Low Temperature Electrocatalysts for Green Hydrogen and Ammonia

Keith J. Stevenson

Skoltech

November 15, 2021

World Energy Demand

Energy consumption predicted to increase 56% from 2010-2040

Require 30-40 TW to support >10 billion by 2050

http://www.kip.zcu.cz/kursy/svt/erasmus/8_2_ENERGY.html

Global Greenhouse Gas Emissions

Emissions predicted to rise considerably By Consumption By Source

World CO2 emissions from consumption of energy

http://www.ftrctlb.com/node/382

IPCC, Climate Change 2007: Synthesis Report

Countries Best to Cope With Climate Change

Ranked by "Vulnerability" and "Readiness"

© Eco Experts/ND-Gain Index

http://www.dailymail.co.uk/sciencetech/article-29082131

Alternative Energy Versus Conventional Energy

Closed Loop, Carbon Neutral Versus Open Loop, Carbon Emission

http://ecofriendlysolutionsindia.blogspot.ru/2013/03/conventional-alternative-energy-sources.html

Grand Challenges for Energy Sustainability

Carbon Free Energy

- Require 30-40 TW to support >10 billion by 2050.
- Need new catalysts to support a mix of alternative energy sources.

Main chemical transformations:

Methane Activation to Methanol: $CH_4 + \frac{1}{2}O_2 \rightarrow CH_3OH$ Direct Methanol Fuel Cell: $CH_3OH + H_2O \rightarrow CO_2 + 6H^+ + 6e^ CO_2$ (Photo)reduction to Methanol: $CO_2 + 6H^+ + 6e^- \rightarrow CH_3OH$ H_2/O_2 Fuel Cell: $H_2 \rightarrow 2H^+ + 2e^-$; $O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$ (Photo)chemical Water Splitting: $2H^+ + 2e^- \rightarrow H_2$; $2H_2O \rightarrow O_2 + 4H^+ + 4e^-$ Dinitrogen to Ammonia: $N_2 + 6H^+ + 6e^- \rightarrow 2NH_3$; $N_2 + 6H_2O + 6e^- \rightarrow 2NH_3 + 6OH^-$

Strategy for Russia: Key Points from President Skoltech Putin's Speeches 2021

- Reduce methane emission, eliminate gas flaring
- Energy efficiency across sectors
- CCUS from all sources
- Hydrogen as energy storage and source
- Establish carbon credits market
- Develop international monitoring system on GHG emissions using AI on data from satellites and ground measurements of CS
- Carbon sequestration in forests, capacity 2.5Bt CO2
- Russia is closer to 1990 baseline than others
- Nuclear power is green energy
- Green investments welcome in Russia

Sustainable Hydrogen

https://www.energy.gov/eere/fuelcells/h2scale

Holy Grail: Sustainable Hydrogen and Ammonia

Fig. 1 | Pathways to renewable ammonia. Water electrolysis combined with the improved Haber-Bosch process (scenario A) and direct electrochemical synthesis (scenario B).

170 Million tons of NH_3 produced per year 1.5% of global total CO_2 emissions (2.9 ton CO_2 per NH_3)

NATURE CATALYSIS | VOL 2 | MAY 2019 | 377-380

Russia Focused On Export of Hydrogen and Ammonia

Future export oriented hydrogen & ammonia production sites in Russia: past & ongoing studies

Murmansk –

vellow and green hydrogen (2020-2021)

ame blue hydrogen & ammonia

(2021)

Magadan feasibility study completed (2015-2017) with negative conclusion

Lensky District NH3 blue ammonia (2021)Ust-Kutsky District blue ammonia

 H_2 Tugur Bay green hydrogen

Penzhina Bay green hydrogen

Sakhalin blue hydrogen (2020 - 2021)

Source: SKOLKOVO Energy Centre

Low Temperature Electrocatalysis for Green Generation of Hydrogen and Ammonia

Areas of focus:

Room Temperature Electrocatalysis for (OER, HER) Electrochemical Oxidation of Hydrogen carriers, (Urea, MeOH) Electrochemical Reduction of Nitrogen to Ammonia Electrochemical Valorization of Waste (HMF, Furfural, Glycerol, Ligin) Electrochemical CO₂ Reduction to Ethylene?

