Enhanced Activities of Metal Oxide Electrocatalysts for Clean Energy Generation and Storage

> Robin Forslund The University of Texas at Austin

Second International Conference of Young Scientists Moscow Region, Russia September 18th, 2017

Skolkovo Institute of Science and Technology

Oxygen Electrochemistry

Oxygen Chemistry is Ubiquitous

- Electrolyzers for H₂ generation
- Metal-air batteries (Zn-air, Li-air)

Hong, W. T.; Grimaud, A.; Suntivich, J.; Shao-Horn, Y. Energy Environ. Sci., 2015

OER & ORR Thermodynamics

- "kinetically sluggish" reactions require large overpotentials ($\eta \ge 300 \text{ mV}$)
- Large overpotentials result in lower power, device efficiency

Catalyst materials

- Materials capable of both OER and ORR for regenerative fuel cells ->
 'bifunctional' catalysts
- Alkaline electrolyte enables non-precious metal oxides → Perovskites

What is a Perovskite?

Pu Am Cm Bk

Cf

Es

Fm Md

No

Perovskite: ABC₂

А

В

С

Th

Pa

Simple Cubic with formula ABC₃

U

Np

- Generally form at high temperatures (>700° C), low S.A.
- Mixed ionic-electronic conductors
- Only B-Site is catalytically active

Background & Structure

Perovskite-type oxide ABO₃

• B-site atom (1st row transition metal) in 6-fold octahedral coordination

t_{1u}*

- BO₆ units breaks *d* manifold degeneracy
- Cubic, hexagonal -> rhombohedral crystal structure, influenced by:
 - ionic sizes

Ch 754, Solid State Chem, Ohio State Univ.

Synthesis

Goal:

- Purity: overcome dissimilar rates of hydrolysis for A and B site cations (ABO₃)
- Surface-Area: stabilize nanoparticles precursors through electrostatic and steric interactions

Strategy:

- Rapid hydrolysis in presence of excess [OH-]
- Thin-film freezing rates > aggregation time of nanoparticle precursors
- Lyophilization to avoid capillary condensation / maximize inter-particle distance
- Crystallization in tube furnace

Electrode Testing

- Ball mill to break up particles
- Support perovskite on carbon (30 wt%) by ball-milling
- Suspend catalyst in EtOH with Nasubstituted Nafion binder and sonicate
- Dropcast 51 µg/cm² of composite onto 5 mm GCE and let dry overnight

RHE potential measurement

- Use a Pt RDE as the working electrode
- Clean Pt RDE by cycling in Ar-saturated 0.1 M KOH until a stable CV is observed
- Saturate the solution with H₂ and cycle through H₂ evolution/reduction
- Then our potential vs. RHE is:
 - $E_{RHE} = E_{Hg/HgO} + (0.8456 \text{ V})$
- Use positive resistance feedback method to measure solution resistance: 46 ohms in 0.1 M KOH

Early Work

- N-doped carbon (NC) consistently best support
- LaCoO₃/NC more bifunctional than Ru or Pt
- Nanostructuring perovskites with phase purity increases both the specific (mA cm⁻²_{ox}) and mass (mA g⁻¹_{ox}) activities

Material	ORR Potential (V) vs RHE @ j = -3 mA/cm ²	OER Potential (V) vs RHE @ j = 10 mA/cm ²	ΔΕ (V) Bifunctionality
LaNiO ₃ /NC	0.64	1.66	1.02
LaNi _{0.75} Fe _{0.25} O ₃ /NC	0.67	1.68	1.01
LaCoO ₃ /NC	0.64	1.64	1.00
20% lr/C [¥]	0.69	1.61	0.92
20% Ru/C [¥]	0.73	1.62	1.01
20% Pt/C [¥]	0.86	2.02	1.16

Hardin, Mefford, KPJ, KJS et al., J. Phys. Chem. Letters (13), Chem. Mater. (14)

Catalyst Design Principles

 e_{g} filling of 1 proposed as governing descriptor of OER/ORR activity – Sabatier principle

- Filling >1 → more antibonding → OH⁻ too weakly bound
- Filling <1 → more bonding → OH⁻ too strongly bound

