Indexing powder X-ray diffraction data

Artem Abakumov

Center for Energy Science and Technology, Skoltech

X-ray powder diffraction pattern

 $2d_{hkl}\sin\theta = n\lambda$

Skoltech

d_{hkl} and the unit cell parameters $a, b, c, \alpha, \beta, \gamma$

triclinic

$$a \neq b \neq c$$

 $a \neq \beta \neq \gamma \neq 90^{\circ}$

$$\frac{1}{d_{hkl}^{2}} = \frac{1}{s} \left[\left(\frac{h \sin \alpha}{a} \right)^{2} + \left(\frac{k \sin \beta}{b} \right)^{2} + \left(\frac{l \sin \gamma}{c} \right)^{2} + 2 \frac{hk}{ab} (\cos \alpha \cdot \cos \beta - \cos \gamma) + \frac{hk}{ab} (\cos \alpha \cdot \cos \beta - \cos \gamma) + \frac{hk}{ab} (\cos \alpha \cdot \cos \beta - \cos \gamma) + \frac{hk}{ab} (\cos \alpha \cdot \cos \beta - \cos \gamma) + \frac{hk}{ab} (\cos \beta \cdot \cos \gamma - \cos \alpha) + 2 \frac{kl}{bc} (\cos \beta$$

Indexing X-ray powder diffraction pattern

Indexing – assigning *hkl* indexes and calculating the lattice parameters

Problems:

- crystal system is not known: which formula to use?
- both *hkl* and *a*,*b*,*c*, α , β , γ are not known

the problem does not have a unique solution

Indexing is more an art than a science A. Le Bail

Cubic structures

Everybody can manually index XRD pattern of a cubic structure

$$\frac{1}{d_{hkl}^2} = \frac{h^2 + k^2 + l^2}{a^2} \qquad \frac{10^4}{d_{hkl}^2} = \mathbf{Q}, \ \frac{10^4}{a^2} = \mathbf{A} \qquad \mathbf{Q} = \mathbf{A}(h^2 + k^2 + l^2)$$

indexation is based on analyzing Q series

cubic lattice with a = 10 Å

d, Å	Q	hkl (primitive)	Series	hkl (I-centered)	Series	hkl (F-centered)	Series
10.0000	100	100	1	-		-	
7.07106	200	110	2	110	2	-	
5.7735	300	111	3	-		111	3
5.0000	400	200	4	200	4	200	4
4.4721	500	210	5	-		-	
4.0824	600	211	6	211	6	-	
3.5355	800	220	8	220	8	220	8
3.3333	900	300, 221	9			-	
3.1622	1000	310	10	310	10	-	

Tetragonal and hexagonal structures

Q series for the tetragonal and hexagonal systems

hk0 (tetragonal)	$h^2 + k^2$	hk0 (hexagonal)	h^2+k^2+hk	001	l^2
100	1	100	1	001	1
110	2	110	3	002	4
200	4	200	4	003	9
210	5	210	7	004	16
220	8	300	9	005	25
300	9	220	12	006	36
310	10	310	13	007	49
320	13	400	16	008	64
400	16	320	19	009	81

Prototype cubic structures

Skolkovo Institute of Science and Technology

Orthorhombic distortion

$$\frac{1}{\mathbf{d}_{hkl}^2} = \frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}$$

Monoclinic distortion $\frac{1}{d_{hkl}^2} = h^2 a^{*2} + k^2 b^{*2} + l^2 c^{*2} + 2lhc^* a^* \cos\beta^*$

We assume that the structure distortion does not significantly change the intensities of the reflections.

Relative intensities of the split reflections depend on their multiplicities.

Multiplicity is the number of reflections which superimpose in the same diffraction peak and can not be principally resolved.

