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Image «Зеленая энергетика» (style – detailed photo) 
generated by Kandinsky 2.1

Discovery of new materials 

Diversification of technology stacks

Environmentally friendly production 
chains

Goals



Data-driven solutions
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Materials discovery: the beginning of time
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Stone Age Bronze Age Iron Age

2.6 million 
years ago

7 000 BC 1 000 BC400 000 
years ago

Kandinsky 2.1 Kandinsky 2.1 Kandinsky 2.1

Images generated by Kandinsky 2.1



1980

From discovery to application
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1973

1985

1991“for the development of lithium-ion batteries”



Accelerating materials discovery
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Pyzer-Knapp E. O. et al. (2022) Accelerating materials discovery using artificial intelligence, high performance computing and robotics. npj Computational Materials 8, 64.



Is data really invaluable?
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Image generated by Kandinsky 2.1:
«Компьютер создает и хранит новые знания»



Data in action
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Data

Features

Algorithms

MACHINE 
LEARNING
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Data on structures and thermodynamics of materials

Experimental data Computational datasets



Search space
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Image «Кристаллическая структура вещества (style 
– detailed photo) generated by Kandinsky 2.1

more than 10100 combinations



AI workflows in materials science
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Algorithm OutputData

Structure Local 
optimization Property

1st generation
Structure-property 
calculations

Composition Global 
optimization

Structure + 
property

2nd generation
Crystal structure 
predictions

Chemical and 
physical data

Machine 
learning

Composition + 
structure + 

property
3rd generation
Data-driven design of 
new materials

Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O., & Walsh, A. (2018). Machine learning for molecular and materials science. Nature, 559(7715), 547.

Image «J.A.R.V.I.S. Железный 
человек» (style – cyberpunk) 
generated by Kandinsky 2.1



Crystallographic tools 
and modeling
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Cathode materials
Operando studies of NCA
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J. Phys. Chem. C 2017, 121, 28293−28305

(a) Evolution of neutron diffraction patterns during a charge−discharge 
process. The intensive diffraction peaks at d = 3.4−3.7 Å correspond to 
LixC6 phases, and that at d ≈ 4.7 Å is a 003 reflection of the NCA 
cathode material. (b) The corresponding changes of voltage and current.



-1 stone -3 stones

-2 stones

14 possible structures → 4 symmetrically inequivalent structures

Cathode materials
Composition/configuration spaces of deintercalation
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Cathode materials
Composition/configuration spaces of LNO and NCA
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J. Phys. Chem. C 2017, 121, 28293−28305

Remove 
Li ions

Remove 
Li ions

4096 / 87
structures

Add 
substituent

57420 / 20760
structures



Cathode materials
DFT results for NCA and ML approaches
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J. Phys. Chem. C 2017, 121, 28293−28305

… … … …

i xi yi …

… … … …

Comparison of the data of operando neutron diffraction (open 
squares) with calculated (a) a, (b) b, and (c) c lattice 
parameters of the NCA configurational space (open circles) 
within the “PBE-vdW” model.

Dependencies of the estimators of energy prediction quality:
(a) MAE and (b) R2 determination coefficient versus delithiation for
the ridge regression models trained in a sequentially reduced set of
structural descriptors.
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Solid electrolytes
Symmetrically inequivalent K+ pathways in Ti-doped KFeO2
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J. Phys. Chem. C 2019, 123, 29533−29542

Fe → Ti 
substitutions

Inequivalent 
structure 
realizations

Inequivalent 
K+ pathways

1 64 128

2 15 552 59 520

3 1 537 600 8 630 400

KFeO2 crystal structure with five indicated {FeO}6 rings corresponding to five 
inequivalent K+ migration pathways.



Solid electrolytes
ML predictions of K+ migration in Ti-doped KFeO2
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J. Phys. Chem. C 2019, 123, 29533−29542

… … … …

i xi yi …

… … … …
(a) Comparison of the DFT calculated maximum energies along the pathways (dots) with the different model 
predictions (lines) with respect to the pathway types. (b) Scatter plot of the DFT calculated maximum energies 
vs model assessments. While (c) summarizes the coefficients of the ridge regression model, (d) visualizes the 
results of the feature importance analysis within the random forest and gradient boosting regression models for 
20 introduced categories of structural descriptors (PDA: intervals in radians; PDD: intervals in angstroms).