Cr3+ (d3) Mn3+ (d4) Fe3+ (d5) Co3+ (d) Ni3+ (d7) 1 T **High Spin** t₂₉ 11 1 t_{2g} _____ ___ ____ <u>t t</u> Intermediate Spin Low Spin $t_{zg} \stackrel{\uparrow \downarrow}{-} \stackrel{\uparrow \downarrow}{-} \stackrel{\uparrow \downarrow}{-} \stackrel{\uparrow}{-}$ t₂₀ <u>†1</u> <u>†</u> t_{2g} $\uparrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$

Hong, W. T.; Grimaud, A.; Suntivich, J.; Shao-Horn, Y. Energy Environ. Sci., 2015

- XPS shows lattice oxide ions in protonated state (OH⁻ signature in O 1s)
- ¹⁸O studies on Li-NiO, RuO₂, IrO₂ indicate that evolved O₂ from lattice
- Proposed RDS for OER is peroxide (HOO⁻) formation: involving O_{ads} and OH⁻
- Lattice Hydroxides contribute OH⁻ to peroxide formation -> more energetically favorable than solution OH⁻

Fierro et al. *Electrochem. Comm.* **2007** Hardin, Mefford, KPJ, KJS et al., *J. Phys. Chem. Letters* **2013**, Chem. Mater. **2014**

Catalyst Design Principles

More d electrons \rightarrow greater activity

- More electronegative TM brings 3d electron energies down
- More covalent M O bond

Increasing M Electronegativity, Increasing Covalency

Dr. Kolpak's work on La perovskites and LaNiO₃

Mefford et al. *Nature Comm.*, **2016**

Covalency as a descriptor

How do we test covalency as a descriptor without changing B-sites?

How do we probe lattice oxygen in the OER mechanism?

 $La_{1-x}Sr_{x}CoO_{3-\delta}$

Modulation of Co oxidation state via Charge compensation

- Substitution of La³⁺ for Sr²⁺ increases Co oxidation state
- Mobile lattice oxygen
- Also results in oxygen vacancies

Characterization

Mefford et al. Nature Comm. 2016

OER Activity

- Fully substituted SrCoO₃ is the most active, has lowest taffel slope of 31 mV dec⁻¹
- SrCoO₃ on N-doped carbon is the only stable composite over 24 hours

OER conditions: O₂ saturated 0.1 M KOH at 10 mV/s and 1600 rpm; 51 µg_{tot}/cm², 30 wt. % oxide on VC

Oxygen vacancies

- Sr substitution shifts E_F down relative to the 3*d* and 2*p*
- Covalent mixing of orbitals means oxidation and vacancy formation
- Vacancies cause reduction of 3d, pinning E_F

Table 1 | Oxygen vacancy concentration, δ , and cobalt oxidation state, *y*.

x in $La_{1-x}Sr_xCoO_{3-\delta}$	δ	У		
0	- 0.01 ± 0.01	3.01 <u>+</u> 0.01		
0.2	0.01 ± 0.01	3.18 <u>+</u> 0.02		
0.4	0.05 ± 0.04	3.30 <u>+</u> 0.08		
0.6	0.09 ± 0.01	3.43 ± 0.01		
0.8	0.16 ± 0.01	3.48 <u>+</u> 0.02		
1.0	0.30 <u>+</u> 0.03	3.40 <u>+</u> 0.06		
Error is based on the s.d. of triplicate measurements.				

Mefford et al. Nature Comm. 2016

Vacancy mediated oxygen intercalation

Vacancies are mobile, can act as sites for insertion/removal of electrolyte oxygen species

- Insertion/removal can be controlled electrochemically
- O^{2-} diffusion rates range between 10^{-14} to 10^{-12} • cm²/s for LSCO series

b

0.03

Current (mA) 10.0 10.0

0.00

1.0

0.0

0.2

0.4

0.6

t^{-1/2} (s^{-1/2})

0.8

Vacancies increase the diffusion rate exponentially

0.2

0.4

t^{-1/2} (s^{-1/2})

0.6

0.8

SCO LSCO28 LSCO46

LSCO64

LSCO82 LCO

а

0.10

0.08

00.0 Current (mA)

0.02

0.00

0.0

Lattice Oxygen Mediated OER

Mefford et al. *Nature Comm.* 2016

OER step

New OER mechanism proposed, supported by DFT → lattice oxygen mediated (LOM)

- Lower ΔG for RDS
- Requires M-O bond covalency

Labile lattice oxygen experimentally shown as indicator of M-O covalency

LOM Mechanism Verification

Shao Horn group later used isotopic labeling of lattice oxygen to confirm an LOM mechanism was taking place