In the cubic system:

```
\{100\} = 100, 010, 001, \overline{1}00, 0\overline{1}0, 00\overline{1} - multiplicity 6
```

 $\{110\} = 110, 101, 011, \overline{1}10, 10\overline{1}, 0\overline{1}1, 1\overline{1}0, \overline{1}01, 01\overline{1}, \overline{1}\overline{1}0, \overline{1}0\overline{1}, 0\overline{1}\overline{1} - multiplicity 12$

 $\{111\} = \overline{1}11, 1\overline{1}1, 11\overline{1}, \overline{1}\overline{1}1, \overline{1}1\overline{1}, 1\overline{1}\overline{1}, \overline{1}\overline{1}\overline{1}, 111 - multiplicity 8$

If the reflection with multiplicity m = q + p splits into two reflections with multiplicities q and p, the ratio between their intensities will be nearly equal to q/p.

d, Å	I, %	Q	Qsubcell	hkl _{subcell}	Splitting	hkl
4.0453	4.4	611	652	100	001	001
3.7931	10.8	695	000	100	100, 010	100
2.7661	100.0	1307	1250	110	101, 011	101
2.6791	41.2	1393	1550	110	110	110
2.2332	18.1	2005	2005	111	111	111
2.0242	13.8	2440	2612	200	002	002
1.8940	23.1	2787	2013	200	200, 020	200

- 1. Analyzing Q series for the subcell gives sublattice type cubic primitive
- 2. Splitting type corresponds to tetragonal distortion of the subcell
- 3. Intensity ratio between the split reflections allows assigning the multiplicity factors and *hkl* indexes
- 4. Refinement of the lattice parameters: a = 3.7893(7)Å, c = 4.048(1)Å

Superstructure

periodic perturbation of the parent structure due to different reasons reducing the translational symmetry

1. Cation ordering

2. Anion ordering

3. Ordering of anion vacancies

4. Ordering of cation vacancies

5. Atomic displacements

Subcell and supercell reflections

 f_1

 f_2

С

2c

parent structure: the atom with the scattering factor f_1 at 0,0,0

superstructure: the atom with the scattering factor f_1 at 0,0,0 and the atom with the scattering factor f_2 at 0,0,1/2

 $F(\mathbf{H}_{hkl}) = \sum_{j=1}^{N} f_j e^{i2\pi \mathbf{H}_{hkl} \cdot \mathbf{r}_j} =$ $= f_1 + f_2 e^{i\pi l} = f_1 + (-1)^l f_2$ $hkl: l = 2n \qquad F(\mathbf{H}_{hkl}) = f_1 + f_2 \quad \text{- subcell reflections}$ $hkl: l \neq 2n \qquad F(\mathbf{H}_{hkl}) = f_1 - f_2 \quad \text{- supercell reflections}$ Skoltect

Subcell and supercell reflections

Skolkovo Institute of Science and Technology

Subcell and supercell reflections

Tetragonal a<c

Subcell	Supercell
	001
100	
002	
	101
110	
102	
	111
110	103
112	
	113

Skoltech

1. Superstructure is generally related to multiple increase of the unit cell volume:

- determinant of the transformation matrix > 1

2. Intensities of superlattice reflections depend strongly on the degree of deviation from the substructure.

3. Transformation matrix shows the relationships between the subcell and supercell vectors

d, Å	I, %	Q	Qsubcell	hkl _{subcell}	Splitting	hkl _{sub}		
4.6935	56.8	454						
4.5473	50.5	484						
4.0057	44.8	623		400	100, 001	100, 001		
3.9920	23.1	628	626	100	010	010		
3.5803	3.2	780						
2.9008	25.1	1188			101	101		
2.8270	100.0	1251	1248	110	011, 110,	011, 110		
							<u>1</u> 10, 011	
2.7676	22.9	1305			101	101		
2.4460	15.1	1671						
2.4190	6.9	1709						
2.3972	9.7	1740						
2.3845	16.0	1759						
2.3465	3.8	1816	1974	111	111	111		
2.2745	3.4	1932	10/4		111	111		
2.2160	2.6	2036						
2.1609	1.4	2141						
2.1180	0.6	2229						
2.0026	24.4	2493	0500		200, 002	200, 002		
1.9957	13.8	2511	2502	200	020	020		

- 1. Sublattice type cubic primitive
- Splitting type corresponds to monoclinic distortion of the subcell (111 reflection is split)
- Indexing the reflections according to their multiplicity factors
 ↓

monoclinic unit cell (*b*-setting) with *a*=*c*

4. Refinement of the lattice parameters:

a = 4.0099(8)Å, b = 3.9917(4)Å c = 4.0095(7)Å $\beta = 92.695(6)^{\circ}$

For the monoclinic unit cell with a=c we can always find an orthorhombic unit cell of larger volume

monoclinic
$$P \Rightarrow$$
 orthorhombic B

$$\begin{pmatrix} \mathbf{a}_{new} \\ \mathbf{b}_{new} \\ \mathbf{c}_{new} \end{pmatrix} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{a}_{sub} \\ \mathbf{b}_{sub} \\ \mathbf{c}_{sub} \end{pmatrix}$$
$$\det = 2$$

