibria of alkanes with air components and combustion products I. Alkane mixtures with nitrogen, CO2 and water. Fluid Phase Equilibria, 514.
- Wang, J., Wu, M., Wu, L., Xu, Y., Li, F., Wu, Y., Popov, P., … & Liu, Z. J. (2020). The structural study of mutation-induced inactivation of human muscarinic receptor M4. IUCrJ, 7(2), 294-305.
- Yablokov, E. O., Sushko, T. A., Kaluzhskiy, L. A., Kavaleuski, A. A., Mezentsev, Y. V., Ershov, P. V., … & Strushkevich, N. V. (2020). Substrate-induced modulation of protein-protein interactions within human mitochondrial cytochrome P450-dependent system. Journal of Steroid Biochemistry and Molecular Biology, 105793.
- Yurina, L. V., Vasilyeva, A. D., Kononenko, V. L., Bugrova, A. E., Indeykina, M. I., Kononikhin, A. S., Nikolaev, E. N., & Rosenfeld, M. A. (2020). The Structural–Functional Damage of Fibrinogen Oxidized by Hydrogen Peroxide. Doklady Biochemistry and Biophysics, 492(1), 130–134.
- Zacharov, E., Ivakhnenko, A.,Shysheya, A., Lempitsky, V. (n.d.). Fast Bi-Layer Neural Synthesis of One-Shot Realistic Head Avatars. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 16th European Conference on Computer Vision, ECCV 2020.
- Zagidullin, R. R., Smirnov, A. P., Matveev, S. A., Shestopalov, Y. V., & Rykovanov, S. G. (2020). Hybrid Parallelism in Finite Volume Based Algorithms in Application to Two-Dimensional Scattering Problem Setting. Computational Mathematics and Modeling, 31(3), 355–363.
- Zhang, Y. X., Rykovanov, S., Shi, M., Zhong, C. L., He, X. T., Qiao, B., & Zepf, M. (2020). Giant Isolated Attosecond Pulses from Two-Color Laser-Plasma Interactions. Physical Review Letters, 124(11), 114802.
- Zherebker, A., Lechtenfeld, O. J., Sarycheva, A., Kostyukevich, Y., Kharybin, O., Fedoros, E. I., & Nikolaev, E. N. (2020). Refinement of Compound Aromaticity in Complex Organic Mixtures by Stable Isotope Label Assisted Ultrahigh-Resolution Mass Spectrometry. Analytical Chemistry, 92(13), 9032–9038.
- Zherebker, A., Shirshin, E., Rubekina, A., Kharybin, O., Kononikhin, A., Kulikova, N. A., … & Nikolaev, E. N. (2020). Optical Properties of Soil Dissolved Organic Matter Are Related to Acidic Functions of Its Components as Revealed by Fractionation, Selective Deuteromethylation, and Ultrahigh Resolution Mass Spectrometry. Environmental Science & Technology, 54(5), 2667-2677.
- Zherebker, A., Kim, S., Schmitt-Kopplin, P., Spencer, R. G. M., Lechtenfeld, O., Podgorski, D. C., Hertkorn, N., Harir, M., Nurfajin, N., Koch, B., Nikolaev, E. N., Shirshin, E. A., Berezin, S. A., Kats, D. S., Rukhovich, G. D., & Perminova, I. V. (2020). Interlaboratory comparison of humic substances compositional space as measured by Fourier transform ion cyclotron resonance mass spectrometry (IUPAC Technical Report). Pure and Applied Chemistry, 92(9), 1447–1467.
- Zhernov, Y. V., Konstantinov, A. I., Zherebker, A., Nikolaev, E., Orlov, A., Savinykh, M. I., Kornilaeva, G. V., Karamov, E. V., & Perminova, I. V. (2020). Antiviral activity of natural humic substances and shilajit materials against HIV-1: Relation to structure. Environmental Research, 110312.
- Zhou, J., Tu, C., Zorin, D., & Campen, M. (2020). Combinatorial Construction of Seamless Parameter Domains. Computer Graphics Forum, 39(2), 179–190.
- Zhu, L., Su, C., Zhang, J., Cui, G., Cichocki, A., Zhou, C., & Li, J. (2020). EEG-based approach for recognizing human social emotion perception. Advanced Engineering Informatics, 46, 101191.
- Zolotarev, A. M., Hansen, B. J., Ivanova, E. A., Helfrich, K. M., Li, N., Janssen, P. M. L., Mohler, P. J., Mokadam, N. A., Whitson, B. A., Fedorov, M. V., Hummel, J. D., Dylov, D. V., & Fedorov, V. V. (2020). Optical Mapping-Validated Machine Learning Improves Atrial Fibrillation Driver Detection by Multi-Electrode Mapping. Circulation: Arrhythmia and Electrophysiology, 13(10).
- Low complexity energy-efficient random access scheme for the asynchronous fading MAC
Andreev, K., Kowshik, S.S., Frolov, A., Polyanskiy, Y.
In IEEE Vehicular Technology Conference
- Combining lexical substitutes in neural word sense induction
Arefyev, N., Sheludko, B., Panchenko, A.
In International Conference Recent Advances in Natural Language Processing, RANLP
- Latent convolutional models
Athar, S., Burnaev, E., Lempitsky, V.
In 7th International Conference on Learning Representations, ICLR 2019
- Crystal structure of misoprostol bound to the labor inducer prostaglandin E2 receptor
Audet, M., White, K.L., Breton, B., Zarzycka, B., Han, G.W., Lu, Y., Gati, C., Batyuk, A., Popov, P., Velasquez, J. and Manahan, D.,
Nature Chemical Biology, 15(2), 206.
- Kinetic regimes in aggregating systems with spontaneous and collisional fragmentation
Bodrova, A. S., Stadnichuk, V., Krapivsky, P. L., Schmidt, J., & Brilliantov, N. V.
Journal of Physics A: Mathematical and Theoretical, 52(20).
- Boundary loss for remote sensing imagery semantic segmentation
Bokhovkin, A., & Burnaev, E.
Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 388–401.
- 3D surface topography imaging in SEM with improved backscattered electron detector: Arrangement and reconstruction algorithm.
Borzunov, A. A., Karaulov, V. Y., Koshev, N. A., Lukyanenko, D. V., Rau, E. I., Yagola, A. G., & Zaitsev, S. V.
Ultramicroscopy, 207, 112830.
- Time correlation functions and kinetic coefficients in systems with molecular or chemical exchange
Brilliantov, N. V.
Journal of Molecular Liquids, 28
- Editorial: Adiabatic Quantum Computation
Biamonte, J.D.
Frontiers in Physics, 7
- Complex networks from classical to quantum.
Biamonte, J., Faccin, M., & De Domenico, M.
Communications Physics, 2(1), 53.
- Keep quantum computing global and open
Biamonte, J. D., Dorozhkin, P., & Zacharov, I.
Nature, 573(7773), с. 190-191
- The effects of spaceflight factors on the human plasma proteome, including both real space missions and ground-based experiments
Brzhozovskiy, A.G., Kononikhin, A.S., Pastushkova, L.C., Kashirina, D.N., Indeykina, M.I., Popov, I.A., Custaud, M.-A., Larina, I.M., Nikolaev, E.N.
International Journal of Molecular Sciences, 20(13).
- Rare Failure Prediction via Event Matching for Aerospace Applications
Burnaev, E.
In 3rd International Conference on Circuits, System and Simulation, ICCSS 2019 (214-220).
- On construction of early warning systems for predictive maintenance in aerospace industry.
Burnaev, E.
Journal of Communications Technology and Electronics, 64(12), 1473-1484.
- Contention-based protocol with time-division collision resolution
Burkov, A., Frolov, A., & Turlikov, A.
In International Congress on Ultra Modern Telecommunications and Control Systems and Workshops.
- Achievability Bounds for Massive Random Access in the Gaussian MAC with Delay Constraints.
Burkov, A., Frolov, A., Rybin, P., & Turlikov, A.
In 2019 XVI International Symposium” Problems of Redundancy in Information and Control Systems”(REDUNDANCY) (pp. 224-227). IEEE.
- Achievability Bounds for Massive Random Access in the Gaussian MAC with Delay Constraints.
Burkov, A., Frolov, A., Rybin, P., & Turlikov, A.
In 2019 XVI International Symposium” Problems of Redundancy in Information and Control Systems”(REDUNDANCY) (pp. 224-227). IEEE.
- Relative quantitation of phosphatidylcholines with interfered masses of protonated and sodiated molecules by tandem and Fourier-transform ion cyclotron resonance mass spectrometry
Chagovets, V., Kononikhin, A., Tokoreva, A., Bormotov, D., Starodubtseva, N., Kostyukevich, Y., Popov, I., Frankevich, V. and Nikolaev, E.
European Journal of Mass Spectrometry, 25(2), 259–264.
- Effect of a combination of flip and zooming stimuli on the performance of a visual brain-computer interface for spelling
Cheng, J., Jin, J., Daly, I., Zhang, Y., Wang, B., Wang, X., & Cichocki, A.
Biomedizinische Technik, 64(1), 29–38
- On the Hard-Decision Multi-Threshold Decoding of Binary and Non-Binary LDPC Codes.
Dzis, A., Rybin, P., & Frolov, A.
In 2019 XVI International Symposium” Problems of Redundancy in Information and Control Systems”(REDUNDANCY) (pp. 23-26). IEEE.
- Adaptive nonparametric clustering.
Efimov, K., Adamyan, L., & Spokoiny, V.
IEEE Transactions on Information Theory.
- Signature codes for weighted noisy adder channel, multimedia fingerprinting and compressed sensing
Egorova, E., Fernandez, M., Kabatiansky, G., & Lee, M. H.
Designs, Codes, and Cryptography, 87(2–3), 455–462.
- A Construction of Traceability Set Systems with Polynomial Tracing Algorithm
Egorova, E., Fernandez, M., Kabatiansky, G.
In Proceedings of IEEE International Symposium on Information Theory (pp.2739-2742).
- MaxEntropy Pursuit Variational Inference
Egorov, E., Neklydov, K., Kostoev, R., & Burnaev, E.
Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 409–417.
- A new code-based public-key cryptosystem resistant to quantum computer attacks
Egorova, E., Kabatiansky, G., Krouk, E., & Tavernier, C.
Journal of Physics: Conference Series, 1163(1).
- Latent-Space Laplacian Pyramids for Adversarial Representation Learning with 3D Point Clouds.
Egiazarian, V., Ignatyev, S., Artemov, A., Voynov, O., Kravchenko, A., Zheng, Y., … & Burnaev, E.
In Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, 4, pp. 421-428.
- Tailoring electrochemical efficiency of hydrogen evolution by fine-tuning of TiOx/RuOx composite cathode architecture
Fedorov, F. S., Vasilkov, M. Y., Panov, M., Rupasov, D., Rashkovskiy, A., Ushakov, N. M., … Nasibulin, A. G.
International Journal of Hydrogen Energy, 44(21), 10593–10603.
- An Optimized Channel Selection Method Based on Multifrequency CSP-Rank for Motor Imagery-Based BCI System
Feng, J. K., Jin, J., Daly, I., Zhou, J., Niu, Y., Wang, X., & Cichocki, A.
Computational Intelligence and Neuroscience, 2019.
- Free and Bound States of Ions in Ionic Liquids, Conductivity, and Underscreening Paradox
Feng, G., Chen, M., Bi, S., Goodwin, Z.A., Postnikov, E.B., Brilliantov, N., Urbakh, M. & Kornyshev, A.A.
Physical Review X, 9(2), 21024.
- Eigen-factors: Plane estimation for multi-frame and time-continuous point cloud alignment
Ferrer,G.
In IEEE International Conference on Intelligent Robots and Systems, 8967573, 1278-1284
- HybridSVD: When collaborative information is not enough
Frolov, E., Oseledets, I.
In 13th ACM Conference on Recommender Systems, RecSys 2019 (pp.331-339).
- Targeted change detection in remote sensing images
Ignatiev, V., Trekin, A., Lobachev, V., Potapov, G., & Burnaev, E.
Proceedings of SPIE – The International Society for Optical Engineering, 11041.
- Anticipative kinodynamic planning: Multi-objective robot navigation in urban and dynamic environments.
Ferrer, G., & Sanfeliu, A.
Autonomous Robots, 43(6), 1473-1488.
- Achievability Bounds for T-Fold Irregular Repetition Slotted ALOHA Scheme in the Gaussian MAC
Glebov, A., Matveev, N., Andreev, K., Frolov, A., Turlikov, A.
In IEEE Wireless Communications and Networking Conference, WCNC
- Large ball probabilities, Gaussian comparison and anti-concentration
Götze, F., Naumov, A., Spokoiny, V., Ulyanov, V.
Bernoulli, 25(4A), 2538-2563.
- Hydrothermal Liquefaction of Arthrospira platensis for Bio-Oil Production and Study of Chemical Composition for Bio-Oil and Its Gasoline Fraction
Grigorenko, A.V., Kostyukevich, Y.I., Chernova, N.I., Kiseleva, S.V., Kiseleva, E.A., Popel, O.S., Vladimirov, G.N., Nikolaev, E.N., Kumar, V., Vlaskin, M.S.
Russian Journal of Applied Chemistry, 92(11), 1480-1486
- Coordinate-based texture inpainting for pose-guided human image generation
Grigorev, A., Sevastopolsky, A., Vakhitov, A., Lempitsky, V.
In 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019; Long Beach; United States.
- Probabilistic Existence Results for Parent-Identifying Schemes
Gu, Y., Cheng, M., Kabatiansky, G., Miao, Y.
In IEEE Transactions on Information Theory, 65(10), 6160-6170.
- Investigation of visual stimulus with various colors and the layout for the oddball paradigm in ERP-based BCI.
Guo, M., Jin, J., Jiao, Y., Wang, X., & Cichocki, A.
Frontiers in Computational Neuroscience, 13, 24.
- Structural basis of ligand selectivity and disease mutations in cysteinyl leukotriene receptors.
Gusach, A., Luginina, A., Marin, E., Popov, P. et al.
Nat Commun 10, 5573
- Automated Multi-Stage Compression of Neural Networks.
Gusak, J., Kholiavchenko, M., Ponomarev, E., Markeeva, L., Blagoveschensky, P., Cichocki, A., & Oseledets, I.
In Proceedings of the IEEE International Conference on Computer Vision Workshops (pp. 0-0).
- Computational characterization of the glutamate receptor antagonist perampanel and its close analogs: density functional exploration of conformational space and molecular docking study
Guseynov, A.-A.D., Pisarev, S.A., Shulga, D.A., Palyulin, V.A., Fedorov, M.V., Karlov, D.S.
Journal of Molecular Modeling, 25,(10).
- Dronepick: Object picking and delivery teleoperation with the drone controlled by a wearable tactile display
Ibrahimov, R., Tsykunov, E., Shirokun, V., Somov, A., & Tsetserukou, D.
In 2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN) (pp. 1-6).
- Targeted change detection in remote sensing images
Ignatiev, V., Trekin, A., Lobachev, V., Potapov, G., Burnaev, E.
In Proceedings of SPIE – The International Society for Optical Engineering, 11041
- Learnable triangulation of human pose.
Iskakov, K., Burkov, E., Lempitsky, V., & Malkov, Y.
In Proceedings of the IEEE International Conference on Computer Vision (pp. 7718-7727).
- Probabilistic model applied to ion abundances in product-ion spectra: quantitative analysis of aspartic acid isomerization in peptides
Ivanov, D.G., Indeykina, M.I., Pekov, S.I., Iusupov, A.E., Bugrova, A.E., Kononikhin, A.S., Nikolaev, E.N., Popov, I.A.
Analytical and Bioanalytical Chemistry, 411(29), 7783-7789.
- Iterative Nonlinear Detection and Decoding in Multi-User Massive MIMO.
Ivanov, A., Savinov, A., & Yarotsky, D.
In 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC) (pp. 573-578). IEEE.
- Sparse Group Representation Model for Motor Imagery EEG Classification
Jiao, Y., Zhang, Y., Chen, X., Yin, E., Jin, J., Wang, X., & Cichocki, A.
IEEE Journal of Biomedical and Health Informatics, 23(2), 631–641.
- The study of generic model set for reducing calibration time in P300-based Brain-Computer Interface
Jin, J., Li, S., Daly, I., Miao, Y., Liu, C., Wang, X., & Cichocki, A.
IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 28, no. 1, pp. 3-12
- Correlation-based channel selection and regularized feature optimization for MI-based BCI
Jin, J., Miao, Y., Daly, I., Zuo, C., Hu, D., & Cichocki, A.
Neural Networks, 118, 262-270.
- On the tracing traitors math: Dedicated to the memory of Bob Blakley – Pioneer of digital fingerprinting and inventor of secret sharing
Kabatiansky, G.
Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 371–380.
