2nd International Conference of Young Scientists "TOPICAL PROBLEMS OF MODERN ELECTROCHEMISTRY AND ELECTROCHEMICAL MATERIALS SCIENCE"

The perspectives on fluoride phosphates cathode materials for metal-ion batteries

Evgeny Antipov

Department of Chemistry, Moscow State University

Outline

- Introduction
- Main types of cathode materials for LIB
- AMPO4F and A₂MPO₄F fluoride-phosphates
- Concluding remarks

1995: «Advances in battery research are always restricted by chemistry » *R. E. Powers (N.Y. Times)*

and Crystallography!

Energy storage systems

up to 250 Wh/kg Gravimetric Enegy Density (Wh/kg 140 Lighter ithium ion 120 battery 100 Ni-MH 80 60 Ni-Cd 40 Pb-acid Smaller 20. 0 50 100 150 200 250 300 350 400 0 Volumetric Energy Density (Wh/I)

Stationary energy storage

HEV, EV

Consumer electronics

Perspectives for Li-ion batteries

Yunil HWANG, A. D. Little Korea, Korea, "Nano-enhanced Market Perspectives in Solar & Li-ion Battery" OECD workshop on "Nanotechnology for sustainable energy options", 2010

Safety problem

Daily Mail, 20.01.2013

Impact of crystallography

Electrochemical processes on atomic scale: ex situ electron diffraction **Design of new structures:** (PED) studies, atomic crystal chemistry concepts resolution TEM imaging and data mining Crystallographic aspects of spectroscopy ab initio structure predictions electrochemical reactions: in situ TEM in situ and ex situ X-ray and neutron diffraction studies [010] spectroscopic methods (EXAFS, XPS, XANES etc) microstructure evolution [010 I.A. Bobrikov et al.,

J. Power Soc.. 258 (2014) 356

J. Hadermann et al. , Chem. Mat. 23 (2011) 3540

Mat. Res. Bull., Vol. 15, pp. 783-789, 1980. Printed in the USA. 0025-5408/80/060783-07\$02,00/0 Copyright (c) 1980 Pergamon Press Ltd.

Li_xCoO₂ (O[<]x[<]1): A NEW CATHODE MATERIAL FOR BATTERIES OF HIGH ENERGY DENSITY

K. Mizushima, P.C. Jones, P.J. Wiseman and J.B. Goodenough Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR

thetic route requires use of a starting high-temperature material that allows low-temperature extraction of lithium. The resultant phase need not necessarily be thermodynamically stable.

Examination of the known Lit-ion solid

Li-ion battery

Why Li?

1)

2)

3)

Cathode materials: importance

The energy density of a battery is the product of its capacity and its potential, and is mainly governed by the capacity of the positive electrode. Simple calculations show that an increase in cell energy density of 57 per cent can be achieved by doubling the capacity of the positive electrode, while one needs to increase the capacity of the negative electrode by a factor of 10 to get an overall cell energy density increase of 47

per cent (Tarascon 2002).

Tarascon, J.-M. 2002 Actualité Chimique 251, 130–137.

"Cost of Lithium-Ion Batteries for Vehicles" - ANL Report

Li-ion battery fabrication costs based on a LiCoO2-type cathode:

Selection of Electrode Material

To increase specific energy **—** to higher cathode potential and capacity

to higher Li-ion diffusion rate

To increase power

Cathode materials: characteristics and requirements

Energy = Voltage x Capacity

Cathode materials: characteristics and requirements

Energy = Voltage x Capacity

Cathode materials: characteristics and requirements

Selection of composition

Main Structure Types

Polyanion cathodes

Advantages:

-greater chemical and thermal stability, which provides reliable long-term electrochemical cycling and allows them to be used in large-sized batteries

-a rich variety of crystal structures – larger playground for various substitutions

-the inductive effect, leading to a significant increase of the redox potential $M^{n+}/M^{(n-1)+}$

Drawbacks:

-Larger molecular weight – smaller capacity

-More sophisticated synthesis

The inductive effect

$A_xMM'(PO4)_3$

LiFePO₄ - olivine

*c*_t = 170 mAh/g; E ~ 3.5 V

Advantages:

- stable material (3D structure + PO₄)
 - $LiFePO_4 \leftrightarrow FePO_4 + Li + e$ -
- ecologically friendly
- cheap

$h = 6.0047(9) \text{\AA}$

Disadvantages:

- low electronic conductivity~ 10⁻⁹ S/см
- low D~10⁻¹⁵ cm²/s (t ≈ r²/D)/
 2-phase mechanism
- low density
- medium potential (for phases with Mn = 4.2 V, Co = 4.9 V)

100 [010] (010

Li-ion diffusion pathway

MD (M.S. Islam et al. Chem. Mater. 17 (2005) 5085

NPD/MEM: S.I. Nishimura et al. Nature Materials 7 (2008) 707

BVS mapping with 3DBVSMAPPER program

$$BVS = \sum_{j=1}^{N} \left[\exp\left(\frac{R_o - d_j}{b}\right) \right]$$

 d_j - bond distance, Ro, b - tabular constants

M. Sale, M. Avdeev, J. Appl. Cryst. 45(2012),1054

Li_{1-x}Fe_{1-y}Mn_yPO₄: influence of cation substitutions

LiMPO4:C:PVDF = 75:15:10, 1M LiPF6 in EC:DMC = 1:1

Increasing electrochemical capacity at high discharge rates (10C, 20C) with increasing Mn content

In situ XRPD

28

29

30

31

20,0

20

E vs. LI/Li⁺, V

similar picture, but noticeable increase in the extent of the single-phase region is detected

Drozhzhin O.A. et al. Electrochimica Acta 191 (2016) 149

Na-based olivines

 E_a for NaFePO₄ (maricite) 2.11 eV

Fedotov S.S.. et al. submitted SSI

Crystallochemical tools in search for cathode materials of rechargeable Na-ion batteries and analysis of their transport properties

94. Na ₃ Fe ₃ (PO ₄) ₄		C2/c	95532	130	+
95. $Na_4M_3(PO_4)_2(P_2O_7)$	Fe	$Pn2_1a$	236316	170	+
96.	Co		82116	169	
97.	Mn		92836	172	
98.	Ni		82713	170	
99. Na ₂ MP ₂ O ₇	Mn	P1	187790	194	+
100	Со		71229	193	
$101 \text{ Na}_2 M(SO_4)_2$	Со	C2/c	194629	180	+
102	Ni		194630	181	
103 Na ₆ Fe ₂ (SO ₄)(CO ₃) ₄		$Fd\overline{3}$	20169	183	
104 Na ₃ V[(PO ₃) ₃ N]		$P2_{1}3$	188671	145	+
$105 \text{ Na}_4 \text{NiP}_2 \text{O}_7 \text{F}_2$		Imma	251666	148	+

Fedotov S.S.. et al. submitted SSI

Table 4. Calculated BVS mismatch values and activation energies for some selected and reference materials.