- Only La_{0.5}Sr_{0.5}CoO₃ and SrCoO₃ showed evolved oxygen from the lattice
- pH dependence of OER activity only for 50% and full Sr substitution \rightarrow mechanism shift •

Mefford et al. *Nature Comm.* **2016**

OER step

Experimental evidence of LOM OER

Experimentally show M – O bond covalency, oxygen vacancies, oxygen diffusion, OER activity all tied together

Mefford et al. Nature Comm. 2016

DFT evidence of LOM OER

Mefford et al. Nature Comm. 2016

Ni–Fe interactions

How to incorporate mechanistic insights from perovskites (M-O covalency), predicted materials (SrNiO₃) and Ni-Fe interactions into a crystalline catalyst system that supports the establishment of structure-property relationships?

SrNi_{1-x}Fe_xO₃?

SrNiO₃ not thermodynamically stable!

MATERIALS CHEMISTRY COMMUNICATIONS

Preliminary Crystal Structure of Mixed-valency $Sr_4Ni_3O_9$, the Actual Formula of the so-called $Sr_5Ni_4O_{11}$

Francis Abraham,* Sylvie Minaud and Catherine Renard

Laboratoire de Cristallochimie et Physicochimie du Solide, URA CNRS 0452, ENSCL, Université des Sciences et Technologies de Lille, B.P. 108, 59652 Villeneuve d'Ascq Cedex, France

A crystal structure investigation of the so-called Sr₆Ni₄O₁₁ from single-crystal X-ray data has shown that the composition of this oxide is in fact close to Sr₇Ni₅O₆. The structure has been solved in the trigonal *P*321 space group. The final refinement gave an *R* factor of 0.045 for 512 independent reflections. The structure contains NiO₃ chains with two NiO₆ octahedra and one NiO₆ trigonal prism alternating and sharing faces. The chains run along the three-fold axis and are connected by Sr ions. The <u>Ni</u>—O distances seem to indicate a possible repartition of Ni^N in the octahedral stes and

SYNTHESIS OF SrNiO₃ AND RELATED COMPOUND, Sr₂Ni₂O₅

Y. TAKEDA, T. HASHINO.* H. MIYAMOTO.† F. KANAMARU, S. KUME and M. KOIZUMI

The Institute of Scientific and Industrial Research, Osaka University, Suita, Osaka, Japan

(Received 6 August 1971)

Abstract – Two crystal phases of strontium-nickel oxides. $SrNiO_3$ and compounds with composition near $Sr_2Ni_2O_5$, containing tetra- and tri-valent nickel ions respectively, have been synthesized in oxidation atmosphere. $SrNiO_3$ synthesized under high pressures of oxygen above 50 atm has a hexagonal unit cell with $a = 5.355 \pm 0.001$, $c = 4.860 \pm 9.001A$ and is isostructural with BaNiO₃ with perovskite-like structure. The phase with composition near $Sr_2Ni_2O_5$ with hexagonal unit cell has been synthesized above 600°C and at 1 atm of wet oxygen gas. The existence of water has a remarkable effect to form both the compounds of $SrNiO_3$ and $Sr_2Ni_2O_3$.

Fig. 2. XRD of La_{1-x}Sr_xNiO₃ ($0 \le x \le 0.8$) systems calcined at a) 700 °C and b) 900 °C. Symbols: $\bigcirc = LaNiO_3$; $\bullet = La_{1-x}Sr_xNiO_3$; $\bullet = La_2O_3$; $* = NiO_3$: $\bigcirc = SrNiO_3$.

How do we get Sr and Ni in the same material?

Ruddlesden-Popper

Ruddlesden-popper: $(AO)(ABO_3)_n$

by A and B's valence, B's electronegativity, and n

- *n* represents the number of perovskite layers (ABO₃) separated by a rock-salt (AO) interface
- As $\mathbf{n} \rightarrow \infty$, RP becomes pure ABO₃ perovskite
- AO-ABO₃ interface accommodates ions that would be too large for pure perovskite: RP supports structural (and electronic) configurations not realizable in perovskites

 $A = Ln^{3+}$, A= Sr²⁺, Formula n Bx+ B^{x+} $A_2BO_{4+\delta}$ 2 4 $(AO)(ABO_3)_n$ > 2.66 4 ABO₃ 3 4 ∞