- Traceability Codes and Their Generalizations
Kabatiansky, G.A.
Problems of Information Transmission, 55(3),283-294.
- A predictive model for steady-state multiphase pipe flow: Machine learning on lab data
Kanin, E. A., Osiptsov, A. A., Vainshtein, A. L., & Burnaev, E. V.
Journal of Petroleum Science and Engineering, 180, 727–746.
- Short peptide with an inhibitory activity on the NMDA/Gly-induced currents
Karlov, D.S., Barygin, O.I., Dron, M.Y., Palyulin, V.A., Grigoriev, V.V., Fedorov, M.V.
SAR and QSAR in Environmental Research, 30(9), 683-695.
- Message passing neural networks scoring functions for structure-based drug discovery
Karlov, D.S., Popov, P., Sosnin, S., Fedorov, M.V.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 845-847.
- Chemical space exploration guided by deep neural network
Karlov, D. S., Sosnin, S., Tetko, I. V, & Fedorov, M. V.
RSC Advances, 9(9), 5151–5157.
- Black-box learning of multigrid parameters.
Katrutsa, A., Daulbaev, T., & Oseledets, I
Journal of Computational and Applied Mathematics, 112524.
- The molecular mechanisms driving physiological changes after long-duration space flights revealed by quantitative analysis of human blood proteins
Kashirina, D.N., Percy, A.J., Pastushkova, L.K., Borchers, C.H., Kireev, K.S., Ivanisenko, V.A., Kononikhin, A.S., Nikolaev, E.N. and Larina, I.
BMC Medical Genomics, 12(2)
- Esports Athletes and Players: A Comparative Study
Khromov, N., Korotin, A., Lange, A., Stepanov, A., Burnaev, E., Somov, A.
IEEE Pervasive Computing, 18(3), 31-39.
- Generalized tensor models for recurrent neural networks
Khrulkov, V., Hrinchuk, O., Oseledets, I.
In 7th International Conference on Learning Representations, ICLR 2019
- Gaussian process classification for variable fidelity data
Klyuchnikov, N., Burnaev, E.
Neurocomputing
- Data-driven model for the identification of the rock type at a drilling bit
Klyuchnikov, N., Zaytsev, A., Gruzdev, A., Ovchinnikov, G., Antipova, K., Ismailova, L., Muravleva, E., Burnaev, E., Semenikhin, A., Cherepanov, A. and Koryabkin, V.
Journal of Petroleum Science and Engineering, 178, 506–516.
- An Experimental Approach to the Investigation of the Universal Period-Tripling System
Kolombet, V. A., Lesnykh, V. N., Elistratov, A. V, Kolombet, E. V, Fedorov, M. V, & Shnoll, S. E.
Biophysics (Russian Federation), 64(2), 300–308
- Procedural Synthesis of Remote Sensing Images for Robust Change Detection with Neural Networks
Kolos, M., Marin, A., Artemov, A., & Burnaev, E.
Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 371–387.
- Task-free brain print recognition based on low-rank and sparse decomposition model
Kong, W., Kong, X., Fan, Q., Zhao, Q., & Cichocki, A.
International Journal of Data Mining and Bioinformatics, 22(3), 280–300
- Task-Independent EEG Identification via Low-Rank Matrix Decomposition
Kong, X., Kong, W., Fan, Q., Zhao, Q., Cichocki, A.
In Proceedings of IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2018 (pp.412-419).
- Proteome profiling of the exhaled breath condensate after long-term spaceflights
Kononikhin, A.S., Brzhozovskiy, A.G., Ryabokon, A.M., Fedorchenko, K., Zhakharova, N.V., Spasskii, A.I., Popov, I.A., Ilyin, V.K., Solovyova, Z.O., Pastushkova, L.K., Polyakov, A.V., Varfolomeev, S.D., Larina, I.M., Nikolaev, E.N.
International Journal of Molecular Sciences, 20(18)
- Study of the Molecular Composition of Exhaled Breath Condensate by High-Resolution Mass Spectrometry
Kononikhin, A. S., Zakharova, N. V., Yusupov, A. E., Ryabokon, A. M., Fedorchenko, K. Y., Indeykina, M. I., Bugrova, A. E., Spassky, A. I., Popov, I. A., Varfolomeev, S. D., Nikolaev, E.N.
Russian Journal of Physical Chemistry B, 13(6), 951-955.
- Adaptive hedging under delayed feedback
Korotin, A., V’yugin, V., Burnaev, E.
Neurocomputing (in press)
- Integral mixability: a tool for efficient online aggregation of functional and probabilistic forecasts
Korotin, A., V’yugin, V., & Burnaev, E.
arXiv preprint arXiv:1912.07048.
- Towards Understanding of eSports Athletes’ Potentialities: The Sensing System for Data Collection and Analysis.
Korotin, A., Khromov, N., Stepanov, A., Lange, A., Burnaev, E., & Somov, A.
In Proceedings – 2019 IEEE SmartWorld, Ubiquitous Intelligence and Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Internet of People and Smart City Innovation, SmartWorld/UIC/ATC/SCALCOM/IOP/SCI 2019, art. no. 9060085, pp. 1804-1810.
- Investigation of the archeological remains using ultrahigh-resolution mass spectrometry
Kostyukevich, Y., Kitova, A., Zherebker, A., Rukh, S., & Nikolaev, E.
European Journal of Mass Spectrometry, 25(4), 391–396.
- Hydrogen/Deuterium Exchange Aiding Compound Identification for LC-MS and MALDI Imaging Lipidomics
Kostyukevich, Y., Vladimirov, G., Stekolschikova, E., Ivanov, D., Yablokov, A., Zherebker, A., Sosnin, S., Orlov, A., Fedorov, M., Khaitovich, P., Nikolaev, E.
Analytical Chemistry, 91(21), 13465-13474
- High-Resolution Mass Spectrometry Study of the Bio-Oil Samples Produced by Thermal Liquefaction of Microalgae in Different Solvents
Kostyukevich, Y., Vlaskin, M., Zherebker, A., Grigorenko, A., Borisova, L., & Nikolaev, E.
Journal of the American Society for Mass Spectrometry, 30(4), 605–614
- Speciation of structural fragments in crude oil by means of isotope exchange in near-critical water and Fourier transform mass spectrometry
Kostyukevich, Y., Zherebker, A., Vlaskin, M. S., Roznyatovsky, V. A., Grishin, Y. K., & Nikolaev, E.
Analytical and Bioanalytical Chemistry, 411(15), 3331–3339.
- Antiviral activity spectrum of phenoxazine nucleoside derivatives
Kozlovskaya, L.I., Andrei, G., Orlov, A.A., Khvatov, E.V., Koruchekov, A.A., Belyaev, E.S., Nikolaev, E.N., Korshun, V.A., Snoeck, R., Osolodkin, D.I. and Matyugina, E.S.
Antiviral Research, 163, 117–124.
- Energy-efficient random access for the quasi-static fading MAC
Kowshik, S. S., Andreev, K., Frolov, A., & Polyanskiy, Y.
In IEEE International Symposium on Information Theory-Proceedings.
- Short-Packet Low-Power Coded Access for Massive MAC.
Kowshik, S. S., Andreev, K., Frolov, A., & Polyanskiy, Y.
In 2019 53rd Asilomar Conference on Signals, Systems, and Computers (pp. 827-832). IEEE.
- New bounds and generalizations of locally recoverable codes with availability
Kruglik, S., Nazirkhanova, K., & Frolov, A.
IEEE Transactions on Information Theory, 65(7), 4156–4166.
- On the secrecy capacity of distributed storage with locality and availability
Kruglik, S., Rybin, P., Frolov, A.
IEEE Vehicular Technology Conference
- Kernel regression on manifold valued data
Kuleshov, A., Bernstein, A., Burnaev, E.
In Proceedings of IEEE 5th International Conference on Data Science and Advanced Analytics, DSAA 2018 (pp.120-129)
- DoGNet: A deep architecture for synapse detection in multiplexed fluorescence images
Kulikov, V., Guo, S.-M., Stone, M., Goodman, A., Carpenter, A., Bathe, M., & Lempitsky, V.
PLoS Computational Biology, 15(5).
- Tensor train spectral method for learning of hidden Markov models (HMM)
Kuznetsov, M. A., & Oseledets, I. V.
Computational Methods in Applied Mathematics, 19(1), 93-99.
- Bayesian generative models for knowledge transfer in MRI semantic segmentation problems
Kuzina, A., Egorov, E., Burnaev, E.
Frontiers in Neuroscience, 13
- Piloted space flight and post-genomic technologies.
Larina, I. M., Pastushkova, L. Kh., Kononikhin, A. S., Nikolaev, E. N., & Orlov, O. I.
REACH, 16, 100034.
- Publisher Correction: Protein expression changes caused by spaceflight as measured for 18 Russian cosmonauts
Larina, I. M., Percy, A. J., Yang, J., Borchers, C. H., Nosovsky, A. M., Grigoriev, A. I., & Nikolaev, E. N.
Scientific Reports, 9(1).
- High-quality high-order harmonic generation through preplasma truncation
Li, B. Y. , Liu, F., Chen, M., Chen, Z. Y., Yuan, X. H., Weng, S. M., Jin, T., Rykovanov, S. G., Wang, J. W. , Sheng, Z. M. and Zhang, J.
Phys. Rev. E 100, 053207
- Analytical Solution for the Electric Field Inside Dynamically Harmonized FT-ICR Cell
Lioznov, A., Baykut, G., & Nikolaev, E.
Journal of the American Society for Mass Spectrometry, 30(5), 778–786.
- Deep Text Prior: Weakly Supervised Learning for Assertion Classification
Liventsev, V., Fedulova, I., & Dylov, D.
In International Conference on Artificial Neural Networks (pp. 243-257). Springer, Cham.
- Structure-based mechanism of cysteinyl leukotriene receptor inhibition by antiasthmatic drugs
Luginina, A., Gusach, A., Marin, E., Mishin, A., Brouillette, R., Popov, P., Shiriaeva, A., Besserer-Offroy, É., Longpré, J.-M., Lyapina, E., Ishchenko, A., Patel, N., Polovinkin, V., Safronova, N., Bogorodskiy, A., Edelweiss, E., Hu, H., Weierstall, U., Liu, W., Batyuk, A., Gordeliy, V., Han, G.W., Sarret, P., Katritch, V., Borshchevskiy, V., Cherezov, V.
Science Advances, 5(10)
- Gradient boosting to boost the efficiency of hydraulic fracturing
Makhotin, I., Koroteev, D., & Burnaev, E
Journal of Petroleum Exploration and Production Technology,1-7.
- A polar code based unsourced random access for the gaussian MAC
Marshakov, E., Balitskiy, G., Andreev, K., Frolov, A.
In IEEE Vehicular Technology Conference
- The mechanism of the interaction of α-crystallin and UV-damaged β<inf>L</inf>-crystallin
Muranov, K.O., Poliansky, N.B., Chebotareva, N.A., Kleimenov, S.Y., Bugrova, A.E., Indeykina, M.I., Kononikhin, A.S., Nikolaev, E.N., Ostrovsky, M.A.
International Journal of Biological Macromolecules, 140, 736-748.
- Approximate solution of linear systems with Laplace-like operators via cross approximation in the frequency domain
Muravleva, E. A., & Oseledets, I. V.
Computational Methods in Applied Mathematics, 19(1), 137-145.
- Morphing wing with compliant aileron and slat for unmanned aerial vehicles
Menshchikov, A., & Somov, A.
Physics of Fluids, 31(3).
- Data-Driven Body-Machine Interface for Drone Intuitive Control through Voice and Gestures
Menshchikov, A., Ermilov, D., Dranitsky, I., Kupchenko, L., Panov, M., Fedorov, M., & Somov, A.
In IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society (Vol. 1, pp. 5602-5609). IEEE.
- Bootstrap confidence sets for spectral projectors of sample covariance
Naumov, A., Spokoiny, V., & Ulyanov, V.
Probability Theory and Related Fields, 174(3–4), 1091–1132.
- Exponential machines
Novikov, A., Trofimov, M., Oseledets, I.
Workshop Track Proceedings of 5th International Conference on Learning Representations, ICLR 2017
- Fundamentals and simulations in FT-ICR-MS.
Nikolaev, E.N., Kostyukevich, Y.I., Vladimirov, G.
Fundamentals and Applications of Fourier Transform Mass Spectomentry, 89-111.
- Bayesian optimization for seed germination
Nikitin, A., Fastovets, I., Shadrin, D., Pukalchik, M., Oseledets, I.
Plant Methods, 15
- Examination of molecular space and feasible structures of bioactive components of humic substances by FTICR MS data mining in ChEMBL database.
Orlov, A. A., Zherebker, A., Eletskaya, A. A., Chernikov, V. S., Kozlovskaya, L. I., Zhernov, Y. V., Kostyukevich, Y. … & Perminova, I. V.
Scientific reports, 9(1), 1-12.
- Robust regularization of topology optimization problems with a posteriori error estimators
Ovchinnikov, G. V, Zorin, D., & Oseledets, I. V.
Russian Journal of Numerical Analysis and Mathematical Modelling, 34(1), 57–69.
- First-passage and first-hitting of Levy flights and Levy walks
Palyulin V.V., Blackburn G., Lomholt M.A., Watkins N.W., Metzler R., Klages R., Chechkin A.V.
New J. Phys., 21, 103028.
- Constructing graph node embeddings via discrimination of similarity distributions
Panov, M., & Tsepa, S.
Paper presented at the IEEE International Conference on Data Mining Workshops, ICDMW, 1050-1053
- Evaluation of cardiovascular system state by urine proteome after manned space flight
Pastushkova, L.K., Kashirina, D.N., Brzhozovskiy, A.G., Kononikhin, A.S., Tiys, E.S., Ivanisenko, V.A., Koloteva, M.I., Nikolaev, E.N.and Larina, I.M.
Acta Astronautica, 160, 594–600.
- Urine proteome changes associated with autonomic regulation of heart rate in cosmonauts 06 Biological Sciences 0601 Biochemistry and Cell Biology
Pastushkova, L.H., Rusanov, V.B., Goncharova, A.G., Brzhozovskiy, A.G., Kononikhin, A.S., Chernikova, A.G., Kashirina, D.N., Nosovsky, A.M., Baevsky, R.M., Nikolaev, E.N. and Larina, I.M.
BMC Systems Biology, 13(1), 17.
- Weakly supervised fine tuning approach for brain tumor segmentation problem.
Pavlov, S., Artemov, A., Sharaev, M., Bernstein, A., Burnaev, E.
In Proceedings of IEEE International Conference on Machine Learning and Applications, ICMLA, 8999129, 1600-1605.
- IceVisionSet: Lossless video dataset collected on Russian winter roads with traffic sign annotations
Pavlov, A.L., Karpyshev, P.A., Ovchinnikov, G.V., Oseledets, I.V., Tsetserukou, D.
In Proceedings of IEEE International Conference on Robotics and Automation, 2019 (pp. 9597-9602).
- Role of Graphene Edges in the Electron Transfer Kinetics: Insight from Theory and Molecular Modeling
Pavlov, S. V, Nazmutdinov, R. R., Fedorov, M. V, & Kislenko, S. A.
Journal of Physical Chemistry C, 123(11), 6627–6634.
- Inline cartridge extraction for rapid brain tumor tissue identification by molecular profiling
Pekov, S.I., Eliferov, V.A., Sorokin, A.A., Shurkhay, V.A., Zhvansky, E.S., Vorobyev, A.S., Potapov, A.A., Nikolaev, E.N., Popov, I.A.
Scientific Reports, 9(1)
- Evaluation of MALDI-TOF/TOF Mass Spectrometry Approach for Quantitative Determination of Aspartate Residue Isomerization in the Amyloid-β Peptide
Pekov, S. I., Ivanov, D. G., Bugrova, A. E., Indeykina, M. I., Zakharova, N. V, Popov, I. A., … Nikolaev, E. N.
Journal of the American Society for Mass Spectrometry, 30(7), 1325–1329.
- Flexible Non-negative Matrix Factorization with Adaptively Learned Graph Regularization
Peng, Y., Long, Y., Qin, F., Kong, W., Nie, F., Cichocki, A.
Proceedings to IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP (pp.3107-3111).
- Joint Structured Graph Learning and Clustering Based on Concept Factorization
Peng, Y., Tang, R., Kong, W., Zhang, J., Nie, F., & Cichocki, A.
Proceedings to ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing , 2019-May, 3162–3166.
- Joint Structured Graph Learning and Unsupervised Feature Selection
Peng, Y., Zhang, L., Kong, W., Nie, F., & Cichocki, A.
ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing – Proceedings, 2019-May, 3572–3576.