Material	CC	Theoretical capacity,	BVS mismatch	Activation energy, E _a	Migration map dimensionality	
		mAh/g	(BVSM), ±v.u.	(BVEL), eV	VDP	BV
NaFePO ₄ maricite*	85671	154	1.32	8.94	-	2D
NaFePO ₄ olivine	169118	154	0.35	1.25	1D	1D
NaMnPO ₄ olivine	36249	155	0.30	1.30	1D	1D
NaMnAsO ₄ olivine	95087	124	0.22	1.22	1D	1D
NaFeSO ₄ F*	290051	138	0.92	5.14	-	1D
O3-Na _{0.921} CoO ₂ *	155498	218	0.67	3.76	2D	2D
P2-NaCoO ₂	246585	237	0.29	0.72	2D	2D
$O3-Na_{0.667}Mn_{0.5}Fe_{0.5}O_2*$	420380	162	0.47	2.90	2D	2D
$P2-Na_{0.667}Mn_{0.5}Fe_{0.5}O_2$	194731	162	0.11	0.50	2D	2D
NaNiAsO4	63353	122	0.08	0.50	2D	2D
Na ₂ FeVF ₇	401862	188	0.06 (1D)	0.70 (1D)	2D	1D/2D
			0.19 (2D)	1.07 (2D)		
NaFeF ₃	68981	197	0.77	3.99	3D	3D
Na ₃ NiZr(PO ₄) ₃	172807	158	0.23	1.16	3D	3D
$Na_4NiP_2O_7F_2$	251666	148	0.13 (1D)	0.59 (1D)	3D	1D/2D/3D
			0.15 (2D)	0.80 (2D)		
			0.31 (3D)	0.85 (3D)		
$Na_3V_2(PO_4)_3$	248140	198	0.32	1.25	3D	3D
$Na_{2+x}Fe_{2-x}(SO_4)_3$	252402	189	0.16	1.46	1D	1D
$Na_3V[(PO_3)_3N]$	188671	145	0.17	1.35	3D	3D
$Na_2O \cdot 11Al_2O_3*$	67545	_	0.08	0.24	2D	2D

* - reference materials chosen for comparison

Search for new cathode materials: + Fluoride anion

Search for new cathode materials: + Fluoride anion

• A.K. Padhi et al., J. Electrochem. Soc. 144 (1997) 1188

Fluoride-sulphates: LiFeSO₄F

Fluoride-phosphates A₂MPO₄F

 $C_{\rm T} \sim 280 \,{\rm mAh/g}$ for M²⁺/M⁴⁺

- 1. B.L.Ellis et al., Nature Mat. 6 (2007) 749
- 2. O.V.Yakubovitch et al., Acta Crystallogr.C 53 (1997) 395

edge-sharing

- 3. M. Dutreilh et al., JSSC 142 (1999) 1
- 4. S. Okada et al., J. Power Sources 146 (2005) 565

3D-Li₂CoPO₄F: crystal structure

- 3D structure (thermal and electrochemical stability)
- 1D Li-ion diffusion pathway
- 3 independent Li-positions, Li-ion mobility: Li1 > Li2 > Li3

BVS mapping

N.R. Khasanova et al., J. of Power Sources 196 (2011) 355

b

Diffusion pathways

Activation Energies and Migration Path Lengths in Li2 CoPO4 F According to DFT-NEB

Ν	path length, Å	transition type	E _a , eV
1	3.677	Li1 🗲 Li2	0.35
2	3.330	Li1 🗲 Li1	0.12
3	3.130	Li3 🗲 Li1	0.43
4	3.110	Li3 🗲 Li1	0.34
5	3.167	Li1 🗲 Li1	0.41
6	2.416	Li1 🗲 Li2	0.37

Li-ion transport by DFT-NEB Li₂CoPO₄F vs LiCoO₂

	LiCoO ₂	Li ₂ CoPO ₄ F
Crystal structure, dimensionality of polyhedral framework	2D	3D
Average exp. potential vs Li/Li+, V	3.9	~ 5
Theo. capacity/specific energy, mAh·g ⁻¹ / mWh·g ⁻¹	274 / 1068	143 / 715 (1ē) 215 / 1075 (1.5ē)
Exp. capacity/specific energy, mAh·g ⁻¹ / mWh·g ⁻¹	140 / 545	140 / > 650
Diffusion barrier, eV	0.52	0.12 – 0.42

More facile diffusion is anticipated for Li₂CoPO₄F

S.Fedotov et al., Phys.Chem. C 121 (2017) 3194

Li₂CoPO₄F: electrochemical properties

high-voltage electrolytes

- solid-solution mechanism of Li⁺ de/intercalation
- discharge capacity of ~ 140 mAhg⁻¹ (~1.0 Li⁺)

N.R. Khasanova et al., *Beilstein Journal of Nanotechnology* (2013) 4, 860 J.Schoiber et al., Cryst.Growth Des. (2016), DOI: 10.1021/acs.cgd.6b00573

Li₂CoPO₄F: electrochemical properties

involving of Li2(Li3) in diffusion : extraction of 1.5 Li⁺ per f.u. ??? At 5.8 V???

high-voltage electrolyte ! adjusting the working potential !