$$\mathbf{a}_{new} = \mathbf{a}_{sub} - \mathbf{C}_{sub}$$

 $\mathbf{b}_{new} = \mathbf{b}_{sub}$
 $\mathbf{C}_{new} = \mathbf{a}_{sub} + \mathbf{C}_{sub}$

d, Å	I, %	Q	Qsubcell	hkl _{subcell}	Splitting	hkl _{sub}	hkl _{new}
4.6935	56.8	454					
4.5473	50.5	484					
4.0057	44.8	623	c	400	100, 001	100, 001	101
3.9920	23.1	628	020	100	010	010	010
3.5803	3.2	780					
2.9008	25.1	1188			101	101	002
2.8270	100.0	1251	1248	110	011, 110,	011, 110	111
					110, 011		
2.7676	22.9	1305			101	1 01	200
2.4460	15.1	1671					
2.4190	6.9	1709					
2.3972	9.7	1740					
2.3845	16.0	1759					
2.3465	3.8	1816	4074		111	111	012
2.2745	3.4	1932	1874	111	111	111	210
2.2160	2.6	2036					
2.1609	1.4	2141					
2.1180	0.6	2229					
2.0026	24.4	2493	0500	200	200, 002	200, 002	202
1.9957	13.8	2511	2502	200	020	020	020

Lattice parameters of the new *B*-centered orthorhombic unit cell:

 $a_{new} = 5.5363(3)$ Å, $b_{new} = 3.9921(3)$ Å $c_{new} = 5.8022(4)$ Å

What to do with other unindexed reflections?

We will treat them as supercell reflections.

d, Å	I, %	Q	Qsubcell	hkl _{subcell}	Splitting	hkl	hkl _{new}	hkl _{ss}
4.6935	56.8	454						011
4.5473	50.5	484						110
4.0057	44.8	623	c	100	100, 001	100, 001	101	101
3.9920	23.1	628	020	100	010	010	010	020
3.5803	3.2	780						111
2.9008	25.1	1188			101	101	002	002
2.8270	100.0	1251	1248	110	011, 110,	011, 110	111	121
					<u>1</u> 10, 011			
2.7676	22.9	1305			101	1 01	200	200
2.4460	15.1	1671						112
2.4190	6.9	1709						031
2.3972	9.7	1740						130
2.3845	16.0	1759						211
2.3465	3.8	1816	4074		111	111	012	022
2.2745	3.4	1932	18/4	111	111	111	210	220
2.2160	2.6	2036						131
2.1609	1.4	2141						122
2.1180	0.6	2229						221
2.0026	24.4	2493	0500	200	200, 002	200, 002	202	202
1.9957	13.8	2511	2002	200	020	020	020	040

Searching for the supercell is not trivial.

Low angle reflections are the most important.

Check possible multiplication of subcell axes lengths.

Check different possibilities of simple hkl for low angle reflections.

Check relationships between the low angle and subcell reflections.

In this case – doubling of *b*-parameter: $Q_{010} = 628/4 = 157$ $Q_{011} = 157 + 1188/4 = 454 - first low$ angle reflection $Q_{110} = 157 + 1305/4 = 483 - second$ low angle reflection

Final refinement of the lattice parameters:

a = 5.5366(3)Å, b = 7.9845(4)Å c = 5.8022(3)Å

Subcell and supercell

Transformation matrix Α' Μ × A $\begin{pmatrix} \mathbf{a}_{ss} \\ \mathbf{b}_{ss} \\ \mathbf{c} \end{pmatrix} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{a}_{sub} \\ \mathbf{b}_{sub} \\ \mathbf{c} \end{pmatrix}$ H' = **M** \times **H** $\begin{pmatrix} h_{ss} \\ k_{ss} \\ l \end{pmatrix} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} h_{sub} \\ k_{sub} \\ l \end{pmatrix}$ Transformation of the atomic coordinates - inverse transpose of the transformation matrix

$$\begin{array}{l} \mathbf{X'} = & (\mathbf{M^{T}})^{-1} \times \mathbf{X} \\ \begin{pmatrix} x_{ss} \\ y_{ss} \\ z_{ss} \end{pmatrix} = \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1/2 & 0 \\ -1/2 & 0 & 1/2 \end{pmatrix} \begin{pmatrix} x_{sub} \\ y_{sub} \\ z_{sub} \end{pmatrix} \end{array}$$

You get a starting set of atomic coordinates in the superstructure unit cell for further work.