Location of strained AO interfaces that support Sr²⁺ substitution of La³⁺ which is unstable in a pure perovskite phase

New synthesis for RP Catalysts

Pechini Method:

- A. Complexation of metal nitrates by **citric acid and EDTA** in water Titration with TMAOH to raise pH to ~7 to deprotonate EDTA
- B. Addition of DEG followed by heating to 80°C Condensation reaction driven by the evaporation of water forms polyester gel with metal cations intermixed
- C. Combustion at 300°C to form mixed metal oxide foam
- D. Calcination at temperatures above 950°C to form the RP phase

Yield increased 20x

Forslund, Hardin, et al. under review 2017

 $La_{0.5}Sr_{1.5}Ni_{1-x}Fe_{x}O_{4+\delta}$

- 25% La and controllable Fe substitution in n=1 $La_{0.5}Sr_{1.5}NiO_4$ Ruddlesden-Popper.
- A-site substitution for La imparts **RT stability** and lowers • crystallization temp, B-site substitution for Fe stabilizes high-valence Ni.
- Substitution of Fe for Ni systematically increases unit cell parameters, no ordered oxygen vacancies or interstitials evident by ABF-STEM

[110] Electron diffraction (ED) of multiple zone axes

110

indicates tetragonal n = 1 Ruddlesden-Popper 14/mmm structure

Forslund, Hardin, et al. under review 2017

Characterization

Why we need EDTA

Forslund, Hardin, et al. under review 2017

OER activity

- All amounts of Fe substitution increase catalytic activity, except 100% (LSF)
- Most active composition being LSNF30 (32.7 mA cm⁻²_{ox})
- Polarization curves are averaged between anodic and cathodic scans to eliminate capacitive effects → little to no hysteresis indicates catalyst stability

Forslund, Hardin, et al. under review 2017

OER conditions: O_2 saturated 0.1 M KOH at 10 mV/s and 1600 rpm; 51 μg_{tot} /cm², 30 wt. % oxide on VC

- LSNF30 is stable for over 24 h under galvanostatic (10 A/g_{ox}) stability testing in O₂ saturated 0.1 M KOH and 1600 rpm.
- Only SrCoO₃ on N-doped carbon was stable before

- RRDE produces oxygen at the GC disk then reduces it at the Pt ring.
- Performed with ¼ normal mass loading, rotated at 2400 rpm
 - prevent bubble formation that limits collection efficiency.

Ni redox and oxygen intercalation

Ni^{2+/3+} redox features seen in incipient OER region

Ni²⁺ Ni³⁺ + e⁻

- Fe substitution moves the peak potential (E_P) of Ni^{2+/3+} oxidation towards the OER
 - Indicates modulation of Ni's electronic properties, oxidative strength
- Area under oxidation wave consistently decreases w/ increasing Fe sub, with the exception of LSNF15
- Hydroxide ion intercalation occurring simultaneously?

Oxygen diffusion in LSNF

- Bounded 3D diffusion model used to calculate diffusion rates, all tests done in triplicate
- Oxygen diffusion rate of LSNF45 is 2 x 10⁻¹² cm²/s, comparable to Li⁺ in Li-ion batteries
- Hydroxide ion intercalation concomitant with Ni ^{2+/3+} redox supported
 - Mobile lattice oxygen supports the LOM OER mechanism!

Chronoamperometry in O_2 saturated 1 M KOH. Potentials were chosen 10 mV anodic of E_p to measure diff. limited intercalation

Mössbauer spectroscopy

Can use Mössbauer in conjunction with iodometric titrations to find the oxidation state of Ni

- Deconvolution of room temp. Mössbauer spectroscopy
- Consistent with detection of Fe⁴⁺ in Ni-Fe oxyhydroxides by Chen, Stahl et al.; JACS 2015

B-site oxidation states

- Ni^{AVG+} calculated from B^{AVG+} (lodimetric titrations) and deconvoluted Mossbauer spectra
- XPS of Ni 3p was collected rather than Ni 2p to avoid convolution with La 3d emission
- Ni^{3+/4+} peak grows with Fe substitution
- Results are consistent with E_p shift for Ni^{2+/3+}

Iodometric titrations performed in triplicate under Ar.

```
Standardized Na_2S_2O_3 was titrated against I_3^-. Samples were dissolved in 6 M HCI.
```