- Signatures of Molecular Unification and Progressive Oxidation Unfold in Dissolved Organic Matter of the Ob-Irtysh River System along Its Path to the Arctic Ocean
Perminova, I.V., Shirshin, E.A., Zherebker, A., Pipko, I.I., Pugach, S.P., Dudarev, O.V., Nikolaev, E.N., Grigoryev, A.S., Shakhova, N., Semiletov, I.P.
Scientific Reports, 9(1)
- Tensor networks for latent variable analysis: Algorithms for tensor train decomposition
Phan, A.-H., Cichocki, A., Uschmajew, A., Tichavský, P., Luta, G., Mandic, D.
IEEE Transactions on Neural Network and Learning System, (accepted for publication in Nov. 2019).
- Error preserving correction: A method for CP decomposition at a target error bound
Phan, A. -H., Tichavsky, P., & Cichocki, A.
IEEE Transactions on Signal Processing, 67(5), 1175-1190.
- Quadratic programming over ellipsoids with applications to constrained linear regression and tensor decomposition
Phan, A. -H., Yamagishi, M., Mandic, D., & Cichocki, A.
Neural Computing and Applications.
- Tensor Networks for Latent Variable Analysis: Higher Order Canonical Polyadic Decomposition
Phan A.-H., Cichocki A., Oseledets I., Calvi G., Asl S. A.& Mandic D.
IEEE Transactions on Neural Network and Learning System
- MICROSIZE ENERGY SOURCES FOR IMPLANTABLE AND WEARABLE MEDICAL DEVICES.
Plekhanova, Yu. V., Tarasov, S. E., Somov, A. S., Bol’shin, D. S., Vishnevskaya, M. V., Gotovtsev, P. M., & Reshetilov, A. N.
Nanotechnologies in Russia, 14(11–12), 511–522.
- Voxelwise 3D convolutional and recurrent neural networks for epilepsy and depression diagnostics from structural and functional MRI data
Pominova, M., Artemov, A., Sharaev, M., Kondrateva, E., Bernstein, A., Burnaev, E.
IEEE International Conference on Data Mining Workshops, ICDMW (pp.299-307).
- 3D deformable convolutions for MRI classification.
Pominova, M., Kondrateva, E., Sharaev, M., Bernstein, A., Pavlov, S., Burnaev, E.
In Proceedings of 18thIEEE International Conference on Machine Learning and Applications, ICMLA, 8999148, 1710-1716.
- Ensemble of 3D CNN Regressors with Data Fusion for Fluid Intelligence Prediction
Pominova, M., Kuzina, A., Kondrateva, E., Sushchinskaya, S., Burnaev, E., Yarkin, V., Sharaev, M.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 158-166
- Using Reinforcement Learning in the Algorithmic Trading Problem.
Ponomarev, E. S., Oseledets, I. V., & Cichocki, A. S.
Journal of Communications Technology and Electronics, 64(12), 1450-1457.
-
Prediction of disease-associated mutations in the transmembrane regions of proteins with known 3D structure.
Popov, P., Bizin, I., Gromiha, M., A, K., Frishman, D.
PLOS ONE 14(7): e0219452.
- Controlled-advancement rigid-body optimization of nanosystems
Popov, P., Grudinin, S., Kurdiuk, A., Buslaev, P., & Redon, S..
Journal of Computational Chemistry.
- Computational design for thermostabilization of GPCRs
Popov, P., Kozlovskii, I. and Katritch, V.
Current Opinion in Structural Biology, 55, 25-33.
- Unpaired synthetic image generation in radiology using GANs
Prokopenko, D., Stadelmann, J.V., Schulz, H., Renisch, S., Dylov, D.V.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 94-101
- Usage of Multiple RTL Features for Earthquakes Prediction
Proskura, P., Zaytsev, A., Braslavsky, I., Egorov, E., Burnaev, E.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 556-565
- Developing IoT Devices Empowered by Artificial Intelligence: Experimental Study.
Prutyanov, V., Melentev, N., Lopatkin, D., Menshchikov, A., & Somov, A.
In 2019 Global IoT Summit (GIoTS) (pp. 1-6). IEEE.
- Comparison of Eluate and Direct Soil Bioassay Methods of Soil Assessment in the Case of Contamination with Heavy Metals
Pukalchik, M. A., Terekhova, V.A., Karpukhin, M.M., Vavilova, V.M.
Eurasian Soil Science, 52, 464–470
- Machine learning methods for estimation the indicators of phosphogypsum influence in soil
Pukalchik, M.A., Katrutsa, A.M., Shadrin, D., Terekhova, V.A., Oseledets, I.V.
Journal of Soils and Sediments 19, 2265–2276.
- Outlining the Potential Role of Humic Products in Modifying Biological Properties of the Soil—A Review
Pukalchik, M., Kydralieva, K., Yakimenko, O., Fedoseeva, E., Terekhova, V.
Frontiers in Environmental Science 7, 80.
- Noun compositionality detection using distributional semantics for the Russian language
Puzyrev, D., Shelmanov, A., Panchenko, A., Artemova, E.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp.218-229
- Low-rank Riemannian eigensolver for high-dimensional Hamiltonians
Rakhuba, M., Novikov, A., & Oseledets, I.
Journal of Computational Physics, 396, 718-737.
- On the error exponents of capacity approaching construction of LDPC code
Rybin, P., & Frolov, A.
In 10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), 1-5. IEEE.
- On the Decoding Radius Realized by Low-Complexity Decoded Non-Binary Irregular LDPC Codes
Rybin, P., Frolov, A.
In Proceedings of 2018 International Symposium on Information Theory and Its Applications, ISITA 2018 (pp.384-388)
- Demand Forecasting Techniques for Build-to-Order Lean Manufacturing Supply Chains
Rivera-Castro, R., Nazarov, I., Xiang, Y., Pletneev, A., Maksimov, I., & Burnaev, E.
Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 213–222.
- An industry case of large-scale demand forecasting of hierarchical components.
Rivera-Castro, R., Nazarov, I., Xiang, Y., Maksimov, I., Pletnev, A., Burnaev, E.
In Proceedings of 18thIEEE International Conference on Machine Learning and Applications, ICMLA, 8999262, 134-139.
- Topological Data Analysis for Portfolio Management of Cryptocurrencies
Rivera-Castro, R., Pilyugina, P., & Burnaev, E.
In 2019 International Conference on Data Mining Workshops (ICDMW) (pp. 238-243).
- Topology-Based Clusterwise Regression for User Segmentation and Demand Forecasting
Rivera-Castro, R., Pletnev, A., Pilyugina, P., Diaz, G., Nazarov, I., Zhu, W., Burnaev, E.
IEEE International Conference on Data Science and Advanced Analytics (DSAA), Washington, DC, USA, pp. 326-336.
- Critical Conditions of Adhesion and Separation of Functionalized Nanoparticles on Polymer Grafted Substrates
Santo, K. P., Vishnyakov, A., Brun, Y., & Neimark, A. V.
Journal of Physical Chemistry C.
- Optimizing Laser Pulses for Narrow-Band Inverse Compton Sources in the High-Intensity Regime
Seipt, D., Kharin, V. Y., & Rykovanov, S. G.
Physical Review Letters, 122(20).
- System Identification-Soilless Growth of Tomatoes.
Shadrin, D., Chashchin, A., Ovchinnikov, G., & Somov, A.
In 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) (pp. 1-6). IEEE.
- Instance segmentation for assessment of plant growth dynamics in artificial soilless conditions
Shadrin, D., Kulikov, V., Fedorov, M.
British Machine Vision Conference 2018, BMVC 2018
- Designing Future Precision Agriculture: Detection of Seeds Germination Using Artificial Intelligence on a Low-Power Embedded System
Shadrin, D., Menshchikov, A., Ermilov, D., Somov, A.
IEEE Sensors Journal, 19(23), 11573-11582.
- Learning connectivity patterns via graph Kernels for fMRI-based depression diagnostics
Sharaev, M., Artemov, A., Kondrateva, E., Ivanov, S., Sushchinskaya, S., Bernstein, A., Cichocki, A., Burnaev, E.
IEEE International Conference on Data Mining Workshops, ICDMW (pp.308-314).
- MRI-Based diagnostics of depression concomitant with epilepsy: In search of the potential biomarkers
Sharaev, M., Artemov, A., Kondrateva, E., Sushchinskaya, S., Burnaev, E., Bernstein, A., Akzhigitov, R., Andreev, A.
In Proceedings of IEEE 5th International Conference on Data Science and Advanced Analytics, DSAA 2018 (pp.555-564).
- Functional brain areas mapping in patients with glioma based on resting-state fMRI data decomposition
Sharaev, M., Smirnov, A., Melnikova-Pitskhelauri, T., Orlov, V., Burnaev, E., Pronin, I., Pitskhelauri, D., Bernstein, A.
In IEEE International Conference on Data Mining Workshops, ICDMW (pp.292-298).
- Block Hankel Tensor ARIMA for Multiple Short Time Series Forecasting
Shi, O., Yin, J., Cai, J., Cichocki, A., Yokota, T., Chen, L., Yuan, M. and Zeng, J.
Accepted for presentation in the AAAI- 20 conference on AI in New York, February 2020
- Active Learning with Deep Pre-trained Models for Sequence Tagging of Clinical and Biomedical Texts.
Shelmanov, A., Liventsev, V., Kireev, D., Khromov, N., Panchenko, A., Fedulova, I., & Dylov, D. V.
2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 482–489.
- Textured neural avatars
Shysheya, A., Zakharov, E., Aliev, K.-A., Bashirov, R., Burkov, E., Iskakov, K., Ivakhnenko, A., Malkov, Y., Pasechnik, I., Ulyanov, D., Vakhitov, A., Lempitsky, V.
In 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019; Long Beach; United States
- Overlapping community detection in weighted graphs: Matrix factorization approach
Slavnov, K., Panov, M.
Communications in Computer and Information Science, 794 CCIS, 3-14.
- Understanding cyber athletes behaviour through a smart chair: CS: GO and monolith team scenario.
Smerdov, A., Kiskun, A., Shaniiazov, R., Somov, A., & Burnaev, E.
In 2019 IEEE 5th World Forum on Internet of Things (WF-IoT) (pp. 973-978). IEEE.
- eSports Pro-Players Behavior During the Game Events: Statistical Analysis of Data Obtained Using the Smart Chair.
Smerdov, A., Burnaev, E., & Somov, A.
In Proceedings – 2019 IEEE SmartWorld, Ubiquitous Intelligence and Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Internet of People and Smart City Innovation, SmartWorld/UIC/ATC/SCALCOM/IOP/SCI 2019, art. no. 9060167, pp. 1768-1775.
- Photoluminescence and nonlinear transmission of Cu-doped CdSe quantum dots
Smirnov, A. M., Golinskaya, A. D., Kotin, P. A., Dorofeev, S. G., Palyulin, V. V., Mantsevich, V. N., & Dneprovskii, V. S.
Journal of Luminescence, 213, 29–35.
- Damping of Cu-Associated Photoluminescence and Formation of Induced Absorption in Heavily Cu-Doped CdSe Quantum Dots
Smirnov, A.M., Golinskaya, A.D., Kotin, P.A., Dorofeev, S.G., Zharkova, E.V., Palyulin, V.V. , Mantsevich, V.N., Dneprovskii, V.S.
J. Phys. Chem. C, 123 (45).
- Meta-learning for resampling recommendation systems
Smolyakov, D., Korotin, A., Erofeev, P., Papanov, A., & Burnaev, E.
Proceedings of SPIE – The International Society for Optical Engineering, 11041.
- Learning Ensembles of Anomaly Detectors on Synthetic Data
Smolyakov, D., Sviridenko, N., Ishimtsev, V., Burikov, E., & Burnaev, E.
Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 292–306.
- Untangling the Metabolic Reprogramming in Brain Cancer: Discovering Key Molecular Players Using Mass Spectrometry
Sorokin, A., Shurkhay, V., Pekov, S., Zhvansky, E., Ivanov, D., Kulikov, E.E., Popov, I., Potapov, A., Nikolaev, E.
Current topics in medicinal chemistry, 19(17), 1521-1534
- Neural networks for topology optimization
Sosnovik, I., Oseledets, I.
Russian Journal of Numerical Analysis and Mathematical Modelling, 34(4), 215-223.
- Comparative Study of Multitask Toxicity Modeling on a Broad Chemical Space
Sosnin, S., Karlov, D., Tetko, I. V, & Fedorov, M. V..
Journal of Chemical Information and Modeling, 59(3), 1062–1072.
- A Survey of Multi-task Learning Methods in Chemoinformatics
Sosnin, S., Vashurina, M., Withnall, M., Karpov, P., Fedorov, M., & Tetko, I. V.
Molecular Informatics, 38(4).
- Bootstrap tuning in Gaussian ordered model selection 1
Spokoiny, V., & Willrich, N.
Annals of Statistics, 47(3), 1351–1380.
- Label-free cervicovaginal fluid proteome profiling reflects the cervix neoplastic transformation
Starodubtseva, N.L., Brzhozovskiy, A.G., Bugrova, A.E., Kononikhin, A.S., Indeykina, M.I., Gusakov, K.I., Chagovets, V.V., Nazarova, N.M., Frankevich, V.E., Sukhikh, G.T., Nikolaev, E.N.
Journal of Mass Spectrometry, 54(8), 693-703
- Sensors and Game Synchronization for Data Analysis in eSports
Stepanov, A., Lange, A., Khromov, N., Korotin, A., Burnaev, E. & Somov, A.
IEEE 17th International Conference on Industrial Informatics (INDIN), Helsinki, Finland, 2019, pp. 933-938.
- Driving digital rock towards machine learning: Predicting permeability with gradient boosting and deep neural networks
Sudakov, O., Burnaev, E., & Koroteev, D.
Computers and Geosciences, 127, 91–98.
- Learning to approximate directional fields defined over 2D planes
Taktasheva, M., Matveev, A., Artemov, A., Burnaev, E.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11832 LNCS, 367-374.
- Deep neural networks predicting oil movement in a development unit
Temirchev, P., Simonov, M., Kostoev, R., Burnaev, E., Oseledets, I., Akhmetov, A., … & Koroteev, D.
Journal of Petroleum Science and Engineering, 184, 106513.
- Sensitivity in Tensor Decomposition
Tichavský, P., Phan, A.-H., Cichocki, A.
IEEE Signal Processing Letters, 26(11), 1653-1657.
- Newton method for stationary and quasi-stationary problems for Smoluchowski-type equations
Timokhin, I. V, Matveev, S. A., Siddharth, N., Tyrtyshnikov, E. E., Smirnov, A. P., & Brilliantov, N. V.
Journal of Computational Physics, 382, 124–137.
- Feature selection for OPLS discriminant analysis of cancer tissue lipidomics data
Tokareva, A.O., Chagovets, V.V., Starodubtseva, N.L., Nazarova, N.M., Nekrasova, M.E., Kononikhin, A.S., Frankevich, V.E., Nikolaev, E.N., Sukhikh, G.T.
Journal of Mass Spectrometry (in press)
- Deeper connections between neural networks and Gaussian processes speed-up active learning
Tsymbalov, E., Makarychev, S., Shapeev, A., Panov, M.
IJCAI International Joint Conference on Artificial Intelligence, 3599-3605.
- Driving digital rock towards machine learning: Predicting permeability with gradient boosting and deep neural networks
Sudakov, O., Burnaev, E., & Koroteev, D.
Computers and Geosciences, 127, 91-98.
- Artificial Neural Network Surrogate Modeling of Oil Reservoir: A Case Study
Sudakov, O., Koroteev, D., Belozerov, B., & Burnaev, E.
Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 232–241.
- Watset: Local-Global Graph Clustering with Applications in Sense and Frame Induction
Ustalov, D., Panchenko, A., Biemann., C., Ponzetto. S.
Computational Linguistics, 1-58.MIT Press.
- Efficient concatenated same codebook construction for the random access gaussian MAC
Ustinova, D., Glebov, A., Rybin, P., Frolov, A.
IEEE Vehicular Technology Conference
- On the Analysis of T-Fold Coded Slotted ALOHA for a Fixed Error Probability
Ustinova, D., Rybin, P. & Frolov, A.
11th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Dublin, Ireland, 2019, pp. 1-5.
- Learnable line segment descriptor for visual SLAM
Vakhitov, A., & Lempitsky, V.
IEEE Access, 7, 39923-39934
- Peroxide-Induced Oxidative Modification of Hemoglobin
Vasilyeva, A.D., Yurina, L.V., Bugrova, A.E., Indeykina, M.I., Azarova, D.Y., Bychkova, A.V., Akzhigitova, K.I., Kononikhin, A.S., Nikolaev, E.N., Rosenfeld, M.A.
Doklady Biochemistry and Biophysics, 486(1), 197-200.
