Electrodeposition. Principles and Applications

Victoria A. Nikitina

Center for Energy Science and Technology Skolkovo Institute of Science and Technology

November 16, 2024

Electrodeposition

 Electroplating is the electrochemical deposition of metal precipitates (coatings) on objects

Decorative

Protective

Aluminum anodizing

Metallization of plastic

Industrial

Atomistic aspects

 $M^{z+} + ze \longleftrightarrow M$

"Overpotential" deposition

 $[M(H_2O)_x]^{z+}$ (solution) $\longrightarrow M^{z+}$ (kink)

Atomistic aspects

9 nm x 9nm

Figure 2.10 In situ STM image showing the frazzled appearance of a monatomic step on Ag(111) substrate [2.22]. System Ag(111)/10⁻⁴ M CuSO₄ + 5 x 10⁻² M H₂SO₄ at E = 60 mV vs. SCE and T = 298 K. Reprinted from Surface Science Letters, Vol. 327, M. Dietterle, T. Will, D.M. Kolb, Step dynamics at the Ag(111)–electrolyte interface, p. L495, 1995, with kind permission of Elsevier Science.

CV in the course of Cu electrodepostion

- **Nucleation:** localized formation of a distinct thermodynamic phase
- Nucleation normally occurs at *nucleation sites* on surfaces contacting the liquid or vapor. Suspended particles or minute bubbles also provide nucleation sites. This is called *heterogeneous nucleation*
- Nucleation without preferential nucleation sites is *homogeneous nucleation*
- Nucleation occurs spontaneously and randomly, but it requires superheating or supercooling of the medium

Nucleation

Gibbs free energy to form a
cluster of N atomsEnergy to form new
phase boundaries $\Delta G(N) = -Nze|\eta| + \Phi(N)$

- As the cluster grows, ΔG(N) increases (dominated by the increase in surface energy). Most of the clusters dissolve back to liquid phase
- Once some of the clusters reach the size of N_{crit} and pass the barrier of $\Delta G(N_{crit})$, further growth of clusters will lead to decrease in $\Delta G(N)$. The cluster will continue to grow
- For a 3D nucleus:

$$N_{\rm crit} = \frac{8BV_{\rm m}^2\sigma^3}{27(ze|\eta|)^3}$$

6

Nucleation rate

• Nucleation probability

$$J = A \exp\left(-\frac{\Delta G_{\text{crit}}}{kT}\right)$$
$$J = A_{3D} \exp\left(-\frac{4BV_{\text{m}}^2 \sigma^3}{27(ze|\eta|)^2 kT}\right)$$

$$3D \qquad 2D \\ \ln I = const - \frac{k_1}{\eta^2} \qquad \ln I = const_1 - \frac{k_2}{\eta}$$

Nucleation – random process

Nucleation suppression

Electrodep. Surf. Treatment 3 (1975) 385

Morphology

misfit

Growth morphologies

D. Pletcher, F.C. Walsh, Industrial Electrochemistry

10

Morphology control

OC

00

J < J_{cc} → Complete SEI; root-growing whiskers.

• $J_{cc} < J < J_{lim} \rightarrow$ Interrupted SEI; surface growth prevails

J > J_{lim} → Transport limitation; tip-growing dendrites.

Electrodeposition of metals and alloys

- If we deposit at E(i)' only M1 will be plated
- If we deposit at E(i) both M1 and M2 will be plated
- Alloy composition will be determined by the ratio of the values of current densities of deposition of individual metals at that potential

$$\frac{M_1}{M_2} = \frac{i_1}{i_2}$$

$$\frac{i_1}{i_2} = \left(\frac{i_{\text{o},1}}{i_{\text{o},2}}\right) \exp[af(E_{\text{eq},1} - E_{\text{eq},2})]$$

Electrodeposition of metals and alloys

• Even when the difference in equilibrium potentials is large, it is still possible to deposit an alloy with desired composition

Zn-Cu alloy

Standard potentials:

 $E_{\text{Cu}^{2+}/\text{Cu}}^{0} = 0.3419 \text{ V (SHE)}$ $E_{\text{Zn}^{2+}/\text{Zn}}^{0} = -0.7618 \text{ V (SHE)}$

Difference:

 $\Delta E = 1.1037 \text{ V}$

- Deposition of M₁ is limited by diffusion
- Deposition of M₂ is limited by ET rate

Electrodeposition of metals and alloys

• Even when the difference in equilibrium potentials is large, it is still possible to deposit an alloy with desired composition

Standard potentials:

$$E_{\rm Cu^{2+}/Cu}^0 = 0.3419 \,\rm V \,(SHE)$$

$$E_{\rm Zn^{2+}/Zn}^0 = -0.7618 \, \rm V \, (SHE)$$

Difference:

 $\Delta E = 1.1037 \, \text{V}$

• The difference in potentials can be reduced by complexing Cu⁺ and Zn²⁺ ions in solution

$$\frac{(\text{Cu}^+)(\text{CN}^-)^3}{([\text{Cu}\text{CN})_3]^{2-})} = 5.6 \times 10^{-28} \qquad \qquad \frac{(\text{Zn}^{2+})(\text{CN}^-)^4}{[\text{Zn}(\text{CN})_4]^{2-}} = 1.3 \times 10^{-17}$$

