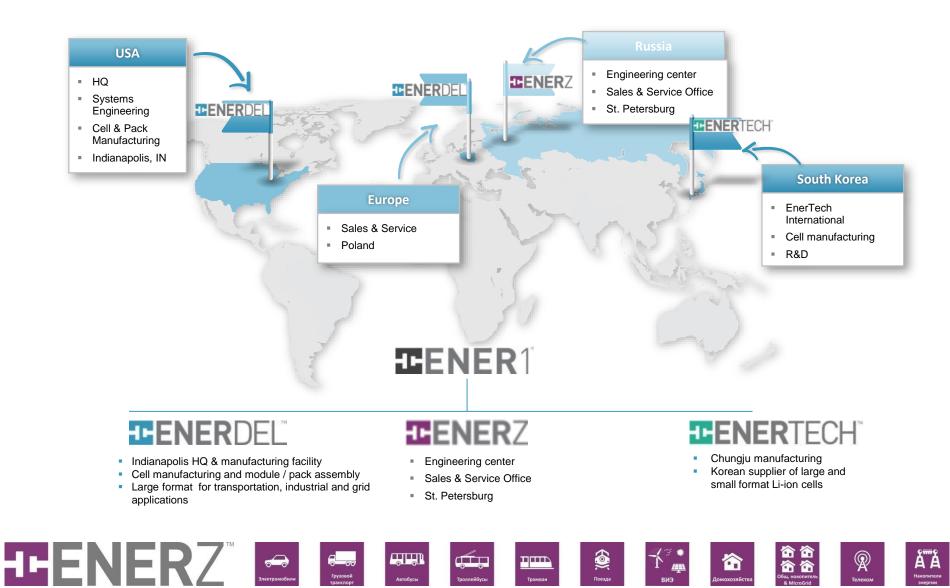


# **LENERZ**<sup>\*\*</sup>

# Batteries market landscape and sources for improvement


Skoltech conference September 2017



# **About company**



### Integrated Family of Companies with a Global Footprint



# **Manufacturing Facilities**

#### **TENER**DEL<sup>®</sup>

- Manufacturing Facilities
  - Indianapolis ~ 98,000 ft<sup>2</sup>
- Significant Capital Investment Allocated for Production Readiness
  - Mixers, Proprietary Coating Line, Custom Cutting, Custom Automated Cell Assembly, Automated Formation (12,000 channels)

#### Main Product

 Large format, prismatic cells, modules, packs and systems for transportation and grid energy storage applications

ſΤΤ

- Annual capacity:
  - 1.6MM EV cells, 106 MWh
  - >200MWh module and packs







R

# **Manufacturing Facilities**

### **TENER**TECH<sup>®</sup>

- Acquired in 2008
- Manufacturing Facility:
  - Chungju (factory) ~200,000ft<sup>2</sup>
- Products:
  - Electrode fabrication, Li-ion Cells (small, medium, large format)
  - Custom Packs (mobile phone, scanners, 2 way radio etc.), EV, PHEV
- Annual capacity:
  - 1.7MM EV cells, 107 MWh











# **Engineering and R&D Capabilities**

The Ener team includes some of the best battery researchers and engineers in the world with a wide range of knowledge and expertise

- Cathode & Anode development
  - Product design and development
    - Cell, module, pack and system engineering
      - o Mechanical
      - Electrical
      - o BMS Software & Hardware
      - o Test & Validation
      - o Reliability & Compliance Engineering
        - Manufacturing engineering support
          - Quality engineering support



# **Analytical Capabilities**

#### Dry Rooms

 Separate R&D and production dry rooms with dew point in the range -60°F (summer) to -110°F (winter)

#### Analytical Laboratory Instrumentation

- Differential scanning calorimeter
- Microscopes
  - Scanning electron, metallographic, optical
- Spectrometers
  - Gas chromatograph mass, inductively coupled plasma, Fourier transform infrared, X-ray diffraction, Raman
- Analyzers
  - Electrochemical, thermogravimetric, energy dispersive spectroscopic, tap density, particle size, surface area, true density
- Misc
  - Polishers, water analysis titrators, pull strength tester, balances, wet chemistry glassware, glove boxes, ovens, caliper, multimeters, viscometers

#### Cell Cyclers

- 300+ channels of battery cyclers (10mA to 10A)
- Environmental chambers with chilling and heating capability