Alkaline Fuel Cells Alkaline Electrolyzers

Skoltech CEST Faculty and Researchers Stevenson, Abakumov, Nikitina, Levchenko, Akseynov, Artemov, etc

Scheme 1. Value-added products derived from the oxidative upgrading of HMF.

Five Broad Classes of Catalysts

Use of Rare Elements in Modern Technologies

- Chemical catalysis
- Electronics
- Batteries, Fuel & Solar Cells
- Petroleum refining
- Catalytic convertors
- Metal refining
- Glass polishing

Anode for NMH batteries; about 10 —15 kg La per vehicle

Permanent Nd magnets

Tr, Eu, and Yt are the blue, green, and red phosphors used in many light bulbs, television, etc...

Electrochemical Energy Technologies

Fuel cells, batteries, supercapacitors (electrochemical)

Fuel Cell

Air

Electric

Chemical energy directly into electrical energy – clean energy technologies

Plug-In Hybrids Distributed

Generation

Smart End-Use

Devices

Electrochemical Power Sources Versus Combustion Engines

M. S. Whittingham, MRS Bulletin 2008, 33, 411.

Electrochemical Energy Storage Options

Secondary batteries

- Stationary electrode materials
- Mature technology (lead acid, NiCd, NiNH, NaS)
- Emerging technologies (NaMCl₂, Li-ion)
- New chemistries (Li-air, Li-S, Zn-air)

NGK 34 MW NAS alongside 51 MW Wind Farm

Source:http://www.ngk.co.jp/englis h/products/power/nas/

Redox flow batteries

- Flowing electrode materials
- Mature technology (zincbromine, all-vanadium)
- Emerging technologies (cerium-zinc, iron-chromium)
- New chemistries (vanadium-bromine, soluble lead)

VRB (Prudent Energy) PacifiCorp (Moab, Utah) 2 MWh VRB-ESS

Source: http://www.pdenergy.com/

Regenerative fuel cells

- Gaseous electrode materials
- Emerging technologies
 - (H2-O2 conventional and unitized)
- New chemistries (H₂-Br₂, H₂-H₂O₂, NaBH₄-H₂O₂)

1kW-prototype Regenerative Fuel Cell System

Source: www.apg.jaxa.jp

Electrochemical Energy Storage Comparison

Unitized Regenerative Fuel Cell (URFC)

Desired for applications that require high energy density and low weight

- Cars
- Solar powered aircraft
- Micro-spacecraft
- Load-leveling for wind turbines and Solar Cells

Figure 1. The electrochemistry of a unitized regenerative fuel cell. In the fuel-cell mode, a proton-exchange membrane combines oxygen and hydrogen to create electricity and water. When the cell reverses operation to act as an electrolyzer, electricity and water are combined to create oxygen and hydrogen.

Tailoring of Nanostructured Materials

Purposeful Tailoring of Structure, Shape, Composition, Orientation

Desired AttributesHigh Surface Area10-1000 m²/gHigh Porosity50-97 %Low Density0.005-2 g/cm³

Templating & Structure Directing Agents

Catalyst particles (Iron, Cobalt, Gold)	Leiber, Smalley
Surfactants (alkylamines, block co-polymers)	Nesper, Turner
Membranes (Al ₂ O ₃ , polycarbonate,)	Martin, Caruso
Colloidal-crystals (latex, PS, SiO ₂)	Stein, Bartlett, Dunn
Macromolecular (dendrimers)	Crooks, Chandler