0.05 M [Cu(CN)₃]²⁻ 0.0001 M CN⁻ C(Cu⁺) = 2.8*10⁻¹⁷ M

Zn-Cu alloy

0.025 M [Zn(CN)₄]²⁻ 0.0001 M CN⁻ C(Zn²⁺) = 6.62*10⁻⁵ M

 $E_{rev}(Cu^{+}/Cu) = -0.43 V$

 $E_{rev}(Zn^{2+}/Zn) = -0.85 V$

Alloy formation

Eutectic alloys

Eutectic alloys

- Many elements do not mix in the solid phase they crystallize as pure metal crystals
- Characteristic of a eutectic are extremely fine crystal grains, so that the alloy appears microscopically homogeneous. Even laboratory X-ray techniques cannot discern the phase structure

ructure

Tin-Lead (Sn-Pb) Solder

Figure 9.17 Photomicrograph showing the microstructure of a lead-tin alloy of composition 50 wt% Sn-50 wt% Pb. This microstructure is composed of a primary lead-rich α phase (large dark regions) within a lamellar eutectic structure consisting of a tin-rich β phase (light layers) and a lead-rich α phase (dark layers). 400×. (From *Metals Handbook*, Vol. 9, 9th edition, *Metallography and Microstructures*, 1985. Reproduced by permission of ASM International, Materials Park, OH.)

Sn/Pb

Cd/Zn

Sn/Zn

Ag/Cu

Solid solutions

Solid solutions

- Components are miscible in the solid at the atomic level over the entire range of compositions
- For an ideal solid solution, the enthalpy of mixing is zero and only the entropic term is important (9 mV for p, q = 2 (virtual additivity of $E^0_{A^{p+}/A}$ and $E^0_{B^{q+}/B}$)

$$E_{AB} = \frac{1}{2} \left[E_{A^{p+}/A}^{0} + E_{B^{q+}/B}^{0} \right] - \frac{\mu_{A_{0.5}B_{0.5}}^{0}}{2F}$$

- Temperature/°C 1600 1500 Liquid 1400 1300 1200 1100 1000 0 10 20 30 40 50 60 70 80 90 100 weight% Ni Ni Cu
- Copper-nickel (also known as cupronickel) alloys are widely used for marine applications due to their excellent resistance to seawater corrosion, low macrofouling rates, and good fabricability

TIG welding

Splash zone sheathing

Ni/Co Cu/Ni Fe/Co Fe/Ni

Intermediate phases and intermetallics

(Cu)

90

100

Cu

Electrocrystallization of compounds

Cathodic electrocrystallization

 $Cd^{2+} + SeO_3^{2-} + 6H^+ + 6e^- = CdSe + 3H_2O$ $Cu^{2+} + Cl^- + e^- = CuCl$ $2CuL_2^{2-} + 2e^- + 2OH^- = Cu_2O + 4L^{2-} + H_2O$

Anodic electrocrystallization

 $Mn^{2+} + 2H_2O - 2e^- = MnO_2 + 4H^+$ TI⁺ + F⁻ + H₂O - 2e⁻ = TIOF + 2H

Anodizing

 $2AI + 3H_2O - 6e^- = AI_2O_3 + 6H^+$ Si + $2H_2O - 4e^- = SiO_2 + 4H^+$ Acetate solution

Nanomaterials 2023, 13, 3064

Local pH shift

Anodic acidization

Ascorbic acid oxidation $Zn(OH)_4^{2-} + 2H^+ \rightarrow ZnO + 3H_2O$

$\begin{array}{l} \mbox{Cathodic alkalinization} \\ \mbox{ Hydrogen evolution} \\ \mbox{Zn}^{2+} + 20 \mbox{H}^- \rightarrow \mbox{Zn}(0 \mbox{H})_2 \rightarrow \mbox{Zn}0 \mbox{ + }\mbox{H}_20 \end{array}$

Langmuir 2006, 22, 10535-10539

Appl. Surf. Sci. (2011)

Template-assisted deposition

AAO membranes with different pore diameters

Bi_{1-x}Sb_x alloy nanowires

Appl. Phys. Lett., 1997, 71, 2770

J. Phys. Chem. B, 2006, 110, 21572

Template-free deposition of nanostructures

- Some materials have the natural tendency towards 1D growth due to intrinsic highly anisotropic crystal structures
- Hexagonal ZnO nanorods or nanotubes, Te nanowires and CuTe nanoribbons

Templating via H₂ bubbles during HER

Figure 5. Morphologies of Cu deposits obtained after different times of galvanostatic electrolysis at -2.0 A cm^{-2} , from an aqueous solution containing 0.20 mol dm⁻³ CuSO₄ and 1.0 mol dm⁻³ H₂SO₄. Reproduced from Ref. 52 with permission of The Electrochemical Society.

https://doi.org/10.1002/cctc.202001145

Templating via H₂ bubbles during HER

SEM images of Cu (A), Cu₉₇Sn₃ (B) and Cu₆Sn₅ (C) foams.

Спасибо за внимание!

Контакты: Виктория Андреевна Никитина Старший преподаватель Сколковский институт науки и технологий Центр энергетических технологий Моб. +7(926)3742677 e-mail: <u>v.nikitina@skoltech.ru</u> Большой бульвар 30с1, 121205 Москва, Россия