Ridge regression assessments of the maximum energies with 
respect to the values of the structural descriptors. PDD and 
PDA are the coordinates of the polar-type system.

Pathway statistics with respect to their favorability f at the 
studied doping levels of the K1−xFe1−xTixO2 structure (1, 2, 
and 3 Ti atoms in the model cell).



Electrocatalysis and optoelectronics
New materials discovery through the structure-to-property predictions
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ACS Catalysis 2021, 11, 6059 – 6072

Number Inequivalent 
combinations

Adsorbate
molecules 82

1 281 040
(∼264 890 000)Adsorbent

materials 11 451

npj 2D Materials and Applications 2023, 7, 6
https://2dmd.airi.net/

Number Inequivalent 
combinations

Pristine 2D 
monolayers (bases) 6 Low defect contents: 

11866 (MoS2, WSe2)

High defect contents:
3000 (all bases)

Point defects vacancies and 
substitutions



Crystal structure representations and AI models
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descriptor value

composition …

atomic 
coordinates …

coordination 
numbers …

defect content …

structural motifs …

Table of descriptors Graph representation

Complete 
composition/configuration 
space

Computationally 
available samples

Model



Graph neural networks
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Phys. Rev. Lett. 2018, 120, 145301

CGCNN

SpinConv

arXiv preprint arXiv:2106.09575 (2021)

DimeNet

arXiv preprint arXiv:2003.03123 (2020)



Discovering new materials
from structure-to-property predictions to synthesizability assessments
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Physics-informed
neural networks

Cryst. Growth Des. 2022, 22, 4570−4581
Materials Today Chemistry 2023, 30, 101541 

For the Sc-Pt systems, comparison of EHs obtained by the RF regression and GNN-based models (a) without taking into account defect 
contents and (b) considering them by GNN-B. (c) Formation energies (gray crosses) calculated for the selected structures and the
Sc2Pt−Sc57Pt13−Sc convex hull (blue dotted polyline). The structures with DFT-confirmed EHs below 2 meV/atom and those of them 
predicted by the RF regression are highlighted (blue crosses and green circles, respectively).



Discovering new materials
from structure-to-property predictions to structural stability
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Submitted to Computational Materials Science

(a)

(b)

(с)

(a) For the SchNet and Allegro models with random initialization of their learnable parameters 
(without pre-training), the average test RMSE dependencies on the validation group used. Pre-
training effects on the test scores for the (b) both-both and (c) element-both Allegro model. In all 
plots presented, the translucent areas correspond to one standard deviation of the test RMSE scores 
obtained using 4 random training/validation subsets.



Discovering new materials
ML-based synthesizability assessments for higher borides
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1 048 576 / 46 996 
structures

Test RMSE scores, meV/atom
Convex hull 

for ternary system



Material domain Quasicrystal
approximants

Perovskites Higher
borides

2D materials

Search
space 16 000 74 000 376 000 100M+

DFT-derived 
samples

37%
(6000)

0.3%
(200)

0.07%
(260)

< 0.006%
(6000)
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AI for predicting new materials and targeted 
modification of their properties

Task
GNN (SpinConv, Graphormer, Allegro) 
with modification of graph properties
Optimal training and data sampling strategies
Physical modeling (DFT)

Methods

Discovering new materials
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Generation of crystal structures with optimization 
of composition/structure/properties

Generative neural network models (Variational 
autoencoder)

Modification of latent representation of crystal 
structures

Physical modeling (DFT)

Composition modification

Structure/property modifications

LiCoO2 LiNiO2

Al8V2Cu4
-240 meV/atom

Task

Methods

Discovering new materials



Digital world vs Real world
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The task of searching for new functional materials has 
almost unlimited complexity

The environmental and efficiency agenda determine the 
direction of the search for new materials

AI models are a universal approach allowing to predict 
properties of materials



New Materials Design Group @ AIRI
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