S.Fedotov et al., Phys.Chem. C 121 (2017) 3194

Li₂MPO₄F system: substitution on metal sites

"framework elasticity" !

narrow range of solid solutions !

$Li_2(Co_{1-x}Fe_x)PO_4F$ x ≤ 0.3

	Unit cell parameters of Li ₂ Co _{1-x} Fe _x PO ₄ F				
х	<i>a</i> , Å	b, Å	<i>c</i> , Å	V, Å ³	
0	10.455(2)	6.3853(8)	10.8764(2)	726.0(2)	
0.1	10.460(2)	6.3907(11)	10.881(2)	727.5(3)	
0.3	10.462(2)	6.3971(12)	10.894(2)	729.1(3)	

Li₂(Co_{1-x}Mn_x)PO₄F x≤0.1

v	Unit cell parameters of Li ₂ Co _{1-x} Mn _x PO ₄ F				
Χ	<i>a</i> , Å	b, Å	<i>c</i> , Å	V, Å ³	
0	10.455(2)	6.3853(8)	10.8764(2)	726.0(2)	
0.1	10.465(1)	6.3998(9)	10.8975(14)	729.8(2)	

NaLiFePO₄F: electrochemical performance

Li₂FePO₄F: ex-situ structure refinement after cycling at 75° C

electron diffraction tomography

Atom	Position	Occupancy	x/a	y/b	z/c	U _{iso} , Ų
Li1	8d	0.902(7)Li 0.098(7)Fe	0.748(1)	0.960(2)	0.652(1)	0.0200(7)
Li2	4c	0.64(1)Li 0.36(1)Fe	0.9726(8)	3/4	0.7156(7)	0.0200(7)
Li3	4c	0.88(1)Li 0.12(1)Fe	0.282(1)	1/4	0.575(1)	0.0200(7)
Fe1	4a	0.71(2)Fe 0.29(2)Li	0	0	0	0.0200(7)
Fe2	4b	0.61(1)Fe 0.39(1)Li	0	0	1/2	0.0200(7)

O. Karakulina et al. Chemistry of Materials 28 (2016) 7578

Li₂FePO₄F: antisite disorder

Heavily underbonded after Li1 deintercalation

Li₂FePO₄F: antisite disorder

Comparison: Li₂MPO₄F vs. LiFePO₄

D_{chem}

potentials ~ 5.1 V vs. Li/Li+

2-phase mechanism ≈ 10⁻¹⁵ cm²/s

Volume change (%)	~ 4.5 %	1.7%	6.7%
E _g for 1Li (Wh/kg)	730	496	583
E _g for 1.5 Li (Wh/kg)	1095	744	-
Possibility of Fe ²⁺ /Fe ⁴⁺	? Ab initio	study for	Li ₂ FePO ₄ F: Fe3+/Fe4+ possible a t

F. Yang et al., RSC Adv., 2014,4, 50195-50201

AMPO₄F: new cathode materials

Background:

1)Li_{1+x}VPO₄F (tavorite structure): 2-electron redox-transition: ~ 4.2 V(vs. Li⁺/Li) (cathode) ~ 1.8 V(vs. Li⁺/Li) (anode)

J.Barker et al. JES (2003)150, A1394

2)Li_{1+x}FePO₄F (tavorite structure) ~ 2.8 V(vs. Li⁺/Li)
3)LiFeSO₄F (tavorite structure) ~ 3.6 V (vs. Li⁺/Li)
4)KFeSO₄F (KTP structure) ~ 3.7 V (vs. Li⁺/Li)

N. Recham et al. Chem. Mater. 22 (2010)1142

N. Recham et al, Nature Mater.9 (2010) 68

N. Recham et al, Chem. Mater. 24 (2012) 4363

AMPO₄F with KTP-type structure ???