- Hypochlorite-Induced Damage of Plasminogen Molecules: Structural-Functional Disturbance
Vasilyeva, A.D., Yurina, L.V., Shchegolikhin, A.N., Bugrova, A.E., Konstantinova, T.S., Indeykina, M.I., Kononikhin, A.S., Nikolaev, E.N., Rosenfeld, M.A.
Doklady Biochemistry and Biophysics, 488(1), 332-337
- Visual Fixations Duration as an Indicator of Skill Level in eSports
Velichkovsky, B.B., Khromov, N., Korotin, A., Burnaev, E., Somov, A.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11746 LNCS, 397-405
- Low-temperature gradient thermoelectric generator: Modelling and experimental verification.
Vostrikov, S., Somov, A., & Gotovtsev, P.
Applied Energy, 255, 113786.
- Intense attosecond pulses carrying orbital angular momentum using laser-plasma interactions
Wang, J.W., Zepf, M. & Rykovanov, S.G.
Nature Communications, 10, 5554
- Comparison of Two Integrated Biotic Indices in Assessing the Effects of Humic Products in a Model Experiment.
Yakimenko, O. S., Terekhova, V. A., Pukalchik, M. A., Gorlenko, M. V., & Popov, A. I.
Eurasian Soil Science, 52(7), 736-746.
- The phase diagram of approximation rates for deep neural networks.
Yarotsky, D., & Zhevnerchuk, A.
arXiv preprint arXiv:1906.09477.
- Hypochlorite-Induced Oxidative Modification of Fibrinogen
Yurina, L. V, Vasilyeva, A. D., Bugrova, A. E., Indeykina, M. I., Kononikhin, A. S., Nikolaev, E. N., & Rosenfeld, M. A.
Doklady Biochemistry and Biophysics, 484(1), 37–41.
- Characterizing thermodynamic properties of pure components and binary mixtures at rocket conditions using molecular dynamics.
Weathers, T., Vishnyakov, A., Chiew, Y., & Hosangadi, A.
In AIAA Scitech 2019 Forum (p. 1284).
- Regularized Group Sparse Discriminant Analysis for P300-Based Brain-Computer
Wu, Q., Zhang, Y., Liu, J., Sun, J., Cichocki, A., & Gao, F.
International Journal of Neural Systems, 1950002-1950002.
- Nybomycin-producing Streptomyces isolated from carpenter ant Camponotus vagus
Zakalyukina, Y.V., Birykov, M.V., Lukianov, D.A., Shiriaev, D.I., Komarova, E.S., Skvortsov, D.A., Kostyukevich, Y., Tashlitsky, V.N., Polshakov, V.I., Nikolaev, E.& Sergiev, P.V.
Biochimie, 160, 93–99.
- “Zhores” – Petaflops supercomputer for data-driven modeling, machine learning and artificial intelligence installed in Skolkovo Institute of Science and Technology
Zacharov, I., Arslanov, R., Gunin, M., Stefonishin, D., Bykov, A., Pavlov, S., Panarin, O., Maliutin, A., Rykovanov, S., Fedorov, M.
Open Engineering,9(1), 512-520.
- Few-shot adversarial learning of realistic neural talking head models.
Zakharov, E., Shysheya, A., Burkov, E., & Lempitsky, V.
In Proceedings of the IEEE International Conference on Computer Vision (pp. 9459-9468).
- A Novel Deep Learning Approach With Data Augmentation to Classify Motor Imagery Signals
Zhang, Z., Duan, F., Sole-Casals, J., Dinares-Ferran, J., Cichocki, A., Yang, Z., & Sun, Z.
IEEE Access, 7, 15945–15954.
- Temporally Constrained Sparse Group Spatial Patterns for Motor Imagery BCI
Zhang, Y., Nam, C. S., Zhou, G., Jin, J., Wang, X., & Cichocki, A.
IEEE Transactions on Cybernetics, 49(9), 3322–3332.
- Learning Efficient Tensor Representations with Ring-structured Networks
Zhao, Q., Sugiyama, M., Yuan, L., & Cichocki, A.
Proceedings to IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019-May, 8608–8612.
- Structural investigation of coal humic substances by selective isotopic exchange and high-resolution mass spectrometry
Zherebker, A., Perminova, I.V., Kostyukevich, Y., Kononikhin, A.S., Kharybin, O., Nikolaev, E.
Faraday Discussions, 218, 172-190.
- The Molecular Composition of Humic Substances Isolated From Yedoma Permafrost and Alas Cores in the Eastern Siberian Arctic as Measured by Ultrahigh Resolution Mass Spectrometry
Zherebker, A., Podgorski, D.C., Kholodov, V.A., Orlov, A.A., Yaroslavtseva, N.V., Kharybin, O., Kholodov, A., Spector, V., Spencer, R.G.M., Nikolaev, E., Perminova, I.V.
Journal of Geophysical Research: Biogeosciences, 124(8), 2432-2445
- EmotionMeter: A Multimodal Framework for Recognizing Human Emotions
Zheng, W.-L., Liu, W., Lu, Y., Lu, B.-L., & Cichocki, A.
IEEE Transactions on Cybernetics, 49(3), 1110–1122.
- Metrics for evaluating the stability and reproducibility of mass spectra
Zhvansky, E.S., Pekov, S.I., Sorokin, A.A., Shurkhay, V.A., Eliferov, V.A., Potapov, A.A., Nikolaev, E.N.and Popov, I.A.
Scientific Reports, 9(1).
- Unified representation of high- and low-resolution spectra to facilitate application of mass spectrometric techniques in clinical practice
Zhvansky, E.S., Sorokin, A.A., Pekov, S.I., Indeykina, M.I., Ivanov, D.G., Shurkhay, V.A., Eliferov, V.A., Zavorotnyuk, D.S., Levin, N.G., Bocharov, K.V. and Tkachenko, S.I., Belenikin, M.S., Potapov, A.A., Nikolaev, E.N., Popov, I.A.
Clinical Mass Spectrometry, 12, 37–46.
- A hybrid system for distinguishing between brain death and coma using diverse EEG features
Zhu, L., Cui, G., Cao, J., Cichocki, A., Zhang, J., & Zhou, C.
Sensors (Switzerland), 19(6).
- Novel hybrid brain-computer interface system based on motor imagery and P300
Zuo, Cili, Jin, J., Yin, E., Saab, R., Miao, Y., Wang, X., Hu, D. and Cichocki, A.
Cognitive Neurodynamics, 1-13.
- Antipova, T. V., Zaitsev, K. V., Zherebker, A. Y., Tafeenko, V. A., Baskunov, B. P., Zhelifonova, V. P., … Nikolaev, E. N. & Kozlovsky, A. G. (2018). Monasnicotinic acid, a novel pyridine alkaloid of the fungus Aspergillus cavernicola: isolation and structure elucidation. Mendeleev Communications, 28(1), 55-57.
- Appriou, A., Cichocki, A., & Lotte, F. (2018). Towards robust neuroadaptive HCI: Exploring modern machine learning methods to estimate mental workload from EEG signals.Conference on Human Factors in Computing Systems – Proceedings, 2018-April.
- Asante-Mensah, M. G., & Cichocki, A. (2018, November). Medical Image De-noising Using Deep Networks. In 2018 IEEE International Conference on Data Mining Workshops (ICDMW) (pp. 315-319). IEEE.
- Baez, J., & Biamonte, J. D. (2018). Quantum techniques in stochastic mechanics. In Quantum Techniques In Stochastic Mechanics.
- Batselier, K., Ko, C.-Y., Phan, A.-H., Cichocki, A.,& Wong, N. (2018). Multilinear state-space system identification with matrix product operators.IFAC-PapersOnLine, 51(15), 640–645.
- Bernstein, A. V, &Burnaev, E. V. (2018). Reinforcement learning in computer vision. Proceedings of SPIE – The International Society for Optical Engineering, 10696.
- Bernstein, A. V, Burnaev, E. V, & Kachan, O. N. (2018). Reinforcement learning for computer vision and robot navigation.Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 258–272.
- Bernstein, A., Renat, A., Kondrateva, E., Sushchinskaya, S., Samotaeva, I., & Gaskin, V. (2018). MRI brain imagery processing software in data analysis.Advances in Mass Data Analysis of Images and Signals with Applications in Medicine, r/g/b Biotechnology, Food Industries, Dietetics, Biometry and Security, Agriculture, Drug Discovery, and System Biology – 13th International Conference, MDA 2018, Proceeding, 60–74.
- Brilliantov, N. V, Otieno, W., Matveev, S. A., Smirnov, A. P., Tyrtyshnikov, E. E., & Krapivsky, P. L. (2018).Steady oscillations in aggregation-fragmentation processes. Physical Review E, 98(1).
- Burgess, S., Vishnyakov, A., Tsovko, C., & Neimark, A. V. (2018).Nanoparticle-Engendered Rupture of Lipid Membranes. Journal of Physical Chemistry Letters, 9(17), 4872–4877.
- Burkov, A., Frolov, A., & Turlikov, A. (2018, November). Contention-Based Protocol with Time Division Collision Resolution. In 2018 10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT) (pp. 1-4). IEEE.
- Burkov, E., & Lempitsky, V. (2018). Deep neural networks with box convolutions. Advances in Neural Information Processing Systems, 2018-Decem, 6211–6221.
- Cao, W., Wang, K., Han, G., Yao, J., & Cichocki, A. (2018). A robust PCA approach with noise structure learning and spatial-spectral low-rank modeling for hyperspectral image restoration. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(10), 3863–3879.
- Cichocki, A. (2018). Tensor networks for dimensionality reduction, big data and deep learning.Studies in Computational Intelligence, Vol. 738, pp. 3–49.
- Cichocki, A., Poggio, T., Osowski, S., & Lempitsky, V. (2018). Deep learning: Theory and practice. Bulletin of the Polish Academy of Sciences: Technical Sciences, 757–759.
- Coles, S. W., Smith, A. M., Fedorov, M. V, Hausen, F., & Perkin, S. (2018). Interfacial structure and structural forces in mixtures of ionic liquid with a polar solvent. Faraday Discussions, 206, 427–442.
- Egorova, E., Fernandez, M., Kabatiansky, G., & Lee, M. H. (2018). Signature codes for weighted noisy adder channel, multimedia fingerprinting and compressed sensing. Designs, Codes, and Cryptography.
- Elgendi, M., Kumar, P., Barbic, S., Howard, N., Abbott, D., & Cichocki, A. (2018). Subliminal priming—state of the art and future perspectives. Behavioral Sciences, 8(6).
- Ermilov, D., Panov, M.,& Yanovich, Y. (2018). Automatic bitcoin address clustering. Proceedings – 16th IEEE International Conference on Machine Learning and Applications, ICMLA 2017, 2018-Janua, 461–466.
- Fedoros, E. I., Orlov, A. A., Zherebker, A., Gubareva, E. A., Maydin, M. A., Konstantinov, A. I., Krasnov, K., Karapetian, R., Izotova, E., Pigarev, S., Panchenko, A., Tyndyk, M., Osolodkin, D., Nikolaev, E., Perminova, I, & Anisimov, V. N. (2018). Novel water-soluble lignin derivative BP-Cx-1: Identification of components and screening of potential targets in silico and in vitro. Oncotarget, 9(26), 18578–18593.
- Filimonov, A., & Somov, A. (2018). Wireless power transfer to the sensors integrated in a wall. Proceedings – 2018 IEEE Industrial Cyber-Physical Systems, ICPS 2018, 664–669.
- Fursova, A., Vladimirov, G., & Nikolaev, E. (2018). Shape development and analysis for 3D-printed high-resolution multiple electrodes harmonized Kingdon trap. Proceedings of the International Astronautical Congress, IAC, 2018-October.
- Gridnev, I. D., Zherebker, A., Kostyukevich, Y., & Nikolaev, E. (2018).Methylene Group Transfer in Carbonyl Compounds Discovered in silico and Detected Experimentally. ChemPhysChem.
- Glebov, A., Medova, L., Rybin, P., & Frolov, A. (2018). On LDPC Code Based Massive Random-Access Scheme for the Gaussian Multiple Access Channel. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 162–171.
- Ivanov, A., Kruglik, S., & Lakontsev, D. (2018). Cloud MIMO for smart parking system. IEEE Vehicular Technology Conference, 2018-June, 1–4.
- Ivanov, A., Volokhatyi, A., Lakontsev, D., & Yarotsky, D. (2018). Unused Beam Reservation for PAPR Reduction in Massive MIMO System. IEEE Vehicular Technology Conference, 2018-June, 1–5.
- Ivanov, S., &Burnaev, E. (2018). Anonymous walk embeddings. 35th International Conference on Machine Learning, ICML 2018, 5, 3448–3457.
- Ivanov, S., Durasov, N., & Burnaev, E. (2018, November). Learning node embeddings for influence set completion. In 2018 IEEE International Conference on Data Mining Workshops (ICDMW) (pp. 1034-1037). IEEE.
- Ivanov, A., Yarotsky, D., Stoliarenko, M., & Frolov, A. (2018). Smart Sorting in Massive MIMO Detection. International Conference on Wireless and Mobile Computing, Networking and Communications, 2018-October.
- Jurica, P., Struzik, Z. R., Li, J., Horiuchi, M., Hiroyama, S., Takahara, Y., … Cichocki, A. (2018). Combining behavior and EEG analysis for exploration of dynamic effects of ADHD treatment in animal models. Journal of Neuroscience Methods, 298, 24–32.
- Kabatiansky, G. A., & Lebedev, V. S. (2018). On Metric Dimension of Nonbinary Hamming Spaces.Problems of Information Transmission, 54(1), 48–55.
- Kanin, E., Vainshtein, A., Osiptsov, A., & Burnaev, E. (2018). The method of calculation the pressure gradient in multiphase flow in the pipe segment based on the machine learning algorithms. IOP Conference Series: Earth and Environmental Science, 193(1).
- Kharyuk, P., Nazarenko, D., Oseledets, I., Rodin, I., Shpigun, O., Tsitsilin, A., & Lavrentyev, M. (2018). Employing fingerprinting of medicinal plants by means of LC-MS and machine learning for species identification task. Scientific Reports, 8(1).
- Khrulkov, V., & Oseledets, I. (2018). Desingularization of bounded-rank matrix sets. SIAM Journal on Matrix Analysis and Applications, 39(1), 451–471.
- Khrulkov, V., & Oseledets, I. (2018). Geometry score: A method for comparing generative adversarial networks. 35th International Conference on Machine Learning, ICML 2018, 6, 4114–4122.
- Khrulkov, V., & Oseledets, I. (2018). Art of Singular Vectors and Universal Adversarial Perturbations.Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 8562–8570.
- Kislenko, S. A., Moroz, Y. O., Karu, K., Ivaništšev, V. B., & Fedorov, M. V. (2018). Calculating the Maximum Density of the Surface Packing of Ions in Ionic Liquids. Russian Journal of Physical Chemistry A, 92(5), 999–1005.
- Kolesnikov, D. A., & Oseledets, I. V. (2018). Convergence analysis of projected fixed-point iteration on a low-rank matrix manifold. Numerical Linear Algebra with Applications, 25(5).
- Kong, X., Kong, W., Fan, Q., Zhao, Q., & Cichocki, A. (2018, December). Task-Independent EEG Identification via Low-Rank Matrix Decomposition. In 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (pp. 412-419). IEEE.
- Kononenko, D., Ganin, Y., Sungatullina, D., & Lempitsky, V. (2018). Photorealistic Monocular Gaze Redirection Using Machine Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(11), 2696–2710.
- Kononenko, D., & Lempitsky, V. (2018). Semi-supervised learning for monocular gaze redirection. Proceedings – 13th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2018, 535–539.
- Kononikhin, A. S., Sergeeva, V. A., Bugrova, A. E., Indeykina, M. I., Starodubtseva, N. L., Chagovets, V. V, … Nikolaev, E. N. (2018). Methodology for urine peptidome analysis based on nano-HPLC coupled to Fourier transform ion cyclotron resonance mass spectrometry. Methods in Molecular Biology, Vol. 1719, pp. 311–318.
- Kostyukevich, Y. I., Kononikhin, A. S., Popov, I. A., & Nikolaev, E. N. (2018). Structural Investigation of Biomacromolecules Using Ultrahigh-Resolution Mass Spectrometry and Isotope Exchange. Russian Journal of Physical Chemistry B, 12(4), 599–604.
- Kostyukevich, Y., Acter, T., Zherebker, A., Ahmed, A., Kim, S., & Nikolaev, E. (2018). Hydrogen/deuterium exchange in mass spectrometry. Mass Spectrometry Reviews, 37(6), 811–853.
- Kostyukevich, Y., Bugrova, A., Chagovets, V., Brzhozovskiy, A., Indeykina, M., Vanyushkina, A., … Nikolaev, E. (2018). Proteomic and lipidomic analysis of mammoth bone by high-resolution tandem mass spectrometry coupled with liquid chromatography. European Journal of Mass Spectrometry, 24(6), 411–419.
