<section-header>

Crystallography and Crystal Chemistry VIII International School-Conference of Young Scientists 2023

Crystal chemical aspects of layered oxides as cathodes for lithium-ion batteries

Dr. Aleksandra A. Savina

PhD in Chemistry, Senior Research Scientist Center for Energy Science and Technology Skoltech, Moscow, Russian Federation

November 11th, 2023

Li-ion batteries

Materials for LIBs

Cathode materials for LIBs

LMR – Li-rich NMC

Key characteristics of cathode materials

Formula	Specific energy density, Wh/kg	Specific capacity, mAh/g	Advantages	Disadvantages	
LiMn ₂ O ₄ (LMO)	405	100	Low cost	Low energy density	
LiCoO ₂ (LCO)	610	150	Moderate stability	High cost	
LiFePO ₄ (LFP)	515	150	High power density High stability	Low energy density	
LiNi _{1/3} Mn _{1/3} Co _{1/3} O ₂ (NMC111)	600	160	High stability	Low energy density	
LiNi _{0.6} Mn _{0.2} Co _{0.2} O ₂ (NMC622)	685	180	Relatively high energy density	Relatively low stability	
LiNi _{0.8} Mn _{0.1} Co _{0.1} O ₂ (NMC811)	760	200 High energy Low c		Relatively low stability	
Li-rich NMC	1000	250	High energy density Low cost	Not commercialized Slow kinetics Voltage fade	

Cathode materials

Key characteristics of cathode materials

Formula	Specific energy density, Wh/kg	Specific capacity, mAh/g	Advantages	Disadvantages	
LiMn ₂ O ₄ (LMO)	405	100	Low cost	Low energy density	
LiCoO ₂ (LCO)	610	150	Moderate stability	High cost	
LiFePO ₄ (LFP)	515	150	High power density High stability	Low energy density	
LiNi _{1/3} Mn _{1/3} Co _{1/3} O ₂ (NMC111)	600	160	High stability	Low energy density	
LiNi _{0.6} Mn _{0.2} Co _{0.2} O ₂ (NMC622)	685	180	Relatively high energy density	Relatively low stability	
LiNi _{0.8} Mn _{0.1} Co _{0.1} O ₂ (NMC811)	n _{0.1} Co _{0.1} O ₂ 760 C811)		High energy density Low cost	Relatively low stability	
Li-rich NMC	1000	250	High energy density Low cost	Not commercialized Slow kinetics Voltage fade	

Crystal structures of currently used cathode materials

Close-packing of equal spheres

tetragonal

hexagonal

Simple tetragonal or hexagonal packing

Body-centered cubic packing

close-packing

Close-packing of equal spheres

Crystal structure of layered oxides

 $a \approx a_{\rm RS}/\sqrt{2} \approx 2.9$ Å, $c \approx a_{\rm RS}2\sqrt{3} \approx 14.2$ Å

Various types of packings in layered oxides

XI, where

"X" is a capital Latin letter denoting the coordination environment of the alkali metal A (O – octahedral, T – tetrahedral, P – prismatic),

"I" is a value equal to the number of MO_2 layers per one return period along directions of layer alternation.

Crystal structure of layered oxides

"cationic potential"

and represents the weighted average ionic potential of TMs

 w_i is the content of TM_i having charge number n_i and radius r_i

$$\overline{\Phi_{\rm A}} = \frac{x}{r_{\rm A}}$$

represents the weighted average ionic potential of A

Cationic potential phase map for alkali metal layered oxides A_xMO₂

Crystal structure of layered oxides during charge/discharge

10.1016/j.susmat.2021.e00305

Crystal structure of layered oxides during charge/discharge

Crystal structure of layered oxides during charge/discharge

Comparison of the variation in the *c* lattice changes and corresponding differential capacity of the NMC cathodes

10.1016/j.susmat.2021.e00305

Instable for

all NMCs

4.6

4.4

4.8

Degradation of layered oxides during charge/discharge

Degradation schematic model of NMC cathodes

Cation migration and oxygen release in layered oxides during charge/discharge

Partially cation mixed phase with TM ions in Li slab (TMO)

r(Ni²⁺) = 0.69 Å, r(Li⁺) = 0.76 Å)