• Templating agent

Template Removal

New Materials with Uncharacterized Structure/Property Relationships

Catalyst Architectures

JACS 2012, 134(23), 9812 J. Phys. Chem. C. 2012, 116(20),11032

PtCu, PdCu, PdAg, PtPd, PdIr, PdMo

TiO₂(b), MnO₂, LaMO₃, MoS₂, Fe₃O₄

Chem. Commun. **2011**, *47*(44), 12104 J. Phys. Chem. Lett. **2013**, *4*, 1254 J. Mater. Chem. A **2013**, *1*, 13443 Chem. Mater. **2014**, *26*, 3368

J. Greeley, T.F. Jaramillo, J. Bonde, I. Chorkendorff, J.K. Nørskov, Nature Materials 5 (2006) 909-913

Activity Enhancement Effects from Catalysts

Ensemble Effects

→ Different atomic sites or clusters cooperate to facilitate distinct reaction steps

e.g. oxygen bond cleaving vs formation and desorption of water

Fernandez, Walsh & Bard J. Am. Chem. Soc. 2005.

Oxygen Electrochemistry

Oxygen Chemistry is Ubiquitous

- Electrolyzers for H₂ generation
- Metal-air batteries (Zn-air, Li-air)

Hong, W. T.; Grimaud, A.; Suntivich, J.; Shao-Horn, Y. Energy Environ. Sci., 2015

OER and ORR Thermodynamics vs Kinetics

- "kinetically sluggish" reactions require large overpotentials ($\eta \ge 300 \text{ mV}$)
- Large overpotentials result in lower power, device efficiency

Catalyst materials

- Materials capable of both OER and ORR for regenerative fuel cells →
 'bifunctional' catalysts
- Alkaline electrolyte enables non-precious metal oxides → Perovskites

"Predictions" on Synthesis of Pd Alloy & Core@Shell Catalysts

Calculations predict stability of Ir, Ru, Mo, W, Re@Pd core@shell structure And homogeneous alloy formation for PdAg & PdAu.

Rationale for Choosing Pd-Ag Alloy

Volcano Dependence of Activity on DFT Calculated d-band Centers

F. H. B. Lima et al. J. Phys. Chem. C. 2007.

Ensemble Effect: Oxygen Binding on Ag is too weak, whereas too strong on Pd

Economics: Pd (\$630/troy oz) vs Ag (\$30/troy oz)

Both Ag and Pd FCC metals → form solid solutions over compositional range

Challenge: Controlled synthesis of uniform alloys to take advantage of potential Pd-Ag synergy

Synthesis of Catalyst Architectures

How does size, shape, composition and morphology influence properties?

Synthesis of Ag-Rich Ag-Pd Alloy Catalysts

Ratio of Ag & Pd determines final alloy stoichiometry. Metal concentration always fixed at 1 mmol, theoretical reaction yield of ~105 mg.

- Slow ramp to 100C, hold for 1 hr.
- React under Ar / N₂.
- Forms kinetic alloy
- Close to 100% yield

Particles are 30% (by weight) ligand, results in ~130 mg yield per reaction.

Homogeneous Ag-Pd Nanoalloys

(A) as-synthesized Ag₉Pd nanoparticles, (B) Vulcan XC72 carbon supported Ag₉Pd particles after calcination at 450°C in N₂, and (C) commercial Pd/VC calcined at 450°C N₂. The alloy particles undergo slight sintering from 3.2 to 5.3 nm.

Homogeneous Ag-Pd Nanoalloys

Activity Synergy from Ensemble and Ligand Effects

Electrochemical Evidence of Pd Single Atoms

In Ar saturated 0.1M KOH

- 1. Both Pd and Ag present in surface (reduction peaks)
- 2. No H_{upd} on alloy surface
- 3. Minimum of Pd dimers to give H_{upd}
- Shift in metal ox/red peaks → ligand effect
- 5. Pd facilitates oxygen, binding, and Ag facilitates desorption

What is a Perovskite?