• Synthesis at 600° C, Ar-flow for 1h VPO₄ + KHF₂ \rightarrow KVPO₄F

• Structure

S.G. #33 *Pna*2₁, *a* = 12.8200(3) Å, *b* = 6.3952(1) Å, *c* = 10.6115(2) Å

 $AVPO_4F$ (A = Li, K)

Fedotov S.S. et al, Chem. Mater. 28 (2016) 411

AVPO₄F (A = Li, K): cycling behaviour

A charge-discharge curve of $Li_xK_{0.15}VPO_4F$ at C/5. The inset - the capacity retention and Coulomb efficiency in the cycling at 1C rate

C-rates capability upon cycling and discharge curves of $Li_xK_{0.15}VPO_4F$

A remarkable capacity retention at 40C maintaining more than 50% of theoretical (156 mAh/g) or 75% of initial specific capacity

Structural transformations: "depotassiated" and lithiated forms

Volume variation among all phases is less than 2.2% !!!

More Li... or what's next?

I. Low-voltage domain:

The goal: increasing both potential and capacity

AVPO₄F (A = Li, K): comparison of KTP and tavorite structures for LIB

 E_g 624 Wh/kg E_v ~2000 Wh/l ΔV ~2%MechanismSolid solution

Perspective cathode material for high-power batteries

Both materials can be used in symmetrical cell

655 Wh/kg 2140 Wh/l 8.5% Two phase

KTP-type fluoride-sulfate framework

Recham, N. et al Chem. Mater. 2012, 24, 4363-4370.

Versatility of the KTP framework!

KVPO₄F against Li, Na and K

3-electrode cell configuration

Electrolyte: 1M APF6 or ACIO4 in EC/DEC

Counter electrodes: Li, Na or AgCl/Ag

Alkali ion diffusion

Bond Valence Energy Landscapes

Li 3D

From PITT: D(Li) < D(Na) < D(K) ≈ 10⁻¹³–4·10⁻¹¹ cm²·s⁻¹

V.Nikitina et al. JES 164 (2017)

Fluoride-phosphates based Me-ion battery prototypes

The french network on electrochemical energy storage

http://www.energie-rs2e.com/en/news/na-ion-batteriespromising-prototype

$Na_3V_2(PO_4)_2F_3$ / Hard carbon

4 5 160 b) a) Potential (V vs Na⁺/Na) 140 C/20 4 C/20 C/20 C/20 -120 Capacity (mAhg⁻¹ 00 00 00 00 00 C/10 C/5 3 .5 40 20 Potential (V vs Na*/Na) 2.5 20 80 100 120 40 60 0 capacity (mAhg⁻¹) 20 60 80 n 40 Cycle Number

110 Wh/kg 18650 Na-ion battery

A. Ponrouch et al, Energy Environ. Sci., 2013,6, 2361-2369

IBA-2016 meeting in Nantes, France: RS2E announced a new 3.8 V LiVPO4F Li-ion battery prototype (outperforming LiFePO4 based Li-ion battery)

Fluoride phosphates are commercially viable cathode materials! Na-ion batteries are coming on the market!!! KIB?

Acknowledgements

Nellie Khasanova Oleg Drozhzhin Viktoria Nikitina Stanislav Fedotov Alexander Samarin Vasily Sumanov Lomonosov Moscow State University

Skoltech Center for Electrochemical Energy Storage, Skolkovo Institute of Science and Technology

Artem Abakumov, Keith Stevenson

EMAT, RUCA, Antwerp Dmitry Batuk, Joke Hadermann, Olesya Karakulina

Samara University Artem Kabanov, Vladislav Blatov