You can limit the choice of possible space groups by the subgroups of the space groups of the parent structure.

In addition to standard figure-of-merit criteria, the correctness of indexation is confirmed by a clear crystallographic relationship with the prototype structure

Indexing the subcell does not require the peak positions to be very precise – you can do it even if a zero shift is present. Then use the subcell reflections as a reference to refine the zero shift, correct your data and continue.

Splitting patterns

Primitive cubic (P)

Face-centered cubic (F)

Body-centered cubic (/)

Nº	Symmetry	Number of split reflections							
		100	110	111	200	210	211		
I	tetragonal	2	2	1	2	3	2		
II	trigonal	1	2	2	1	2	3		
	orthorhomb.	3	3	1	3	6	3		
IV	orthorhomb.	2	3	2	2	4	4		
V	monoclinic	3	4	2	3	8	6		
VI	monoclinic	2	4	3	2	6	7		
VII	triclinic	3	6	4	3	12	12		
		-							
Nº		Number of split reflections							
	Symmetry								
		111	200	220	211	222	400		
		111	200	220	311	222	400		
I	tetragonal	1	2	2	2	1	2		
II	trigonal	2	1	2	3	2	1		
	orthorhomb.	2	2	3	4	2	2		
IV	orthorhomb.	1	3	3	3	1	3		
V	monoclinic	2	3	4	6	2	3		
VI	monoclinic	3	2	4	7	3	2		
VII	triclinic	4	3	6	12	4	3		
Nº	Symmetry		Nu	imber of s	plit reflectio	ns			
		110	200	211	220	310	222		
I	tetragonal	2	2	2	2	3	1		
II	trigonal	2	1	3	2	2	2		
III	orthorhomb.	3	3	3	3	6	1		
IV	orthorhomb.	3	2	4	3	4	2		
V	monoclinic	4	3	6	4	8	2		
VI	monoclinic	4	2	7	4	6	3		
VII	triclinic	6	3	12	6	12	4		

Automatic indexing

- trial-and-error method (TREOR):

1) assigning *hkl* indexes to a basis set of minimum required number of low angle reflections;

2) attempt to index all other reflections (or at least a fraction of them)

- zone axis search (*ITO*):

1) search for *hkl* indexes belonging to specific zone axes (*hk*0, 00*l* etc, as in the manual method):

2) attempt to index all other reflections (or at least a fraction of them)

problem with anysotropic unit cell

Indexing X-ray powder diffraction pattern

🤗 Available Software for Powder Diffraction Indexing including a Published Literature Search List - Internet Explorer	
🕞 🔄 🗢 🔓 http://www.ccp14.ac.uk/solution/indexing/	☆ 🔅
File Edit View Favorites Tools Help	

A non-Rigourous list of Powder Indexing References Sorted by Date down to 1831

Thanks to Robin Shirley (E-mail: R.Shirley@surrey.ac.uk) for corrections and updates to the reference list (years 1917 to 1982) and Andy Fitch (E-mail: fitch@esrf.fr) for the Kohl indexing software references - 7th May 1999). November 2001 update - add more references from A. D. Mighell and co-workers, R.A. Jacobson and co-workers, G.S. Smith, A. L. Patterson and co-workers; L.K. Frevel and co-workers. November 2001 - add more references from Y. Le Page. Jan 2003 update.

(Including some non-100% relevant references that I want to follow up on later.) Note that 5 papers were found stating full-profile/whole-profile/whole profile based powder indexing. Additions/Corrections Welcome

• "Indexing of powder diffraction patterns by iterative use of singular value decomposition", **A. A. Coelho**,

J. Appl. Cryst. (2003). 36, 86-95 http://scripts.iucr.org/cgi-bin/paper?hn0138

first Laue, Friedrich and Knipping experiment - 1912

Automatic indexing programs:

- ITO J.Visser, J.Appl.Cryst. 2, 89-95 (1969)
- **TREOR** P.-E. Werner et. al, J.Appl.Cryst. **18**, 367-370 (1985)
- **DICVOL** A.Boultif & D.Louèr, J.Appl.Cryst. **24**, 987-993 (1991)