- Kostyukevich, Y., Kononikhin, A., Popov, I., & Nikolaev, E. (2018). Analytical Description of the H/D Exchange Kinetic of Macromolecule. Analytical Chemistry, 90(8), 5116–5121.
- Kostyukevich, Y., & Nikolaev, E. (2018). Ion Source Multiplexing on a Single Mass Spectrometer. Analytical Chemistry, 90(5), 3576–3583.
- Kostyukevich, Y., Ovchinnikov, G., Kononikhin, A., Popov, I., Oseledets, I., & Nikolaev, E. (2018). Thermal dissociation and H/D exchange of streptavidin tetramers at atmospheric pressure.International Journal of Mass Spectrometry, 427, 100–106.
- Kostyukevich, Y., Zherebker, A., Vlaskin, M. S., Borisova, L., & Nikolaev, E. (2018). Microprobe for the Thermal Analysis of Crude Oil Coupled to Photoionization Fourier Transform Mass Spectrometry. Analytical Chemistry, 90(15), 8756–8763.
- Kostyukevich, Y., Vlaskin, M., Borisova, L., Zherebker, A., Perminova, I., Kononikhin, A., … Nikolaev, E. (2018). Investigation of bio-oil produced by hydrothermal liquefaction of food waste using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry. European Journal of Mass Spectrometry, 24(1), 116–123.
- Kruglik, S. A., Potapova, V. S., & Frolov, A. A. (2018). A Method for Constructing Parity-Check Matrices of Quasi-Cyclic LDPC Codes Over GF(q). Journal of Communications Technology and Electronics, 63(12), 1524–1529.
- Kruglik, S., Dudina, M., Potapova, V., & Frolov, A. (2018). On one generalization of LRC codes with availability.IEEE International Symposium on Information Theory – Proceedings, 2018-Janua, 26–30.
- Kruglik, S., Potapova, V., & Frolov, A. (2018). On performance of multilevel coding schemes based on non-binary LDPC codes. 24th European Wireless 2018 “Wireless Futures in the Era of Network Programmability”, EW 2018, 221–224.
- Kruglik, S., Nazirkhanova, K., &Frolov, A. (2018). On Distance Properties of (r, t,x)-LRC Codes. IEEE International Symposium on Information Theory – Proceedings, 2018-June, 1336–1339.
- Kruglik, S., Nazirkhanova, K., & Frolov, A. (2018, November). On the Maximal Code Length of Optimal Linear LRC Codes with Availability. In 2018 Engineering and Telecommunication (EnT-MIPT) (pp. 54-57). IEEE.
- Kugaevskaya, E. V, Veselovsky, A. V, Indeykina, M. I., Solovyeva, N. I., Zharkova, M. S., Popov, I. A., Nikolaev, E.… Kozin, S. A. (2018). N-domain of angiotensin-converting enzyme hydrolyzes human and rat amyloid-β(1-16) peptides as arginine specific endopeptidase potentially enhancing risk of Alzheimer’s disease. Scientific Reports, 8(1).
- Kuleshov, A., Bernstein, A., & Burnaev, E. (2018). Manifold learning regression with non-stationary kernels. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 152–164.
- Kuleshov, A., Bernstein, A., & Burnaev, E. (2018, October). Kernel Regression on Manifold Valued Data. In 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA) (pp. 120-129). IEEE.
- Kuleshov, A., Bernstein, A., & Yanovich, Y. (2018). Geometrically Motivated Nonstationary Kernel Density Estimation on Manifold. In International Symposium on Artificial Intelligence and Mathematics. ISAIM.
- Kuzmin, A., Vakhitov, A., & Lempitsky, V. (2018). Set2Model Networks: Learning Discriminatively to Learn Generative Models. Proceedings – 2017 IEEE International Conference on Computer Vision Workshops, ICCVW 2017, 2018-Janua, 357–366.
- Lebedev, V., & Lempitsky, V. (2018). Speeding-up convolutional neural networks: A survey. Bulletin of the Polish Academy of Sciences: Technical Sciences, 799–810.
- Lee, N., & Cichocki, A. (2018). Fundamental tensor operations for large-scale data analysis using tensor network formats. Multidimensional Systems and Signal Processing, 29(3), 921–960.
- Lempitsky, V., Vedaldi, A., & Ulyanov, D. (2018). Deep Image Prior. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 9446–9454.
- Lin, J.-W., Chen, W., Shen, C.-P., Chiu, M.-J., Kao, Y.-H., Lai, F., … Cichocki, A. (2018). Visualization and Sonification of Long-Term Epilepsy Electroencephalogram Monitoring. Journal of Medical and Biological Engineering, 38(6), 943–952.
- Li, Y., Wang, F., Chen, Y., Cichocki, A., & Sejnowski, T. (2018).The effects of audiovisual inputs on solving the cocktail party problem in the human brain: An fMRI study. Cerebral Cortex, 28(10), 3623–3637.
- Liotti, E., Arteta, C., Zisserman, A., Lui, A., Lempitsky, V., & Grant, P. S. (2018). Crystal nucleation in metallic alloys using x-ray radiography and machine learning. Science Advances, 4(4).
- Lotte, F., Bougrain, L., Cichocki, A., Clerc, M., Congedo, M., Rakotomamonjy, A., & Yger, F. (2018). A review of classification algorithms for EEG-based brain-computer interfaces: A 10-year update. Journal of Neural Engineering, 15(3).
- Martín-Clemente, R., Olias, J., Thiyam, D. B., Cichocki, A., & Cruces, S. (2018). Information theoretic approaches for motor-imagery BCI systems: Review and experimental comparison. Entropy, 20(1).
- Matveev, S. A., Stadnichuk, V. I., Tyrtyshnikov, E. E., Smirnov, A. P., Ampilogova, N. V, & Brilliantov, N. V. (2018). Anderson acceleration method of finding steady-state particle size distribution for a wide class of aggregation–fragmentation models. Computer Physics Communications, 224, 154–163.
- Mehta, D., Ferrer, G., & Olson, E. (2018). C-MPDM: Continuously-Parameterized Risk-Aware MPDM by Quickly Discovering Contextual Policies. IEEE International Conference on Intelligent Robots and Systems, 7547–7554.
- Mehta, D., Ferrer, G., & Olson, E. (2018). Backprop-MPDM: Faster Risk-Aware Policy Evaluation Through Efficient Gradient Optimization. Proceedings – IEEE International Conference on Robotics and Automation, 1740–1746.
- Menshchikov, A., & Somov, A. (2018). Mixed Reality Glasses: Low-Power IoT System for Digital Augmentation of Video Stream in Visual Recognition Applications. 2018 IEEE 13th International Symposium on Industrial Embedded Systems, SIES 2018 – Proceedings.
- Minin, I. B., Nuzhin, E. E., Boyko, A. I., Litsarev, M. S., & Oseledets, I. V. (2018, November). Evolutionary Structural Optimization Algorithm Based on FFT-JVIE Solver for Inverse Design of Wave Devices. In 2018 Engineering and Telecommunication (EnT-MIPT) (pp. 146-150). IEEE.
- Mikhalev, A., & Oseledets, I. V. (2018). Rectangular maximum-volume submatrices and their applications. Linear Algebra and Its Applications, 538, 187–211.
- Mirvakhabova, L., Pukalchik, M., Matveev, S., Tregubova, P., & Oseledets, I. (2018). Field heterogeneity detection based on the modified FastICA RGB-image processing. Journal of Physics: Conference Series, 1117(1).
- Mokrov, N., Panov, M., Gutman, B. A., Faskowitz, J. I., Jahanshad, N., & Thompson, P. M. (2018). Simultaneous matrix diagonalization for structural brain networks classification.Studies in Computational Intelligence, Vol. 689, pp. 1261–1270.
- Morales, M. E. S., Tlyachev, T., & Biamonte, J. (2018). Variational learning of Grover’s quantum search algorithm. Physical Review A, 98(6).
- Moreira, J., Fernández, M., & Kabatiansky, G. (2018). Constructions of almost secure frameproof codes with applications to fingerprinting schemes. Designs, Codes, and Cryptography, 86(4), 785–802.
- Muminova, K. T., Kononikhin, A. S., Khodzaeva, Z. S., Shmakov, R. G., Sergeeva, V. A., Starodubtseva, N. L., … Nikolaev, E., Sukhikh, G. Т. (2018). Differential diagnosis hypertensive disorders in pregnancy based on urine peptidome profiling. Akusherstvo i Ginekologiya (Russian Federation), (8), 66–75.
- Munkhoeva, M., Kapushev, Y., Burnaev, E., & Oseledets, I. (2018). Quadrature-based features for kernel approximation. Advances in Neural Information Processing Systems, 2018-Decem, 9147–9156.
- Muravleva, E., Oseledets, I., & Koroteev, D. (2018). Application of machine learning to viscoplastic flow modeling. Physics of Fluids, 30(10).
- Naumov, A. A., Spokoiny, V. G., & Ulyanov, V. V. (2018). Confidence Sets for Spectral Projectors of Covariance Matrices. Doklady Mathematics, 98(2), 511–514.
- Nerut, E. R., Karu, K., Voroshylova, I. V, Kirchner, K., Kirchner, T., Fedorov, M. V, & Ivaništšev, V. B. (2018). NaRIBaS-a scripting framework for computational modeling of Nanomaterials and Room Temperature Ionic Liquids in Bulk and Slab.Computation, 6(4).
- Nikitin, P. V, Potapov, A. A., Ryzhova, M. V, Shurkhay, V. A., Kulikov, E. E., Zhvanskiy, E. S., … Nikolaev, E. N. (2018). The role of lipid metabolism disorders, atypical isoforms of protein kinase C, and mutational status of cytosolic and mitochondrial forms of isocitrate dehydrogenase in carcinogenesis of glial tumors. Zhurnal Voprosy Nejrokhirurgii Imeni N.N. Burdenko, 82(3), 112–120.
- Nikolaev, E., Sudakov, M., Vladimirov, G., Velásquez-García, L. F., Borisovets, P., & Fursova, A. (2018). Multi-electrode Harmonized Kingdon Traps. Journal of the American Society for Mass Spectrometry, 29(11), 2173–2181.
- Notchenko, A., Kapushev, Y., & Burnaev, E. (2018). Large-scale shape retrieval with sparse 3D convolutional neural networks. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 245–254.
- Novikov, A., Trofimov, M., & Oseledets, I. (2018). Exponential machines. Bulletin of the Polish Academy of Sciences: Technical Sciences, 789–797.
- Novikov, G., Trekin, A., Potapov, G., Ignatiev, V., & Burnaev, E. (2018). Satellite imagery analysis for operational damage assessment in emergency situations. Lecture Notes in Business Information Processing, Vol. 320, pp. 347–358.
- Oseledets, I. V, Rakhuba, M. V, & Uschmajew, A. (2018). Alternating least squares as moving subspace correction. SIAM Journal on Numerical Analysis, 56(6), 3459–3479.
- Osin, V., Cichocki, A., & Burnaev, E. (2018). Fast multispectral deep fusion networks. Bulletin of the Polish Academy of Sciences: Technical Sciences, 875–889.
- Ostanin, I., Ovchinnikov, G., Tozoni, D. C., & Zorin, D. (2018). A parametric class of composites with a large achievable range of effective elastic properties. Journal of the Mechanics and Physics of Solids, 118, 204–217.
- Panov, M., Slavnov, K., & Ushakov, R. (2018). Consistent estimation of mixed memberships with successive projections. Studies in Computational Intelligence, Vol. 689, pp. 53–64.
- Pavlov, A. L., Ovchinnikov, G. W. V, Derbyshev, D. Y., Tsetserukou, D., & Oseledets, I. V. (2018). AA-ICP: Iterative closest point with Anderson acceleration. Proceedings – IEEE International Conference on Robotics and Automation, 3407–3412.
- Pekov, S., Indeykina, M., Popov, I., Kononikhin, A., Bocharov, K., Kozin, S. A., … Nikolaev, E. (2018). Application of MALDI-TOF/TOF-MS for relative quantitation of α- and β-Asp7 isoforms of amyloid-β peptide. European Journal of Mass Spectrometry, 24(1), 141–144.
- Perminova, I.V, Shirshin, E.A., Konstantinov, A. I., Zherebker, A., Lebedev, V. A., Dubinenkov, I.V, Kulikova, N.A., Nikolaev, E.N., Bulygina, E., Holmes, R. M. (2018). The Structural Arrangement and Relative Abundance of Aliphatic Units May Effect Long-Wave Absorbance of Natural Organic Matter as Revealed by 1 H NMR Spectroscopy. Environmental Science and Technology, 52(21), 12526–12537.
- Pimanov, V., & Oseledets, I. (2018). Robust topology optimization using a posteriori error estimator for the finite element method. Structural and Multidisciplinary Optimization, 58(4), 1619–1632.
- Pominova, M., Artemov, A., Sharaev, M., Kondrateva, E., Bernstein, A., & Burnaev, E. (2018, November). Voxelwise 3d convolutional and recurrent neural networks for epilepsy and depression diagnostics from structural and functional mri data. In 2018 IEEE International Conference on Data Mining Workshops (ICDMW) (pp. 299-307). IEEE.
- Pukalchik, M., Mercl, F., Terekhova, V., & Tlustoš, P. (2018). Biochar, wood ash and humic substances mitigating trace elements stress in contaminated sandy loam soil: Evidence from an integrative approach. Chemosphere, 203, 228–238.
- Qiu, Y., Zhou, G., Zhao, Q., & Cichocki, A. (2018). Comparative Study on the classification methods for breast cancer diagnosis. Bulletin of the Polish Academy of Sciences: Technical Sciences, 841–848.
- Rakhuba, M. V, & Oseledets, I. V. (2018). Jacobi–Davidson method on low-rank matrix manifolds. SIAM Journal on Scientific Computing, 40(2), A1149–A1170.
- Rivera, R., Nazarov, I., & Burnaev, E. (2018). Towards forecast techniques for business analysts of large commercial data sets using matrix factorization methods. Journal of Physics: Conference Series, 1117(1).
- Ruijter, M., Kharin, & Rykovanov, S. G. (2018). Analytical solutions for nonlinear Thomson scattering including radiation reaction. Journal of Physics B: Atomic, Molecular and Optical Physics, 51(22).
- Rybin, P., & Frolov, A. (2018, October). On the Decoding Radius Realized by Low-Complexity Decoded Non-Binary Irregular LDPC Codes. In 2018 International Symposium on Information Theory and Its Applications (ISITA) (pp. 384-388). IEEE.
- Rybin, P., & Frolov, A. (2018, November). On the Error Exponents of Capacity Approaching Construction of LDPC code. In 2018 10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT) (pp. 1-5). IEEE.
- Shadrin, D., Somov, A., Podladchikova, T., & Gerzer, R. (2018). Pervasive agriculture: Measuring and predicting plant growth using statistics and 2D/3D imaging. I2MTC 2018 – 2018 IEEE International Instrumentation and Measurement Technology Conference: Discovering New Horizons in Instrumentation and Measurement, Proceedings, 1–6.
- Sharaev, M., Andreev, A., Artemov, A., Burnaev, E., Kondratyeva, E., Sushchinskaya, S., … Bernstein, A. (2018). Pattern recognition pipeline for neuroimaging data. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 306–319.
- Sharaev, M., Artemov, A., Kondrateva, E., Ivanov, S., Sushchinskaya, S., Bernstein, A., … & Burnaev, E. (2018, November). Learning connectivity patterns via graph kernels for fmri-based depression diagnostics. In 2018 IEEE International Conference on Data Mining Workshops (ICDMW) (pp. 308-314). IEEE.
- Sharaev, M., Artemov, A., Kondrateva, E., Sushchinskaya, S., Burnaev, E., Bernstein, A., … & Andreev, A. (2018, October). Mri-based diagnostics of depression concomitant with epilepsy: in search of the potential biomarkers. In 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA) (pp. 555-564). IEEE.
- Sharaev, M., Smirnov, A., Melnikova-Pitskhelauri, T., Orlov, V., Burnaev, E., Pronin, I., … & Bernstein, A. (2018, November). Functional Brain Areas Mapping in Patients with Glioma Based on Resting-State fMRI Data Decomposition. In 2018 IEEE International Conference on Data Mining Workshops (ICDMW) (pp. 292-298). IEEE.
- Silin, I., & Spokoiny, V. (2018). Bayesian inference for spectral projectors of the covariance matrix. Electronic Journal of Statistics, 12(1), 1948–1987.
- Simonov, M., Akhmetov, A., Temirchev, P., Koroteev, D., Kostoev, R., Burnaev, E., & Oseledets, I. (2018). Application of machine learning technologies for rapid 3D modeling of inflow to the well in the development system. Society of Petroleum Engineers – SPE Russian Petroleum Technology Conference 2018, RPTC 2018.