DFT+U modeling

Larger bandwidth \rightarrow higher density of occupied/unoccupied states around $E_F \rightarrow$ more surface redox reactions via only slight Fermi level shift \rightarrow less energetic cost

e_g(Ni) and e_g(Fe) overlap with p(O) across the Fermi level: cross-gap Forslund, Hardin, et al. *under review* 2017 hybridization

Band structure and cross-gap hybridization

Merkle, J. Electro. Chem. Soc. (2012) noted similar Co and Fe 3d hybridization with O 2p across E_F for $Ba_{0.5}Sr_{0.5}Co_{0.75}Fe_{0.25}O_{3}$ (BSCF)

Conesa, J. Phys. Chem. C (2016) calculated the DOS of a Ni-Fe oxhydroxide polymorph, FeNi7O8(OH)8 in the $2H_{C}$ structure with Fe in $O_4(OH)_2$ coordination and their result is strikingly similar to that of LSNF. Ni and Fe 3d bands are strongly hybridized just above E_F. They concluded that Fe⁴⁺ is stabilized by induced charge transfer between Ni sites

BSCF and Ni-Fe oxyhydroxides exhibit cross-gap hybridization from published band diagrams

of

Reducing anodic overpotential

Want to decrease the overpotential for the OER

- Reduce power lost between charging/recharging in metal-air batteries
- Reduce energy need to make H₂ in electrolyzers

Urea oxidation

Urea is an abundant waste

- Human waste
- Industrial waste
 - Haber-Bosch process consumes 1-2% of world's electricity
 - Fertilizer production waste stream

H₂ generation at a theoretical cell voltage of 0.37 V vs. 1.23 V for water splitting

- Urea oxidation at the anode
- Hydrogen evolution at the cathode

Use a very common waste to generate H₂ using less energy

- Non-toxic
- Non-flammable
- Crystalline solid but readily dissolves in many solvents

Way of remediating potentially hazardous product in waste water

- Urea can break down to form ammonia and nitrates in ground water
- Fertilizer runoff containing urea pollutes lakes and rivers

Urea oxidation

<u>Anode</u> :	$CO(NH_2)_{2(aq)} + 6OH^2$	$\rightarrow N_{2(g)} + 5H_2O +$	+ CO _{2(g)} +6e⁻
----------------	----------------------------	----------------------------------	---------------------------

<u>Cathode</u>: $6H_2O + 6e^- \rightarrow 3H_{2(g)} + 6OH^-$

Overall:
$$CO(NH_2)_{2(aq)} + H_2O \rightarrow N_{2(g)} + 3H_{2(g)} + CO_{2(g)}$$

Urea oxidation

Ni in various morphologies used by many, EC' mechanism proposed

Urea oxidation on LaNiO₃

Urea oxidation on LSN RP

Use the n = 1 Ruddlesden-Popper structure to vary Sr content of $La_{1-x}Sr_xNiO_4$

- Only able to do this in RP structure
- Still not able to do full Sr substitution
- Made 50%, 62%, 75% Sr samples
 - Vary Ni oxidation state from 3 → 3.5 (3.54)

Material	% Sr	Ni Oxidation State
LSN50	50	3
LSN37	62.5	3.25
LSN25	75	3.5

n = 1

Urea oxidation on LSN RP

Tested in 0.33 M urea, 1 M KOH at 10 mV s⁻¹ on stationary RDE electrodes

Material	% Sr	Ni Oxidation State
LSN50	50	3
LSN37	62.5	3.25
LSN25	75	3.5

- Increasing Ni oxidation state above Ni³⁺ leads to higher activities
- No shift in onset potential \rightarrow no shift in Ni^{2+/3+} redox

Summary

- Previous work demonstrated importance of M–O bond covalency and the LOM mechanism for the OER
- Chemical substitution in $La_{0.5}Sr_{1.5}Ni_{1-x}Fe_xO_{4+\delta}$ demonstrates the Ruddlesden-Popper phase as highly active for the OER
- Triple-band overlap of Ni and Fe 3*d* states with the O 2*p* (cross-gap hybridization) proposed as new catalytic descriptor for the OER
- Insights into high catalytic activity of Ni-Fe oxyhydroxides and Ba_{0.5}Sr_{0.5}Co_{0.75}Fe_{0.25}O₃ (BSCF) are proposed based on cross-gap hybridization
- Urea and other small molecule oxidations provide a path to further lower the potential for the anodic reaction in H_2 generation

Thanks!