hydrogen 1 H 1.0079							A-s	ite										heliun 2 He 4.0026
Ithium 3	beryllium 4						B-s	ite					boron 5	carbon 6	nitrogen 7	8	fluorine 9	neon 10
Li	Be																	
sodium	magnesium 12									20, 180 argon								
Na	Ma																	
22.990	24.305			191 1									26.982	28.086	30.974	32.065	35.453	39.948
19	20		21	22	23	24	manganese 25	26	27	28	29	30	gailium 31	germanium 32	arsenic 33	selenium 34	35	36 Krypior
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098 rubidium	40.078		44.956 yttrium	47.867 zirconium	50.942 nioblum	51.996 molybdenum	54.938 technetium	ruthenium	rhodium	palladium	63.546 sitver	65.39 cadmium	69.723 Indium	72.61 tin	74.922 antimony	78.96 tellurlum	79.904 Iodine	83.80 xenon
37	38		39	40	41	42	43	44	45	46	47	48	49	50	51 Ch	52 T -	53	54 V-
RD	Sr		Y	Zr	ND	IVIO	IC	Ru	Rn	Pa	Ag	Ca	In	Sn	50	Ie	126.00	Xe
caesium	Canam EC	57.70	lutetium 71	hafnium 72	tantalum 72	tungsten 74	rhenium	osmium 76	iridium	platinum 70	gold 70	mercury	thallium 91	lead	bismuth	polonium 94	astatine	radon
Ce.	Ra	¥	1	н́ғ	Ta	Ŵ	Re	0e	Ir	Pt	Διι	Ha	TI	Ph	Bi	Po	Δŧ	Rr
132.91	137.33	~	174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	[209]	[210]	[222]
francium 87	radium 88	89-102	lawrencium 103	rutherfordium 104	dubnlum 105	seaborgium 106	bohrium 107	hassium 108	meltnerium 109	ununnillum 110	unununlum 111	ununbium 112		ununquadium 114				
Fr	Ra	**	Lr	Rf	Db	Sa	Bh	Hs	Mt	Uun	Uuu	Uub		Uua				
[223]	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[277]	l	289]			
*Lanth	nanide	series	57	58	59	60	61	62	63	64	65	66	67	68	69	70		
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb		
* * ^ ^ *			20	thorium	protactinium	uranium	neptunium 02	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium		
^ ^ ACU	mae s	eries	Ac	Th	Da	92	Nn	D.	Δm	Cm	BL	Ĉf	Fe	Em	Md	No		
			[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	1258	[259]		

- Simple Cubic with formula ABC₃
- Generally form at high temperatures (>700° C), low S.A.
- Mixed ionic-electronic conductors
- Only B-Site is catalytically active

Background & Structure

Perovskite-type oxide ABO₃

- B-site atom (1st row transition metal) in 6-fold octahedral coordination
- BO₆ units breaks *d* manifold degeneracy
- Cubic, hexagonal -> rhombohedral crystal structure, influenced by:

Ch 754, Solid State Chem, Ohio State Univ.

Theory Guided Predictive Activity Descriptors

Optimizing Perovskites for the Water-Splitting Reaction

Aleksandra Vojvodic, et al. Science 334, 1355 (2011);

Catalyst Design Principles

 e_g filling of 1 proposed as governing descriptor of OER/ORR activity – Sabatier principle

- Filling >1 → more antibonding → OH⁻ too weakly bound
- Filling <1 → more bonding → OH⁻ too strongly bound

Catalyst Design Principles

More d electrons \rightarrow greater activity

- More electronegative TM brings
 3d electron energies down
- More covalent M O bond

