

Skolkovo Institute of Science and Technology

Linking mineral and material worlds: defects genealogy in olivine-type cathode materials

DR. STANISLAV S. FEDOTOV

ICYS-2019, Vozdvizhenskoe, September 16th, 2019

Outline

I. Olivine mineral group: variety and structure

II. Defects: brief introduction, classification, examples

III. Parallels between minerals and electrode materials:

"Learning from Nature" strategy

IV. Newly discovered old defects

V. Conclusions

Olivine mineral (Mg,Fe)₂**SiO**₄ Papakolea beach in Hawaii

also known as Green Sand Beach or Mahana Beach

Olivine crystal structure

Orthorhombic unit cell

M₂XO₄ Olivine (Mg,Fe)₂SiO₄

Two M sites

One X site edge-shared with M₂

LiFePO₄ – triphylite (olivine-group mineral)

LiFePO₄ Triphylite

BVEL DFT MEM 1D Li⁺ migration ۰b

LiFePO₄ – triphylite (olivine-group mineral)

Triphylite

Nanosizing + Carbon-coating

LiFePO₄/C cathode material

- Low conductivity
- Slow diffusion

Wang, L. et al, Nano Lett., 2012, 12(11), 5632

Defects make it unique...

Australian bee hive (honeycomb)

1D defects

Spider in Amber

3D defects

Vinnie-Pooh

Damascus steel

2D defects

Ruby gemstone

Point defects (0D)

Terminology

Types of point defects: Kröger-Vink notation

- A atom or vacancy
- A_{R}^{c} **B** – position (site or interstitial)
 - C charge:
 - positive
 - negative
 - X neutral
 - e' electron
 - h^{\cdot} hole
- X₂Y₃ stoichiometry $Y'_{\mathbf{X}}$ $V_{\mathbf{v}}$ X_i Vacancy in Y X interstitial Y at X site

X type atom

Y type atom

LiFePO₄ defects – vacancies

 $Li_{Li}^{\times} - Fe_{Fe}^{\times}$

$$V_{Li}' - Fe_{Fe}^{\cdot}$$

LiFePO₄ Triphylite

Li_xFePO₄ Ferrisicklerite

FePO₄ Heterosite

LiFePO₄ defects

$$Li_{Li}^{\times} - Fe_{Fe}^{\times}$$

$$Fe_{Li}^{\cdot} - V_{Li}'$$

Li⁺ diffusion is blocked!

LiFePO₄ Triphylite

Feo.5FePO₄ Sarcopside or Fe₃(PO₄)₂

 $Li_{Li}^{\times} - Fe_{Fe}^{\times}$

 $Li^{+}(r = 0.76Å)$ Fe^{2+} (r = 0.78 Å)

 $Fe_{Mg}^{\times} - Mg_{Fe}^{\times}$ **Mg-Fe interdiffusion**

Continuous solid-solution: Fe₂SiO₄ Fayalite – Mg₂SiO₄ Forsterite $Fe_{Li}^{\cdot} - Li_{Fe}^{\prime}$

LiFePO₄ Triphylite

 $(Li_{1-x}Fe_x)_{M1}(Fe_{1-x}Li_x)_{M2}PO_4$

Antisite defects

LiFePO₄ – Li-rich

$$Li_{Li}^{\times} - Fe_{Fe}^{\times}$$

"Li-rich"

2D Li⁺ transport

Not known in minerals (yet?)

What about electrode materials?

LiFePO₄ Triphylite

Li_{1+x}Fe_{1-x}PO₄

Poster on Li-rich LiMPO₄ by A. Grebenschikova

LiFePO₄ – defects in anion sublattice

LiFePO₄ Triphylite

Amisse, R. *Chem. Mater.* 2015, **27**, 4261–4270

What about anions?

Any defects in anionic sublattice?

 $V_P^{\prime\prime\prime\prime\prime}$

DFT: 3.56 eV – "highly unlikely"

Low-temperature co-precipitation:

 $[Li_{0.85}Fe^{3+}_{0.15}]_{M1}[Fe^{2+}_{0.72}Fe^{3+}_{0.19}Li_{0.09}]_{M2}P_{0.92}O_{4}$

8% No explanation given...

