Skoltech

LOMONOSOV MOSCOW STATE UNIVERSITY

Crystallography and Crystal Chemistry VIII International School-Conference of Young Scientists 2023

NMR as a Tool to Study Metal-Ion Battery Electrolytes

Dr. Olga I. Shmatova

PhD in Chemistry, Assistant Professor Center for Energy Science and Technology Skoltech, Moscow, Russian Federation

November 12th, 2023

Magnetic properties of nuclei

Spinning proton creates a magnetic field

This work is funded by Russian Science Foundation (grant №23-23-00343).

Nuclei characteristics:

- **M** mass;
- Z charger;
- P angular momentum (angular momentum);
- **µ** magnetic moment;
- **X** gyromagnetic ratio;
- I spin quantum number, determines the number of allowed orientations of the µ nucleus in a constant magnetic field;
- **h** Planck constant $6.626 \cdot 10^{-34} \text{ kg}^{*}\text{m}^{2}/\text{s}$.

```
P = Ih/2\pi
\mu = \Im P = \Im Ih/2\pi
```

Nuclear magnetic resonance. Zeeman effect

$\mu = \gamma P = \gamma Ih/2\pi$ μ – magnetic moment; I – spin quantum number,

X – gyromagnetic ratio,
 P – angular momentum (moment of momentum or rotational momentum)

I = 1/2

Antiparallel

 $\Delta E = 2\mu B_0 = hv$

Nuclear magnetic resonance

Pulse or Fourier-Transform NMR (FT-NMR)

A strong magnetic field is a must! (provided by a superconducting magnet)

Short high-power RF pulse: ~50 watt, $\tau = 10-50 \mu s$ with a frequency close to v_0

According to the uncertainty principle, a radio frequency field is generated over a wide range: $v_0 \pm 1/T$

Pulse or Fourier-Transform NMR (FT-NMR)

Spectrum parameters of NMR

Conventional organic electrolytes

Nuclei that can be studied by NMR

Thermal stability of electrolytes

Quantification of electrolyte degradation

Polytetrafluoroethylene (PTFE) NMR tube

Proposed reaction schemes for PF_6^- degradation

After studying in glass tubes

After studying in **polytetrafluoroethylene** tubes

Cathode stability

Spectral broadening caused by TM dissolution

DOSY Diffusion-Ordered Spectroscopy

Stoke-Einstein Equation

 $D = \frac{k_b T}{6\pi\eta r_h}$ Unit = m²/sec

- **D** Diffusion coefficient
- k_{b} Boltzmann constant (1.380649×10⁻²³ J·K⁻¹)
- **T** Temperature
- η Viscosity
- **r**_h Hydrodynamic radius

Root mean square displacement

 $\overline{S} = \sqrt{6DT}$

DOSY Diffusion-Ordered Spectroscopy

Spin echo + pulsed fiends gradient

Schematic principle of DOSY NMR

Ion mobility and battery performance

Ion transport number

Ion mobility and battery performance

Internally referenced DOSY-NMR

2 DOSY experiments with toluene as an internal reference
1) Solvents without LiPF₆
2) Solvents + LiPF₆

 $\mathsf{D}_{1\text{tol}},\,\mathsf{D}_{2\text{tol}},\,\mathsf{D}_{\text{Li}},\,\mathsf{D}_{1\text{EMC}},\,\mathsf{D}_{2\text{EMC}}$

Stoke-Einstein equation

$$D = \frac{k_b T}{6\pi \eta r_h}$$

Internally referenced DOSY-NMR

Divulging the solution structure of lithium-ion battery electrolytes

The solution structure of electrolytes

Solvent characterization

-1.4