Mefford et al. *Nature Comm.*, **2016**

Perovskite // Activity Relationships

e_g filling as catalytic descriptor

- same filling, different activity
- verify trend / reduce error

'Covalency' between M-O

Catalyze
$$k_{o/r1}$$
, $k_{o/r2}$ or k_d

$$\begin{array}{l} \underline{\text{OER}} \\ \text{H}_2\text{O} + 2\text{OH}^- \rightarrow \text{O}_{ad} + 2\text{H}_2\text{O} + 2\text{e}^- \qquad k_{o1} \\ \text{O}_{ad} + \text{H}_2\text{O} + 2\text{OH}^- \rightarrow \text{O}_2 + 2\text{H}_2\text{O} + 2\text{e}^- \qquad k_{o2} \end{array}$$

$$\frac{ORR}{O_2 + H_2O + 2e^-} \rightarrow HO_2^- + OH^- \qquad k_{r1}$$

$$HO_2^- + H_2O + 2e^- \rightarrow 3OH^- \qquad k_{r2}$$

<u>Chemical Disproportionation</u> $2HO_2^- \rightarrow 2OH^- + O_2$ k_d

Suntivich et al. Nature Materials 2011

Bifunctional Pervoskite Catalysts

Material	ORR Potential (V) vs RHE @ j = -3 mA/cm ²	OER Potential (V) vs RHE @ j = 10 mA/cm ²	ΔE (V) Bifunctionality	
LaNiO ₃ /NC	0.64	1.66	1.02	
LaNi _{0.75} Fe _{0.25} O ₃ /NC 0.67		1.68	1.01	
LaCoO ₃ /NC	0.64	1.64	1.00	
20% lr/C [¥]	0.69	1.61	0.92	
20% Ru/C[¥] 0.73		1.62	1.01	
20% Pt/C [¥]	0.86	2.02	1.16	

Hardin, Mefford, et al. Chem. Mater. 2014

Using Chemical Substitution to Control Oxygen Content in La_{1-x}Sr_xCoO_{3-δ}

- Substituting Sr²⁺ for La³⁺ gives better control of oxygen content than thermal reduction processes
- Oxygen content is a function of both Sr²⁺ doping concentrations and charge compensation through an increase of Co oxidation state:

$$LaCo^{III}O_3 + xSr^{2+} - xLa^{3+} - \delta O^{2-} \rightarrow La_{1-x}Sr_xCo^{(III+x-\delta/2)}O_{3-\delta}$$

Yan, J.-Q., Zhou, J.-S. & Goodenough, J. B. Bond-length fluctuations and the spinstate transition in LCoO₃ (L=La, Pr, and Nd). *Phys. Rev. B* **69**, 134409 (2004).

OER of LSCO Samples

Increase in activity with increasing Sr content

Lattice Oxygen Mediated Oxidation

Bifunctional OER and ORR $La_{1-x}Sr_{x}CoO_{3-\delta}$ Catalysts

Carbon is crucial in influencing oxygen electrocatalysis in bifunctional air electrodes, especially for the ORR!

What is a Ruddlesden-Popper?

n = 1 n = 2

Ruddlesden-Popper: (AO)(ABO_{3+ δ})_n

- Formula (AO)(ABO₃)_n
- n = perovskite layers (ABO₃) separated by a rocksalt (AO) interface
- As $n \rightarrow \infty$, RP becomes pure ABO₃ perovskite
- Location of strained AO interfaces that support Sr²⁺ substitution of La³⁺ which is unstable in a pure perovskite phase

n	Formula	A = Ln ³⁺ , B ^{x+}	A= Sr ²⁺ , B ^{x+}
1	$A_2BO_{4\underline{+}\delta}$	2	4
n	(AO)(ABO ₃)	> 2.66	4
×	ABO ₃	3	4

RP supports structural and electronic configurations not realizable in perovskites

OER Activity of Perovskites and RP

- All amounts of Fe substitution increase catalytic activity, except 100% (LSF)
- Most active composition being LSNF30 (32.7 mA cm⁻²_{ox})
- Polarization curves are averaged between anodic and cathodic scans to eliminate capacitive effects → little to no hysteresis indicates catalyst stability