LiFePO₄ – defects in anion sublattice

After several cycles of refinement the occupancy factors of the cation sites in the isotropic and anisotropic refinements agreed within the standard errors and were, for the anisotropic refinement. M(1) = $40.8 \pm 2.2\%$, $M(2) = 98.6 \pm 0.4\%$, $P = 95.8 \pm 0.4\%$. These results seem to indicate that the M(1) site is occupied only by Li. Moreover the partial occupancy of the P site (95.8%) confirms the substitution of the PO₄ group by the (OH)₄ group as suggested by Fontan *et al.* (1976) and agrees satisfactorily with the calculated occupancy (93.9%). Albertia, A. (**1976**) Acta Cryst. B, 32(10), 2761–2764.

Fontan, F., Huveun, P., Orliac, M. & Permingeat, F. (1976). Bull. Soc. Fr. Mindr. Crist. In preparation.

Never been published...

Water in the upper mantle and transition zone

Hydrogen in natural (Mg,Fe)₂SiO₄ olivines

Nature 467, 78–81 (02 September 2010) Download Citation ±

Hydroxyl defects in (Mg,Fe)₂SiO₄ olivines

FTIR spectroscopy for Forsterite DFT for OH groups in Si and Mg positions

Modeling of FTIR spectra

Blanchard, M. et al American Mineralogist, 2017, 102(2), 302–311.

Qin, T. et al. American Mineralogist, 2018, 103(5), 692–699.

Hydrothermally prepared LiFePO₄

Hydrothermal synthesis: precursor concentration variation

 $Li_{1.050}Fe_{0.950}P_{0.962}O_4$ $Li_{0.93}Fe_{1.07}P_{0.84}O_{4}$ **TEM-EDX XRD** *Pnma* V, Å³ 290.431(9) *P*2₁*ma* V, Å³ 293.12(2) [100] [100 002 020 a "Li-rich" 7% Fe in M1 position No Li-Fe anti-sites **16% P-deficiency** Distance. nm Distance, nm

Sharikov, F. Yu et al, Cryst. Growth. Des., 2018

Sumanov, V. D. et al, Chem. Mater. 2019

21

OH-detecting: TG-MS + FTIR

Hydrothermal synthesis in D₂O

Total mass loss 3.9 %

D-shift, band at ~2600 cm⁻¹

-OD (cryst.) mass corresponds to y \approx 0.17 in Li_{1-x}Fe_{1+x}(PO₄)_{1-y}(OD)_{4y}

 $\mathbf{22}$

Hydrothermal synthesis: precursor concentration/temperature scans

P deficiency vs. Fe(M1) occupancy

Magnetic behavior: T_N change

Higher P deficiency – Larger cell volume

23

Li_{1-x}Fe_{1+x}(PO₄)_{1-y}(OH)_{4y} electrochemistry

1) $Li_{0.93}Fe_{1.07}P_{0.84}O_4$

2) $Li_{0.965}Fe_{1.035}P_{0.905}O_4$

3) $Li_{1.050}Fe_{0.950}P_{0.962}O_4$

C/10 rate, LiPF₆ in 1M EC:DMC

Conclusions

- I. Look for creativeness in minerals and Nature
- II. Much richer defects chemistry of LiFePO₄: polyanion sublattice is not inert
- III. Hydroxytriphylite solid solutions $Li_{1-x}Fe_{1+x}(PO_4)_{1-y}(OH)_{4y}$ inspired by minerals and Nature.

Glass beach in Vladivostok

Acknowledgements

Skoltech

Skolkovo Institute of Science and Technology

Skoltech Dr. Dmitry Aksyonov Dr. Alexandra Savina **Dr. Sergey Ryazantsev** Dr. Victoria Nikitina **Dr. Dmitry Rupasov Mr. Anatoly Morozov** Ms. Polina Morozova **Prof. Keith Stevenson** Prof. Artem Abakumov

EMAT

Ms. Olesia M. Karakulina Prof. Joke Hadermann

RUSSIAN FOUNDATION FOR BASIC RESEARCH

MSU Mr. Vasily Sumanov Mr. Nikita Luchinin Dr. Oleg Drozhzhin Dr. Andrey Mironov Prof. Evgeny Antipov

RFBR grant #18-29-12097

Thank you for attention!