- Smolyakov, D., Sviridenko, N., Burikov, E., & Burnaev, E. (2018). Anomaly pattern recognition with privileged information for sensor fault detection. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 320–332.
- Solé-Casals, J., Caiafa, C. F., Zhao, Q., & Cichocki, A. (2018). Brain-Computer Interface with Corrupted EEG Data: a Tensor Completion Approach. Cognitive Computation, 10(6), 1062–1074.
- Somov, A., & Baraev, A. (2018). Consist-to-Consist communications in the trains: Is it time to use ultra wide-band?Computers and Electrical Engineering, 72, 965–975.
- Somov, A., Shadrin, D., Fastovets, I., Nikitin, A., Matveev, S., Oseledets, I., & Hrinchuk, O. (2018). Pervasive Agriculture: IoT-Enabled Greenhouse for Plant Growth Control.IEEE Pervasive Computing, 17(4), 65–75.
- Somov, A., Gotovtsev, P., Dyakov, A., Alenicheva, A., Plehanova, Y., Tarasov, S., & Reshetilov, A. (2018). Bacteria to power the smart sensor applications: Biofuel cell for low-power IoT devices.IEEE World Forum on Internet of Things, WF-IoT 2018 – Proceedings, 2018-Janua, 802–806.
- Sosnin, S., Misin, M., Palmer, D. S., & Fedorov, M. V. (2018). 3D matters! 3D-RISM and 3D convolutional neural network for accurate bioaccumulation prediction. Journal of Physics-Condensed Matter, 30(32).
- Sun, Z., Vladimirov, G., Nikolaev, E., & Velasquez-Garcia, L. F. (2018). Exploration of metal 3-D printing technologies for the microfabrication of freeform, finely featured, mesoscaled structures. Journal of Microelectromechanical Systems, 27(6), 1171–1185.
- Sungatullina, D., Zakharov, E., Ulyanov, D., & Lempitsky, V. (2018). Image manipulation with perceptual discriminators. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 587–602.
- Sushnikova, D. A., & Oseledets, I. V. (2018). “Compress and eliminate” solver for symmetric positive definite sparse matrices. SIAM Journal on Scientific Computing, 40(3), A1742–A1762.
- Tichavský, P., Phan, A.-H., & Cichocki, A. (2018). Under-Determined tensor diagonalization for decomposition of difficult tensors. 2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, CAMSAP 2017, 2017-Decem, 1–4.
- Tikhonova, T. N., Rovnyagina, N. R., Zherebker, A. Y., Sluchanko, N. N., Rubekina, A. A., Orekhov, A. S., Nikolaev, E., … Shirshin, E. A. (2018). Dissection of the deep-blue autofluorescence changes accompanying amyloid fibrillation. Archives of Biochemistry and Biophysics, 651, 13–20.
- Tsvetkov, V. B., Zatsepin, T. S., Belyaev, E. S., Kostyukevich, Y. I., Shpakovski, G. V., Podgorsky, V. V., … & Aralov, A. V. (2018). i-Clamp phenoxazine for the fine tuning of DNA i-motif stability. Nucleic acids research, 46(6), 2751-2764.
- Tsymbalov, E., Panov, M., & Shapeev, A. (2018). Dropout-based active learning for regression.Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 247–258.
- Ulyanov, D., Vedaldi, A., & Lempitsky, V. (2018). It takes (only) two: Adversarial generator-encoder networks. 32nd AAAI Conference on Artificial Intelligence, AAAI 2018, 1250–1257.
- Vakhitov, A., Kuzmin, A., & Lempitsky, V. (2018). Set2Model networks: Learning discriminatively to learn generative models. Computer Vision and Image Understanding, 173, 13–23.
- Vakhitov, A., Lempitsky, V., & Zheng, Y. (2018). Stereo relative pose from line and point feature triplets. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 662–677.
- Vasilyeva, A., Yurina, L., Indeykina, M., Bychkova, A., Bugrova, A., Biryukova, M., … Nikolaev, E., Rosenfeld, M. (2018). Oxidation-induced modifications of the catalytic subunits of plasma fibrin-stabilizing factor at the different stages of its activation identified by mass spectrometry. Biochimica et Biophysica Acta – Proteins and Proteomics, 1866(8), 875–884.
- Vlaskin, M. S., Grigorenko, A. V, Kostyukevich, Y. I., Nikolaev, E. N., Vladimirov, G. N., Chernova, N. I., … Zhuk, A. Z. (2018). Influence of solvent on the yield and chemical composition of liquid products of hydrothermal liquefaction of Arthrospira platensis as revealed by Fourier transform ion cyclotron resonance mass spectrometry.European Journal of Mass Spectrometry, 24(5), 363–374.
- Vlaskin, M.S., Kostyukevich, Y.I., Vladimirov, G.N., Chernova, N.I., Kiseleva, S.V, Grigorenko, A.V, Nikolaev, E. N., Popel, O.S., Zhuk, A. Z. (2018). Chemical Composition of Bio-oil Obtained via Hydrothermal Liquefaction of Arthrospira platensis Biomass. High Temperature, 56(6), 915–920.
- Vlaskin, M. S., Kostyukevich, Y. I., Vladimirov, G. N., Gaykovich, M. V, Dudoladov, A. O., Chernova, N. I., … Nikolaev, E. N. (2018). Chemical Composition of Bio-oil Produced by Hydrothermal Liquefaction of Microalgae with Different Lipid Content. IOP Conference Series: Earth and Environmental Science, 159(1).
- Vlaskin, M., Grigorenko, A., Ambaryan, G., Chernova, N., Kiseleva, S., Kostyukevich, Y., … Nikolaev, E. (2018). Chemical and fractional composition of bio-oil obtained from Arthrospira platensis by hydrothermal liquefaction. IOP Conference Series: Earth and Environmental Science, 168(1).
- Wang, X., Marcotte, R., Ferrer, G., & Olson, E. (2018).ApriISAM: Real-time smoothing and mapping. Proceedings – IEEE International Conference on Robotics and Automation, 2486–2493.
- Wang, J., Yu, W., Yu, M. Y., Rykovanov, S., Ju, J., Luan, S., … Sheng, Z.-M. (2018). Very-long distance propagation of high-energy laser pulse in air.Physics of Plasmas, 25(11).
- Xu, X., Wu, Q., Wang, S., Liu, J., Sun, J., & Cichocki, A. (2018). Whole Brain fMRI Pattern Analysis Based on Tensor Neural Network. IEEE Access, 6, 29297–29305.
- Yu, J., Zhou, G., Cichocki, A., Xie, S. (2018). Learning the hierarchical parts of objects by deep non-smooth nonnegative matrix factorization. IEEE Access 6: 58096-58105.
- Zaitsev, K. V, Cherepakhin, V. S., Zherebker, A., Kononikhin, A., Nikolaev, E., & Churakov, A. V. (2018). Aluminum Complexes Based on Tridentate Amidoalkoxide NNO-Ligands: Synthesis, Structure, and Properties. Journal of Organometallic Chemistry, 875, 11–23.
- Zakharova, N. V, Bugrova, A. E., Kononikhin, A. S., Indeykina, M. I., Popov, I. A., & Nikolaev, E. N. (2018). Mass spectrometry analysis of the diversity of Aβ peptides: difficulties and future perspectives for AD biomarker discovery. Expert Review of Proteomics, 15(10), 773–775.
- Zhang, Y., Wang, Y., Zhou, G., Jin, J., Wang, B., Wang, X., & Cichocki, A. (2018). Multi-kernel extreme learning machine for EEG classification in brain-computer interfaces. Expert Systems with Applications, 96, 302–310.
- Zherebker, A., Shirshin, E., Kharybin, O., Kostyukevich, Y., Kononikhin, A., Konstantinov, A. I., … Nikolaev, E. (2018). Separation of Benzoic and Unconjugated Acidic Components of Leonardite Humic Material Using Sequential Solid-Phase Extraction at Different pH Values as Revealed by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and Correlation Nuclear Magneti. Journal of Agricultural and Food Chemistry, 66(46), 12179–12187.
- Zhu, D., Duarte-Rabelo, I., Ayala-Garcia, I. N., & Somov, A. (2018). An electromagnetic in-shoe energy harvester using wave springs. Proceedings – 2018 IEEE Industrial Cyber-Physical Systems, ICPS 2018, 659–663.
- Zhu, L., Lotte, F., Cui, G., Li, J., Zhou, C., & Cichocki, A. (2018). Neural mechanisms of social emotion perception: An EEG hyper-scanning study.Proceedings – 2018 International Conference on Cyberworlds, CW 2018, 199–206.
- Babenko, A., & Lempitsky, V. (2017). Product split trees. Proceedings – 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-Janua, 6316–6324.
- Baranov, A., Burnaev, E., Derkach, D., Filatov, A., Klyuchnikov, N., Lantwin, O., … Zaitsev, A. (2017). Optimising the Active Muon Shield for the SHiP Experiment at CERN. Journal of Physics: Conference Series, 934(1).
- Bernstein, A. (2017). Machine vision and appearance-based learning. Proceedings of SPIE – The International Society for Optical Engineering, 10341.
- Bernstein, A. (2017). Manifold learning in machine vision and robotics. Proceedings of SPIE – The International Society for Optical Engineering, 10253.
- Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., & Lloyd, S. (2017). Quantum machine learning. Nature, 549(7671), 195–202.
- Bikov, E., Boyko, P., Sokolov, E., & Yarotsky, D. (2017, December). Railway Incident Ranking with Machine Learning. In 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA) (pp. 601-606). IEEE.
- Boyko, A. I., Oseledets, I. V, & Gippius, N. A. (2017). Towards solving Lippmann-Schwinger integral equation in 2D with polylogarithmic complexity with quantized tensor train decomposition.Progress in Electromagnetics Research Symposium, 2329–2333.
- Brzhozovskiy, A., Kononikhin, A., Indeykina, M., Pastushkova, L. K., Popov, I. A., Nikolaev, E., & Larina, I. M. (2017). Label-free study of cosmonaut’s urinary proteome changes after long-duration spaceflights. European Journal of Mass Spectrometry, 23(4), 225–229.
- Burnaev, E. V, & Golubev, G. K. (2017). On One Problem in Multichannel Signal Detection.Problems of Information Transmission, 53(4), 368–380.
- Burnaev, E., Koptelov, I., Novikov, G., & Khanipov, T. (2017). Automatic construction of a recurrent neural network-based classifier for vehicle passage detection.Proceedings of SPIE – The International Society for Optical Engineering, 10341.
- Burnaev, E., & Nazarov, I. (2017). Conformalized Kernel ridge regression. Proceedings – 2016 15th IEEE International Conference on Machine Learning and Applications, ICMLA 2016, 45–52.
- Burnaev, E., Panin, I., & Sudret, B. (2017). Efficient design of experiments for sensitivity analysis based on polynomial chaos expansions.Annals of Mathematics and Artificial Intelligence, 81(1–2), 187–207.
- Bychkova, A. V, Vasilyeva, A. D., Bugrova, A. E., Indeykina, M. I., Kononikhin, A. S., Nikolaev, E. N., … Rosenfeld, M. A. (2017). Oxidation-induced modification of the fibrinogen polypeptide chains.Doklady Biochemistry and Biophysics, 474(1), 173–177.
- Che, M., Cichocki, A., & Wei, Y. (2017). Neural networks for computing best rank-one approximations of tensors and its applications. Neurocomputing, 267, 114–133.
- Cichocki, A., Phan, A.-H., Zhao, Q., Lee, N., Oseledets, I., Sugiyama, M., & Mandic, D. (2017). Tensor networks for dimensionality reduction and large-scale optimizations: Part 2 applications and future perspectives. Foundations and Trends in Machine Learning, 9(6), 431–673.
- Coles, S. W., Mishin, M., Perkin, S., Fedorov, M. V, & Ivaništšev, V. B. (2017). The nanostructure of a lithium glyme solvate ionic liquid at electrified interfaces. Physical Chemistry Chemical Physics, 19(18), 11004–11010.
- Deshpande, G., Rangaprakash, D., Oeding, L., Cichocki, A., & Hu, X. P. (2017). A new generation of brain-computer interfaces driven by discovery of latent EEG-fMRI linkages using tensor decomposition. Frontiers in Neuroscience, 11(JUN).
- Drozdov, G., Ostanin, I., & Oseledets, I. (2017). Time- and memory-efficient representation of complex mesoscale potentials. Journal of Computational Physics, 343, 110–114.
- Egorova, E., Fernandez, M., & Kabatiansky, G. (2017). Multimedia fingerprinting codes resistant against colluders and noise. 8th IEEE International Workshop on Information Forensics and Security, WIFS 2016.
- Egorova, E., & Kabatiansky, G. (. (2017). Analysis of two tracing traitor schemes via coding theory. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 84–92.
- Ermilov, D., Panov, M., & Yanovich, Y. (2017, December). Automatic bitcoin address clustering. In 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA) (pp. 461-466). IEEE.
- Evfratov, S. A., Osterman, I. A., Komarova, E. S., Pogorelskaya, A. M., Rubtsova, M. P., Zatsepin, T. S., Semashko, T. A., Kostryukova, E. S., Mironov, A. A., Burnaev, E., Krymova, E., Gelfand, M. S., Govorun, V. M., Bogdanov, A. A., Sergiev, P. V., Dontsova, O. A. (2017). Application of sorting and next-generation sequencing to study 5’-UTR influence on translation efficiency in Escherichia coli. Nucleic Acids Research, 45(6), 3487–3502.
- Fonarev, A., Hrinchuk, O., Gusev, G., Serdyukov, P., & Oseledets, I. (2017). Riemannian optimization for skip-gram negative sampling. ACL 2017 – 55th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Long Papers), 1, 2028–2036.
- Fonarev, A., Mikhalev, A., Serdyukov, P., Gusev, G., & Oseledets, I. (2017). Efficient rectangular maximal-volume algorithm for rating elicitation in collaborative filtering. Proceedings – IEEE International Conference on Data Mining, ICDM, 141–150.
- Frolov, A., & Zyablov, V. (2017). On the multiple threshold decoding of LDPC codes over GF(q). Advances in Mathematics of Communications, 11(1), 123–137.
- Frolov, E., & Oseledets, I. (2017). Tensor methods and recommender systems. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 7(3).
- Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., … Lempitsky, V. (2017). Domain-adversarial training of neural networks. Advances in Computer Vision and Pattern Recognition, pp. 189–209.
- Gorobets, M. G., Wasserman, L. A., Vasilyeva, A. D., Bychkova, A. V, Pronkin, P. G., Bugrova, A. E., … Nikolaev, E. N., & Rosenfeld, M. A. (2017). Modification of human serum albumin under induced oxidation.Doklady Biochemistry and Biophysics, 474(1), 231–235.
- Ivanov, A., & Lakontsev, D. (2017). Selective tone reservation for PAPR reduction in wireless communication systems.IEEE Workshop on Signal Processing Systems, SiPS: Design and Implementation, 2017-October.
- Ivanov, A., & Lakontsev, D. (2017). Adaptable look-up tables for linearizing high power amplifiers.2017 3rd International Conference on Frontiers of Signal Processing, ICFSP 2017, 96–100.
- Jin, J., Zhang, H., Daly, I., Wang, X., & Cichocki, A. (2017). An improved P300 pattern in BCI to catch user’s attention. Journal of Neural Engineering, 14(3).
- Kazeev, V., Oseledets, I., Rakhuba, M., & Schwab, C. (2017). QTT-finite-element approximation for multiscale problems I: model problems in one dimension. Advances in Computational Mathematics, 43(2), 411–442.
- Khrulkov, V., Rakhuba, M., & Oseledets, I. (2017). Vico-Greengard-Ferrando quadratures in the tensor solver for integral equations. Progress in Electromagnetics Research Symposium, 2334–2339.
- Klokov, R., & Lempitsky, V. (2017). Escape from Cells: Deep Kd-Networks for the Recognition of 3D Point Cloud Models. Proceedings of the IEEE International Conference on Computer Vision, 2017-Octob, 863–872.
- Kononikhin, A. S., Starodubtseva, N. L., Chagovets, V. V, Ryndin, A. Y., Burov, A. A., Popov, I. A., … Nikolaev, E. N., Sukhikh, G. T. (2017). Exhaled breath condensate analysis from intubated newborns by nano-HPLC coupled to high-resolution MS.Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 1047, 97–105.
- Kononikhin, A. S., Starodubtseva, N. L., Pastushkova, L. K., Kashirina, D. N., Fedorchenko, K. Y., Brhozovsky, A. G., … Nikolaev, E. N. (2017). Spaceflight induced changes in the human proteome. Expert Review of Proteomics, 14(1), 15–29.