Forslund, Hardin, et al. Nature Comm. 2018

OER conditions: O_2 saturated 0.1 M KOH at 10 mV/s and 1600 rpm; 51 $\mu g_{tot}/cm^2$, 30 wt. % oxide on VC

Urea Oxidation Reaction

At the Anode:

 $CO(NH_2)_{2(aq)} + 6OH^- \rightarrow N_{2(g)} + 5H_2O + CO_{2(g)} + 6e^-$

At the Cathode:

 $6H_2O + 6e^- \rightarrow 3H_{2(g)} + 6OH^-$

Overall:

 $CO(NH_2)_{2(aq)} + H_2O \rightarrow N_{2(g)} + 3H_{2(g)} + CO_{2(g)}$

Ni metal in various morphologies used by many, EC' mechanism proposed

LaNiO₃ Catalytic Activity

ACS Cat. 2016, 6, 5044

- Supported LaNiO₃ on Vulcan carbon (30 wt%) by ballmilling
- Suspended catalyst in EtOH with Na-substituted Nafion binder and drop cast onto 5 mm GCE
- Test at various concentrations of Ar- saturated KOH and urea at a scan rate of 10 mV s⁻¹

- Mass activity of 371 mA mg⁻¹ 2.25 A mg⁻¹cm⁻² in 1M KOH compared to 830 mA mg⁻¹cm⁻² in 1M KOH for NiMoO₄
- Potential shifts cathodic with increasing KOH concentration but not with increasing urea concentration
 - Supports the EC' mechanism

Urea Oxidation On LSN RP

Tested in 0.33 M and 1 M urea, 1 M KOH at 10 mV s⁻¹ on stationary glassy carbon

Increasing Ni oxidation state above Ni³⁺ leads to higher activities

Material	Ni Oxidation State
LSN50	3
LSN37	3.25
LSN25	3.5

Forslund, R. et al. ACS Catal. **2019**, *9*(3), 2664–2673.

MeOH and EtOH Oxidation

- Activities for both ethanol and methanol oxidation are extremely high
- All three reactions have similar onset potentials
 - Corresponds with Ni^{2+/3+} redox couple
 - Indicates that all three reactions (MeOH, EtOH, Urea) may follow the EC' mechanism

Forslund, R. et al. ACS Catal. 2019, 9(3), 2664–2673.

DFT+U Modeling On LSN RP

Larger bandwidth \rightarrow higher density of occupied/unoccupied states around $E_F \rightarrow$ more surface redox reactions via only slight Fermi level shift \rightarrow less energetic cost

$e_g(Ni)$ and $e_g(Fe)$ overlap with p(O) across the Fermi level: cross-gap Forslund, Harding et al. *Nature Comm.* 2018 9(1) 3150. hybridization

Marcus-Gerischer Model of ET

$$i_{redn} \propto k^- W_{ox}(E) C_{ox}^0 N_s(E)$$

Electron transfer is fastest when the electron has the same energy in the electrode as it does in **Ox** at the point of transfer. So the rate will be proportional to the DOS.

- Probe the relationship between electronic properties and reactivity
 - Semi-conductor properties of Perovskites
 - Density of States (DOS)
 - Effects of substitution and defects
 - Correlation between electronic properties and electrochemical activity
 - Structural composition
 - Electron Transfer
 - $_{\odot}$ Catalytic behavior towards OER and ORR and $\rm H_2O_2$ decomposition, SM oxidations

Summary

New synthesis routes offer exquisite control of properties Facile tuning of size, crystallinity, composition and morphology More precise and efficient synthesis of catalysts Reduces processing induced changes in material properties

New materials require development of advanced tools for study and elucidation of structure-property-performance Benchmarking of Homogeneous & Heterogeneous Catalysts

Nano-sized, alloy and core@shell architechures show promise as advanced energy conversion catalysts Need for predictive guidelines and theory Need for activity benchmarks and standards

Explore creation of new compositions/architectures for catalysis, biosensing and environmental remediation Promotion of catalyst synergism/bifunctionality