 $2\text{Li}_{0.5}\text{NiO}_2 \text{ (ordered)} \rightarrow \text{LiNi}_2\text{O}_4 \text{ (spinel)}$ $4\text{Li}_{0.5}\text{NiO}_2 \text{ (ordered)} \rightarrow 4\text{NiO} + \text{``Li}_2\text{O}\text{''} + 3/2\text{O}_2$

Modification of layered oxides

Lanthanum 136.91	Cee Lerium 140.12	59 Pr Praseodymium 140.91	Reodymium 144.24	Promethium (145)	Samarium 150.36	Europium 161.96	Gd Gadolinium 157.25	65 Tb Terbium 158.93	Dysprosium 162.50	Holmium Holmium 164.93	Erbium 167.26	69 Tm Thulium 168.93	70 Yb ^{Ytterbium} 173.05	Lutetium 174.97
Actinium (227)	90 Th Tharium 232.04	Protactinium 231.04	92 U Uranium 238.03	93 Np Neptunium (237)	Plutonium (244)	95 Am Americium (243)	96 Cm Curium (247)	97 Bk Berkelium (247)	98 Cf Californium (251)	99 Es Einsteinium (252)	100 Fm Fermium (257)	101 Md Mendelevium (250)	Nobelium (259)	103 Lr Lawrencium (266)

Chemical elements utilized in various doping and coating strategies targeting improvement of the functional properties of NMC811 cathode materials, based on the data from 381 publications from the years of 2009 – 2023.

https://ssrn.com/abstract=4524502

Modification of layered oxides

Synthesis of layered oxides

Inhomogeneous TM distribution

Synthesis of layered oxides

SEM image of NMC cathode

Co-precipitation

The scheme of co-precipitation of the hydroxide precursor TM(OH)₂

 $Me^{2+} + nNH_3 \rightarrow [Me(NH_3)_n]^{2+}$ $[Me(NH_3)_n]^{2+} + 2OH^- \rightarrow Me(OH)_2 + nNH_3$

Defects in layered oxides

1. The anti-site disorder of Li and TM (exchange Ni \leftrightarrow Li, r(Ni²⁺) = 0.69 Å, r(Li⁺) = 0.76 Å):

 $Ni_{Ni}^{\times} + Li_{Li}^{\times} \rightarrow Li_{Ni}^{\prime} + Ni_{Li}^{\bullet}$

2. Excess Ni in Li positions (low $p(O_2)$):

$$V_{Li} + Ni_{Ni} + O_0^{\times} \to Ni_{Li} + V_{Ni}^{'''} + V_0^{\bullet \bullet} + 1/2O_2$$

3. Excess Li in Ni positions (high $p(O_2)$):

$$Ni_{Ni}^{\times} + 2Li_{(s)} + O_2 \rightarrow Li_{Ni}^{\prime} + Ni_{Ni}^{\bullet} + Li_{Li}^{\times} + 2O_0^{\times}$$

Kröger-Wink notation X^{Z}_{Y}

X – element symbol for an atom, V for vacancy;

Y – type of the site occupied by X: (i for an interstitial, element symbol for site normally occupied by this element);

Z – charge relative to the normal ion charge on the site

- ' negative relative charge
- positive relative charge
 x zero relative charge (x is often omitted)

Defects in layered oxides

Air-annealed

Oxygen-annealed

Orlova, Savina, S. Abakumov, Morozov, A. Abakumov, *Symmetry*, 13, 1628 (2021).

Modification strategies

Single crystal layered oxides

Spherical-like agglomerates

Single crystal

Single crystal layered oxides

Single crystal layered oxides

Moiseev, Savina, Pavlova, Abakumova, Pazhetnov, Abakumov, Energy Adv., 1, 677–681 (2022), patent RU 2 776 156, 14.07.2022

Microstructure organization of layered oxides

Crystal structure of Li-rich layered oxides

Electrochemical performance of Li-rich layered oxides

Negative side of Li-rich NMC

Drawbacks:

- 1. Slow kinetics
- 2. Voltage hysteresis
- 3. Voltage fade
- 4. Irreversible oxygen oxidation (gaseous O₂ evolution)

Li-rich NMC (Li_{4/3-x}Ni_xMn_{2/3-x}Co_xO₂)