- Kononikhin, A., Zhvansky, E., Shurkhay, V., Popov, I., Bormotov, D., Kostyukevich, Y., … Nikolaev, E. (2017). A novel direct spray-from-tissue ionization method for mass spectrometric analysis of human brain tumors. Analytical and Bioanalytical Chemistry, 407(25).
- Kostyukevich, Y. I., Kononikhin, A. S., Bugrova, A. E., Starodubtzeva, N. L., Popov, I., & Nikolaev, E. (2017). Investigation of ion–molecular complexes of beta–cyclodextrin with proteins and metals in gas phase. Macroheterocycles, 10(1), 110–116.
- Kostyukevich, Y. I., Kononikhin, A. S., Indeykina, M. I., Popov, I. A., Bocharov, K. V, Spassky, A. I., … Nikolaev, E. N. (2017). Secondary structure of Aβ(1–16) complexes with zinc: A study in the gas phase using deuterium/hydrogen exchange and ultra-high-resolution mass spectrometry. Molecular Biology, 51(4), 627–632.
- Kostyukevich, Y., Efremov, D., Ionov, V., Kukaev, E., & Nikolaev, E. (2017). Remote detection of explosives using field asymmetric ion mobility spectrometer installed on multicopter. Journal of Mass Spectrometry, 52(11), 777–782.
- Kostyukevich, Y., Kononikhin, A., Popov, I., & Nikolaev, E. (2017). Thermal dissociation of ions limits the degree of the gas-phase H/D exchange at the atmospheric pressure. Journal of Mass Spectrometry, 52(4), 204–209.
- Kostyukevich, Y., Shulga, A. A., Kononikhin, A., Popov, I., Nikolaev, E., & Deyev, S. (2017). CID fragmentation, H/D exchange and supermetallization of Barnase-Barstar complex. Scientific Reports, 7(1).
- Kostyukevich, Y., Stavitskaya, A., Zherebker, A., Konstantinova, M., Vlaskin, M., Borisova, L., … Nikolaev, E. (2017). Investigation of the ozonation products of natural complex mixtures using Fourier transform ion cyclotron resonance mass spectrometry. European Journal of Mass Spectrometry, 23(4), 152–155.
- Kostyukevich, Y., Vlaskin, M., Vladimirov, G., Zherebker, A., Kononikhin, A., Popov, I., & Nikolaev, E. (2017). The investigation of the bio-oil produced by hydrothermal liquefaction of Spirulina platensis using ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry. European Journal of Mass Spectrometry, 23(2), 83–88.
- Kruglik, S., & Frolov, A. (2017). Bounds and constructions of codes with all-symbol locality and availability. IEEE International Symposium on Information Theory – Proceedings, 1023–1027.
- Kuleshov, A., & Bernstein, A. (2017). Nonlinear multi-output regression on unknown input manifold. Annals of Mathematics and Artificial Intelligence, 81(1–2), 209–240.
- Kuleshov, A., Bernstein, A., & Burnaev, E. (2017). Mobile robot localization via machine learning. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 276–290.
- Kuleshov, A., Bernstein, A., Burnaev, E., & Yanovich, Y. (2017, December). Machine learning in appearance-based robot self-localization. In 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA) (pp. 106-112). IEEE.
- Kuleshov, A., Bernstein, A., & Yanovich, Y. (2017).High-Dimensional Density Estimation for Data Mining Tasks. IEEE International Conference on Data Mining Workshops, ICDMW, 2017-Novem, 523–530.
- Kuzmin, A., Mikushin, D., & Lempitsky, V. (2017). End-to-End learning of cost-volume aggregation for real-time dense stereo. IEEE International Workshop on Machine Learning for Signal Processing, MLSP, 2017-Septe, 1–6.
- Larina, I. M., Percy, A. J., Yang, J., Borchers, C. H., Nosovsky, A. M., Grigoriev, A. I., & Nikolaev, E. N. (2017). Protein expression changes caused by spaceflight as measured for 18 Russian cosmonauts. Scientific Reports, 7(1).
- Li, J., Li, C., & Cichocki, A. (2017). Canonical Polyadic Decomposition with Auxiliary Information for Brain-Computer Interface. IEEE Journal of Biomedical and Health Informatics, 21(1), 263–271.
- Li, Y., Wang, F., Chen, Y., Cichocki, A., & Sejnowski, T. (2017). The effects of audiovisual inputs on solving the cocktail party problem in the human brain: An fMRI study. Cerebral Cortex, 28(10), 3623-3637.
- Matveev, S. A., Krapivsky, P. L., Smirnov, A. P., Tyrtyshnikov, E. E., & Brilliantov, N. V. (2017). Oscillations in Aggregation-Shattering Processes. Physical Review Letters, 119(26).
- Oseledets, I. V, Ovchinnikov, G. V, & Katrutsa, A. M. (2017). Fast, memory-efficient low-rank approximation of SimRank. Journal of Complex Networks, 5(1), 111–126.
- Ostanin, I. A., Zorin, D. N., & Oseledets, I. V. (2017). Fast topological-shape optimization with boundary elements in two dimensions. Russian Journal of Numerical Analysis and Mathematical Modelling, 32(2), 127–133.
- Ostanin, I., Zorin, D., & Oseledets, I. (2017). Parallel optimization with boundary elements and kernel independent fast multipole method. International Journal of Computational Methods and Experimental Measurements, 5(2), 154-162.
- Ostanin, I., Safonov, A., & Oseledets, I. (2017). Natural erosion of sandstone as shape optimization. Scientific Reports, 7(1).
- Ostanin, I., Tsybulin, I., Litsarev, M., Oseledets, I., & Zorin, D. (2017). Scalable topology optimization with the kernel-independent fast multipole method. Engineering Analysis with Boundary Elements, 83, 123–132.
- Phan, A.-H., Tichavský, P., & Cichocki, A. (2017). Blind source separation of single channel mixture using tensorization and tensor diagonalization.Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 36–46.
- Qiu, Z., Allison, B. Z., Jin, J., Zhang, Y., Wang, X., Li, W., & Cichocki, A. (2017). Optimized motor imagery paradigm based on imagining Chinese characters writing movement. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(7), 1009-1017.
- Ratkova, E. L., Abramov, Y. A., Baskin, I. I., Livingstone, D. J., Fedorov, M. V, Withnall, M., & Tetko, I. V. (2017). Empirical and Physics-Based Calculations of Physical-Chemical Properties.In Comprehensive Medicinal Chemistry III (Vol. 3–8, pp. 393–428).
- Rivera, R., & Burnaev, E. (2017). Forecasting of commercial sales with large scale Gaussian processes. IEEE International Conference on Data Mining Workshops, ICDMW, 2017-Novem, 625–634.
- Safin, A., & Burnaev, E. (2017). Conformal kernel expected similarity for anomaly detection in time-series data. Advances in Systems Science and Applications, 17(3), 22–33.
- Somov, A., Alonso, E. T., Craciun, M. F., Neves, A. I. S., & Baldycheva, A. (2017). Smart textile: Exploration of wireless sensing capabilities. Proceedings of IEEE Sensors, 2017-Decem, 1–3.
- Somov, A., Karelin, A., Baranov, A., & Mironov, S. (2017).Estimation of a Gas Mixture Explosion Risk by Measuring the Oxidation Heat Within a Catalytic Sensor. IEEE Transactions on Industrial Electronics, 64(12), 9691–9698.
- Sorokin, A., Zhvansky, E., Shurkhay, V., Bocharov, K., Popov, I., Levin, N., … Nikolaev, E. (2017). Feature selection algorithm for spray-from-tissue mass spectrometry. European Journal of Mass Spectrometry, 23(4), 237–241.
- Thiyam, D. B., Cruces, S., Olias, J., & Cichocki, A. (2017). Optimization of Alpha-Beta Log-Det divergences and their application in the spatial filtering of two class motor imagery movements.Entropy, 19(3).
- Tichavský, P., Phan, A.-H., & Cichocki, A. (2017). Non-orthogonal tensor diagonalization. Signal Processing, 138, 313–320.
- Ulyanov, D., Vedaldi, A., & Lempitsky, V. (2017). Improved texture networks: Maximizing quality and diversity in feed-forward stylization and texture synthesis. Proceedings – 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-Janua, 4105–4113.
- Ustinova, E., Ganin, Y., & Lempitsky, V. (2017). Multi-Region bilinear convolutional neural networks for person re-identification. 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance, AVSS 2017.
- Vakhitov, A., Kuzmin, A., & Lempitsky, V. (2017). Set2Model networks: Learning discriminatively to learn generative models. In Proceedings of the IEEE International Conference on Computer Vision Workshops (pp. 357-366).
- Vasilyeva, A. D., Bychkova, A. V, Bugrova, A. E., Indeykina, M. I., Chikunova, A. P., Leonova, V. B., … Nikolaev, E. N., Rosenfeld, M. A. (2017). Modification of the catalytic subunit of plasma fibrin-stabilizing factor under induced oxidation.Doklady Biochemistry and Biophysics, 472(1), 40–43.
- Vladimirov, G., Kostyukevich, Y., Kharybin, O., & Nikolaev, E. (2017). Effect of ion clouds micromotion on measured signal in Fourier transform ion cyclotron resonance: Computer simulation. European Journal of Mass Spectrometry, 23(4), 162–166.
- Vlaskin, M. S., Kostyukevich, Y. I., Grigorenko, A. V, Kiseleva, E. A., Vladimirov, G. N., Yakovlev, P. V, & Nikolaev, E. N. (. (2017). Hydrothermal treatment of organic waste. Russian Journal of Applied Chemistry, 90(8), 1285–1292.
- Xie, K., He, Z., Cichocki, A., & Fang, X. (2017). Rate of Convergence of the FOCUSS Algorithm. IEEE Transactions on Neural Networks and Learning Systems, 28(6), 1276–1289.
- Varizhuk, A. M., Zatsepin, T. S., Golovin, A. V., Belyaev, E. S., Kostyukevich, Y. I., Dedkov, V. G., … & Aralov, A. V. (2017). Synthesis of oligonucleotides containing novel G-clamp analogue with C8-tethered group in phenoxazine ring: Implication to qPCR detection of the low-copy Kemerovo virus dsRNA. Bioorganic & medicinal chemistry, 25(14), 3597-3605.
- Yandex, A. B., & Lempitsky, V. (2017). AnnArbor: Approximate Nearest Neighbors Using Arborescence Coding. Proceedings of the IEEE International Conference on Computer Vision, 2017-Octob, 4895–4903.
- Yarotsky, D. (2017). Error bounds for approximations with deep ReLU networks. Neural Networks, 94, 103–114.
- Yurchenko, V., & Lempitsky, V. (2017). Parsing images of overlapping organisms with deep singling-out networks. Proceedings – 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-Janua, 4752–4760.
- Zakharova, N. V, Shornikova, A. Y., Bugrova, A. E., Baybakova, V. V, Indeykina, M. I., Kononikhin, A. S., … Nikolaev, E. N. (. (2017). Evaluation of plasma peptides extraction methods by high-resolution mass spectrometry. European Journal of Mass Spectrometry, 23(4), 209–212.
- Zavialova, M. G., Shevchenko, V. E., Nikolaev, E. N., & Zgoda, V. G. (2017). Is myelin basic protein a potential biomarker of brain cancer?European Journal of Mass Spectrometry, 23(4), 192–196.
- Zavialova, M. G., Zgoda, V. G., & Nikolaev, E. N. (2017). Analysis of the role of protein phosphorylation in the development of diseases. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 11(3), 203–218.
- Zaytsev, A., & Burnaev, E. (2017). Large scale variable fidelity surrogate modeling. Annals of Mathematics and Artificial Intelligence, 81(1–2), 167–186.
- Zaytsev, A., & Burnaev, E. (2017). Minimax approach to variable fidelity data interpolation. Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, AISTATS 2017.
- Zhdanova, E., Kostyukevich, Y., & Nikolaev, E. (2017). Static harmonization of dynamically harmonized Fourier transform ion cyclotron resonance cell. European Journal of Mass Spectrometry, 23(4), 197–201.
- Zherebker, A., Kostyukevich, Y., Kononikhin, A., Kharybin, O., Konstantinov, A. I., Zaitsev, K. V, Nikolaev, E., & Perminova, I. V. (2017). Enumeration of carboxyl groups carried on individual components of humic systems using deuteromethylation and Fourier transform mass spectrometry. Analytical and Bioanalytical Chemistry, 409(9), 2477–2488.
- Zherebker, A., Turkova, A. V, Kostyukevich, Y., Kononikhin, A., Zaitsev, K. V, Popov, I. A., Nikolaev, E., & Perminova, I. V. (2017). Synthesis of carboxylated styrene polymer for internal calibration of Fourier transform ion cyclotron resonance mass-spectrometry of humic substances. European Journal of Mass Spectrometry, 23(4), 156–161.
- Zhou, G., Zhao, Q., Zhang, Y., Adali, T., Xie, S., Cichocki, A. (2017). Linked component analysis from matrices to high order tensors: Applications to biomedical data, Proceedings of the IEEE, 104(2): 310-331.
- Zhvansky, E. S., Sorokin, A. A., Popov, I. A., Shurkhay, V. A., Potapov, A. A., & Nikolaev, E. N. (2017). High-resolution mass spectra processing for the identification of different pathological tissue types of brain tumors. European Journal of Mass Spectrometry, 23(4), 213–216.
- Artemov, A., & Burnaev, E. (2016). Detecting Performance Degradation of Software-Intensive Systems in the Presence of Trends and Long-Range Dependence. IEEE International Conference on Data Mining Workshops, ICDMW, 29–36.
- Arteta, C., Lempitsky, V., Noble, J. A., & Zisserman, A. (2016). Detecting overlapping instances in microscopy images using extremal region trees. Medical Image Analysis, 27, 3–16.
- Arteta, C., Lempitsky, V., & Zisserman, A. (2016). Counting in the wild. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 483–498.
- Badranova, G. U., Gotovtsev, P. M., Zubavichus, Y. V, Staroselskiy, I. A., Vasiliev, A. L., Trunkin, I. N., & Fedorov, M. V. (2016). Biopolymer-based hydrogels for encapsulation of photocatalytic TiO2 nanoparticles prepared by the freezing/thawing method. Journal of Molecular Liquids, 223, 16–20.
- Burnaev, E., & Smolyakov, D. (2016, December). One-class SVM with privileged information and its application to malware detection. In 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW) (pp. 273-280). IEEE.
- Chagovets, V., Kononikhin, A., Starodubtseva, N., Kostyukevich, Y., Popov, I., Frankevich, V., & Nikolaev, E. (2016). Peculiarities of data interpretation upon direct tissue analysis by Fourier transform ion cyclotron resonance mass spectrometry. European Journal of Mass Spectrometry, 22(3), 123–126.
- Chen, L., Jin, J., Daly, I., Zhang, Y., Wang, X., & Cichocki, A. (2016). Exploring combinations of different color and facial expression stimuli for gaze-independent BCIs. Frontiers in Computational Neuroscience, 10(JAN).
- Cichocki, A., Lee, N., Oseledets, I., Phan, A.-H., Zhao, Q., & Mandic, D. P. (2016). Tensor networks for dimensionality reduction and large-scale optimization part 1 low-rank tensor decompositions. Foundations and Trends in Machine Learning, 9(4–5), 249–429.
- Docampo-Álvarez, B., Gómez-González, V., Montes-Campos, H., Otero-Mato, J. M., Méndez-Morales, T., Cabeza, O., … Fedorov, M. V., Varela, L. M. (2016). Molecular dynamics simulation of the behaviour of water in nano-confined ionic liquid-water mixtures. Journal of Physics-Condensed Matter, 28(46).
- Fedorchenko, K. Y., Ryabokon’, A. M., Kononikhin, A. S., Mitrofanov, S. I., Mikhant’eva, E. A., Spasskii, A. I., … Nikolaev, E. N., & Varfolomeev, S. D. (2016). The effect of space flight on the protein composition of the exhaled breath condensate of cosmonauts. Russian Chemical Bulletin, 65(11), 2745–2750.
- Frolov, E., & Oseledets, I. (2016). Fifty shades of ratings: How to benefit from a negative feedback in top-N recommendations tasks. RecSys 2016 – Proceedings of the 10th ACM Conference on Recommender Systems, 91–98.
- Ganin, Y., Kononenko, D., Sungatullina, D., & Lempitsky, V. (2016). DeepWarp: Photorealistic image resynthesis for gaze manipulation. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 311–326.
- Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., … Lempitsky, V. (2016). Domain-adversarial training of neural networks. Journal of Machine Learning Research, 17(1), 2096-2030.
- Grinchuk, O., Lebedev, V., & Lempitsky, V. (2016). Learnable visual markers. Advances in Neural Information Processing Systems, 4150–4158.
- Haegeman, J., Lubich, C., Oseledets, I., Vandereycken, B., & Verstraete, F. (2016). Unifying time evolution and optimization with matrix product states. Physical Review B, 94(16).
- Hou, M., Zhao, Q., Chaib-draa, B., & Cichocki, A. (2016, February). Common and discriminative subspace kernel-based multiblock tensor partial least squares regression. In Thirtieth AAAI Conference on Artificial Intelligence.
- Huang, M., Daly, I., Jin, J., Zhang, Y., Wang, X., & Cichocki, A. (2016). An exploration of spatial auditory BCI paradigms with different sounds: music notes versus beeps. Cognitive Neurodynamics, 10(3), 201–209.
- Indeykina, M., Kononikhin, A., Popov, I., Kostyukevich, Y., Kulikova, A., Mitkevich, V., … Nikolaev, E. (2016). Localization of zinc binding sites of Ab1-16 with English mutation during formation of monomers and dimers with zinc. International Journal of Mass Spectrometry, 409, 67–72.
- Kuleshov, A., & Bernstein, A. (2016). Regression on High-Dimensional Inputs. IEEE International Conference on Data Mining Workshops, ICDMW, 732–739.
- Kostyukevich, Y. I., Kharybin, O. N., Kononikhin, A. S., Popov, I. A., & Nikolaev, E. N. (2016). Deuterium–hydrogen exchange reactions in peptides and polyatomic organic compounds, as studied on an ion cyclotron resonance mass spectrometer equipped with an ion trap with dynamic harmonization. High Energy Chemistry, 50(3), 165–170.
- Kostyukevich, Y. I., Kononikhin, A. S., Popov, I. A., Bugrova, A. E., Starodubtseva, N. L., & Nikolaev, E. N. (2016). Application of deuterium–hydrogen exchange to study the secondary structure of oligonucleotide ions in a gas phase. High Energy Chemistry, 50(6), 427–432.
- Kostyukevich, Y. I., Kononikhin, A. S., Popov, I. A., Indeykina, M. I., & Nikolaev, E. N. (2016). Supermetallization of Substance P during electrospray ionization. Mendeleev Communications, 26(2), 111–113.
- Kostyukevich, Y. I., Kononikhin, A. S., Popov, I. A., & Nikolaev, E. N. (2016). Evaporation of the charged droplets in the heating flow tube under atmospheric pressure: observation of the H/D exchange and supermetallization. Mendeleev Communications, 26(5), 440–442.
- Kostyukevich, Y., Borisova, L., Kononikhin, A., Popov, I., Kukaev, E., & Nikolaev, E. (2016). Thermal desorption combined with atmospheric pressure photo ionization for the analysis of volatile compounds and its possible applications. European Journal of Mass Spectrometry, 22(6), 313–317.
- Kostyukevich, Y., Kononikhin, A., Popov, I., Kukaev, E., Shieae, J., & Nikolaev, E. (2016). Supermetallization of peptides and proteins with tetravalent metal Th(IV). European Journal of Mass Spectrometry, 22(1), 39–42.
- Kostyukevich, Y., Solovyov, S., Kononikhin, A., Popov, I., & Nikolaev, E. (2016). The investigation of the bitumen from ancient Greek amphora using FT ICR MS, H/D exchange and novel spectrum reduction approach. Journal of Mass Spectrometry, 430–436.
- Kostyukevich, Y., Yacovlev, P., Kononikhin, A., Popov, I., Bugrova, A., Starodubtzeva, N., & Nikolaev, E. (2016). The use of H/D exchange for secondary structure characterization of supermetallized complexes of ubiquitin with cerium(III). Russian Journal of Bioorganic Chemistry, 42(5), 484–490.
- Kostyukevich, Y., Zherebker, A., Kononikhin, A., Indeykina, M., Popov, I., & Nikolaev, E. (2016). Electron-capture dissociation and collision induced dissociation fragmentation of the supermetallized complexes of Substance P with potassium, cesium and silver. European Journal of Mass Spectrometry, 22(2), 91–95.
- Kostyukevich, Y., Zherebker, A., Kononikhin, A., Popov, I., Perminova, I., & Nikolaev, E. (2016). The investigation of the birch tar using ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry and Hydrogen/Deuterium exchange approach. International Journal of Mass Spectrometry, 404, 29–34.
- Kukaev, E. N., Kononikhin, A. S., Starodubtseva, N. L., Kostyukevich, Y. I., Popov, I. A., Chagovets, V., … Nikolaev, E. N. (2016). Atmospheric pressure thermal ionization ion source for peptide analysis. European Journal of Mass Spectrometry, 22(6), 307–311.
- Kuleshov, A., & Bernstein, A. (2016). Incremental construction of low-dimensional data representations. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 55–67.
- Kuleshov, A., & Bernstein, A. (2016). Extended regression on manifolds estimation. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 9653, pp. 208–228.
- Kuleshov, A., & Bernstein, A. (2016). Statistical learning on manifold-valued data. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 9729, pp. 311–325.
- Kuzmin, A., Zhang, X., Finche, J., Feigin, M., Anthony, B. W., & Lempitsky, V. (2016). Fast low-cost single element ultrasound reflectivity tomography using angular distribution analysis. Proceedings – International Symposium on Biomedical Imaging, 2016-June, 1021–1024.
- Lebedev, V., & Lempitsky, V. (2016). Fast ConvNets Using Group-Wise Brain Damage. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-Decem, 2554–2564.
- Lee, N., & Cichocki, A. (2016). Regularized computation of approximate pseudoinverse of large matrices using low-rank tensor train decompositions. SIAM Journal on Matrix Analysis and Applications, 37(2), 598–623.
- Litsarev, M. S., & Oseledets, I. V. (2016). A low-rank approach to the computation of path integrals. Journal of Computational Physics, 305, 557–574.
- Mikhalev, A. Y., & Oseledets, I. V. (2016). Iterative representing set selection for nested cross approximation. Numerical Linear Algebra with Applications, 23(2), 230–248.
- Misin, M., Palmer, D. S., & Fedorov, M. V. (2016). Predicting Solvation Free Energies Using Parameter-Free Solvent Models. Journal of Physical Chemistry B, 120(25), 5724–5731.
- Misin, M., Vainikka, P. A., Fedorov, M. V, & Palmer, D. S. (2016). Salting-out effects by pressure-corrected 3D-RISM. Journal of Chemical Physics, 145(19).
- Nazarenko, D. V., Kharyuk, P. V., Oseledets, I. V., Rodin, I. A., & Shpigun, O. A. (2016).Machine learning for LC-MS medicinal plants identification. Chemometrics and Intelligent Laboratory Systems, 156, 174–180.
- Oseledets, I. V, Rakhuba, M. V, & Chertkov, A. V. (2016). Black-box solver for one dimensional multiscale modelling using the QTT format. ECCOMAS Congress 2016 – Proceedings of the 7th European Congress on Computational Methods in Applied Sciences and Engineering, 4, 7938–7947.
- Rakhuba, M. V, & Oseledets, I. V. (2016). Grid-based electronic structure calculations: The tensor decomposition approach. Journal of Computational Physics, 312, 19–30.
- Rakhuba, M., & Oseledets, I. (2016). Calculating vibrational spectra of molecules using tensor train decomposition. Journal of Chemical Physics, 145(12).
- Struminsky, K., Kruglik, S., Vetrov, D., & Oseledets, I. (2016). A new approach for sparse Bayesian channel estimation in SCMA uplink systems. 2016 8th International Conference on Wireless Communications and Signal Processing, WCSP 2016.
- Sushnikova, D. A., & Oseledets, I. V. (2016). Preconditioners for hierarchical matrices based on their extended sparse form. Russian Journal of Numerical Analysis and Mathematical Modelling, 31(1), 29–40.
- Ulyanov, D., Lebedev, V., Vedaldi, A., & Lempitsky, V. (2016). Texture networks: Feed-forward synthesis of textures and stylized images. 33rd International Conference on Machine Learning, ICML 2016, 3, 2027–2041.
- Ustinova, E., & Lempitsky, V. (2016). Learning deep embeddings with histogram loss. Advances in Neural Information Processing Systems, 4177–4185.
- Yandex, A. B., & Lempitsky, V. (2016). Efficient Indexing of Billion-Scale Datasets of Deep Descriptors. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-Decem, 2055–2063.
- Zeng, Z., Cichocki, A., Cheng, L., Xia, Y., & Hu, X. (2016). Guest Editorial Special Issue on Neurodynamic Systems for Optimization and Applications. IEEE Transactions on Neural Networks and Learning Systems, 27(2), 210–213.
- Zhang, Y., Zhao, Q., Zhou, G., Jin, J., Wang, X., & Cichocki, A. (2016). Removal of EEG artifacts for BCI applications using fully Bayesian tensor completion. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing – Proceedings, 2016-May, 819–823.
- Zhang, Y., Zhou, G., Zhao, Q., Cichocki, A., & Wang, X. (2016). Fast nonnegative tensor factorization based on accelerated proximal gradient and low-rank approximation. Neurocomputing, 198, 148–154.
- Zherebker, A. Y., Kostyukevich, Y. I., Kononikhin, A. S., Nikolaev, E. N., & Perminova, I. V. (2016). Molecular compositions of humic acids extracted from leonardite and lignite as determined by Fourier transform ion cyclotron resonance mass spectrometry.Mendeleev Communications, 26(5), 446–448.
- Zherebker, A., Kostyukevich, Y., Kononikhin, A., Roznyatovsky, V. A., Popov, I., Grishin, Y. K., … Nikolaev, E. (2016). High desolvation temperature facilitates the ESI-source H/D exchange at non-labile sites of hydroxybenzoic acids and aromatic amino acids. Analyst, 141(8), 2426–2434.
- Zhou, G., Cichocki, A., Zhang, Y., & Mandic, D. P. (2016). Group Component Analysis for Multiblock Data: Common and Individual Feature Extraction. IEEE Transactions on Neural Networks and Learning Systems, 27(11), 2426–2439.
- Zhou, G., Zhao, Q., Zhang, Y., Adali, T., Xie, S., & Cichocki, A. (2016). Linked Component Analysis from Matrices to High-Order Tensors: Applications to Biomedical Data. Proceedings of the IEEE, 104(2), 310–331.
- Zhou, S., Allison, B. Z., Kübler, A., Cichocki, A., Wang, X., & Jin, J. (2016). Effects of background music on objective and subjective performance measures in an auditory BCI.Frontiers in Computational Neuroscience, 10(OCT).
- Absil, P.-A., & Oseledets, I. V. (2015). Low-rank retractions: a survey and new results. Computational Optimization and Applications, 62(1), 5–29.
- Babenko, A., & Lempitsky, V. (2015). Tree quantization for large-scale similarity search and classification. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 07-12-June, 4240–4248.
- Babenko, A., & Lempitsky, V. (2015). The inverted multi-index. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(6), 1247–1260.
- Baranov, V., & Oseledets, I. (2015). Fitting high-dimensional potential energy surface using active subspace and tensor train (AS+TT) method. Journal of Chemical Physics, 143(17).
- Ganin, Y., & Lempitsky, V. (2015). N4-fields: Neural network nearest neighbor fields for image transforms. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 9004, pp. 536–551.
- Ganin, Y., & Lempitsky, V. (2015). Unsupervised domain adaptation by backpropagation. 32nd International Conference on Machine Learning, ICML 2015, 2, 1180–1189.
- Jertz, R., Friedrich, J., Kriete, C., Nikolaev, E. N., & Baykut, G. (2015). Tracking the Magnetron Motion in FT-ICR Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 26(8), 1349–1366.
- Kolesnikov, D. A., & Oseledets, I. V. (2015). From low-rank approximation to a rational Krylov subspace method for the Lyapunov equation. SIAM Journal on Matrix Analysis and Applications, 36(4), 1622–1637.
- Kononenko, D., & Lempitsky, V. (2015). Learning to look up: Realtime monocular gaze correction using machine learning. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 07-12-June, 4667–4675.
- Kostyukevich, Y., Kononikhin, A., Popov, I., Indeykina, M., Kozin, S. A., Makarov, A. A., & Nikolaev, E. (2015). Supermetallization of peptides and proteins during electrospray ionization.Journal of Mass Spectrometry, 50(9), 1079–1087.
- Kostyukevich, Y., Kononikhin, A., Popov, I., & Nikolaev, E. (2015). Conformations of cationized linear oligosaccharides revealed by FTMS combined with in-ESI H/D exchange. Journal of Mass Spectrometry, 50(10), 1150–1156.
- Kostyukevich, Y., Kononikhin, A., Popov, I., & Nikolaev, E. (2015). Observation of the 16O/18O exchange during electrospray ionization.European Journal of Mass Spectrometry, 21(2), 109–113.
- Kostyukevich, Y., Kononikhin, A., Popov, I., Spasskiy, A., & Nikolaev, E. (2015). In ESI-source H/D exchange under atmospheric pressure for peptides and proteins of different molecular weights from 1 to 66kDa: The role of the temperature of the desolvating capillary on H/D exchange. Journal of Mass Spectrometry, 50(1), 49–55.
- Kostyukevich, Y., Kononikhin, A., Popov, I., Starodubtzeva, N., Pekov, S., Kukaev, E., … Nikolaev, E. (2015). Analytical potential of the in-electrospray ionization source hydrogen/deuterium exchange for the investigation of oligonucleotides. European Journal of Mass Spectrometry, 21(1), 59–63.
- Kostyukevich, Y., Zhdanova, E., Kononikhin, A., Popov, I., Kukaev, E., & Nikolaev, E. (2015). Observation of the multiple halogenation of peptides in the electrospray ionization source.Journal of Mass Spectrometry, 50(7), 899–905.
- Kuzmin, A., Zakrzewski, A. M., Anthony, B. W., & Lempitsky, V. (2015). Multi-frame elastography using a handheld force-controlled ultrasound probe. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 62(8), 1486–1500.
- Larina, I. M., Pastushkova, L. K., Tiys, E. S., Kireev, K. S., Kononikhin, A. S., Starodubtseva, N. L., Popov, I. A., Custaud, M.-A., Dobrokhotov, I. V., Nikolaev, E. N., Kolchanov, N. A., & Ivanisenko, V. A. (2015). Permanent proteins in the urine of healthy humans during the Mars-500 experiment.Journal of Bioinformatics and Computational Biology, 13(1).
- Litsarev, M. S., & Oseledets, I. V. 2015). Fast low-rank approximations of multidimensional integrals in ion-atomic collisions modelling. Numerical Linear Algebra with Applications, 22(6), 1147–1160.
- Lubich, C., Oseledets, I. V, & Vandereycken, B. (2015). Time integration of tensor trains. SIAM Journal on Numerical Analysis, 53(2), 917–941.
- Mikhalev, A. Y., & Oseledets, I. V. (2015). Rectangular submatrices of maximum volume and their computation.Doklady Mathematics, 91(3), 267–268.
- Milyaev, S., Barinova, O., Novikova, T., Kohli, P., & Lempitsky, V. (2015). Fast and accurate scene text understanding with image binarization and off-the-shelf OCR. International Journal on Document Analysis and Recognition, 18(2), 169–182.
- Nikolaev, E. N. (2015). Some notes about FT ICR mass spectrometry. International Journal of Mass Spectrometry, 377(1), 421–431.
- Rakhuba, M. V, & Oseledets, I. V. (2015). Fast multidimensional convolution in low-rank tensor formats via cross approximation. SIAM Journal on Scientific Computing, 37(2), A565–A582.
- Ranger, B. J., Feigin, M., Pestrov, N., Zhang, X., Lempitsky, V., Herr, H. M., & Anthony, B. W. (2015). Motion compensation in a tomographic ultrasound imaging system: Toward volumetric scans of a limb for prosthetic socket design.Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2015-Novem, 7204–7207.
- Ryzhakov, G. V, Mikhalev, A. Y., Sushnikova, D. A., & Oseledets, I. V. (2015). Numerical solution of diffraction problems using large matrix compression.2015 9th European Conference on Antennas and Propagation, EuCAP 2015.
- Vladimirov, G., Kostyukevich, Y., Hendrickson, C. L., Blakney, G. T., & Nikolaev, E. (2015). Effect of magnetic field inhomogeneity on ion cyclotron motion coherence at high magnetic field.European Journal of Mass Spectrometry, 21(3), 443–449.
- Yandex, A. B., & Lempitsky, V. (2015). Aggregating local deep features for image retrieval.Proceedings of the IEEE International Conference on Computer Vision, 2015 Inter, 1269–1277.
- Zhang, X., Fincke, J., Kuzmin, A., Lempitsky, V., & Anthony, B. (2015). A single element 3D ultrasound tomography system.Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2015-Novem, 5541–5544.
- Zhang, Z., Yang, X., Oseledets, I. V, Karniadakis, G. E., & Daniel, L. (2015). Enabling high-dimensional hierarchical uncertainty quantification by ANOVA and tensor-train decomposition.IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 34(1), 63–76.