R

# **Test & Validation Capabilities**

#### Cell Level Testing

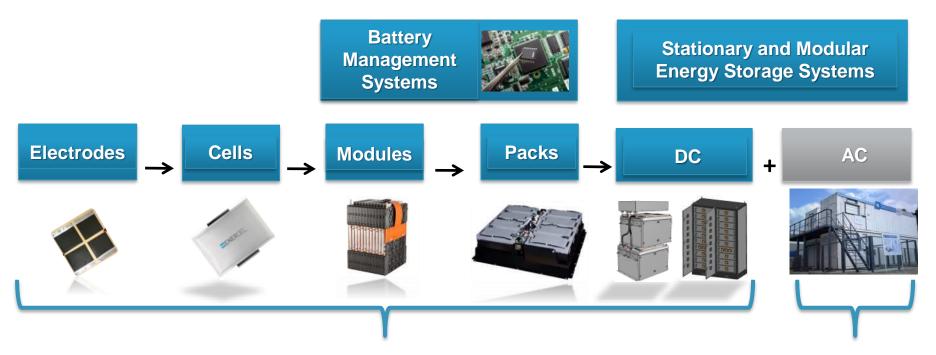
- Cell Cyclers
  - 768 channels (10A max. charge / 30A max discharge, 0 to 5 volts, 30°C to 55°C)
  - 200 test circuits (100A max. charge / discharge, 0 to 18 volts, -40°C to 85°C)

#### Module / Pack / System Level Testing

- Module Cyclers 12 channels (30kW)
- Pack/System Cyclers 19 channels (80kW 135kW)
- Temperature & Humidity 31 chambers (-68°C to +180°C, 0 to 100% R.H.)

#### Safety & Abuse Test Capabilities

- Drop, Penetration, Roll Over, Immersion, Crush, Radiant Heat, Partial Short Circuit, Overcharge, Over Discharge, and Thermal Stability (USABC 2.2, 2.3, 2.4, 2.5, 2.6, 3.1, 3.2, 4.2, 4.3, 4.4)
- Altitude, Thermal Shock, Vibration, Mechanical Shock, Short Circuit, Impact, Overcharge, Forced Discharge, Immersion (UNDOT UN-T1 through T-8, IPX7)


#### External Testing Sources

- Raytheon Analysis & Test Laboratory
- Naval Surface Warfare Center, Crane Division
- SafetyTech Protection Systems
- MGA Research Corporation
- TÜV SÜD America, Inc.
- Detroit Testing Laboratory, Inc.
- Dayton T. Brown, Inc.





# **Value Chain Strategy**



We develop and manufacture 80% of the value chain for largeformat, prismatic lithium-ion powered energy storage solutions Partnerships with local and global Integrators



# **About product**





### **Cells GEN 2**



осторомобили Электромобили 6-00

Грузовой транспорт ¢ T

Троллейбусы

Трамваи

**JENERZ** 

|                   |                 | Specification  |             |  |  |
|-------------------|-----------------|----------------|-------------|--|--|
| ltem              |                 | EV             | PHEV        |  |  |
| Capacity          | Nominal         | 22 Ah          | 20Ah        |  |  |
| Francis Damaita   | Volumetric      | 327Wh/L        | 297Wh/L     |  |  |
| Energy Density    | Gravimetric     | 172Wh/kg       | 161Wh/kg    |  |  |
| Weigł             | nt              | ≤480 g ≤465 g  |             |  |  |
| Nominal V         | oltage          | 3.75V          | 3.75V       |  |  |
| Operating Voltage | Max.            | 4.20V          | 4.20V       |  |  |
| Range             | Min.            | 3.00V          | 3.00V       |  |  |
| Standard          | Charge          | 0.5C (11A)     | 0.5C (10A)  |  |  |
| Current           | Discharge       | 0.5C (11A)     | 0.5C (10A)  |  |  |
| Maximum Current   | Charge          | 3.0C (66A)     | 5.0C (100A) |  |  |
|                   | Discharge       | 5.0C (110A)    | 7.0C (140A) |  |  |
|                   | Pulse Discharge | 7.0C(154A)     | 10.0C(200A) |  |  |
| Internal Res      | istance         | < 2.0mΩ        | < 1.5mΩ     |  |  |
| Operating         | Charge          | ~ 3°0          | 55°C        |  |  |
| Temperature       | Discharge       | -20 °C ~ 55 °C |             |  |  |
| Storage           | Range           | -20°C ~ 55°C   |             |  |  |
| Temperature       | Recommend       | 25±3℃          |             |  |  |
| Storage Hu        | midity          | 45 ~ 85%RH     |             |  |  |
|                   | Thickness       | 5.8mm          | +0.2 -0.4   |  |  |
| Cell size         | Width           | 253mm          | ± 1         |  |  |
|                   | Length          | 172mm          | ± 1         |  |  |

٩

Поезда

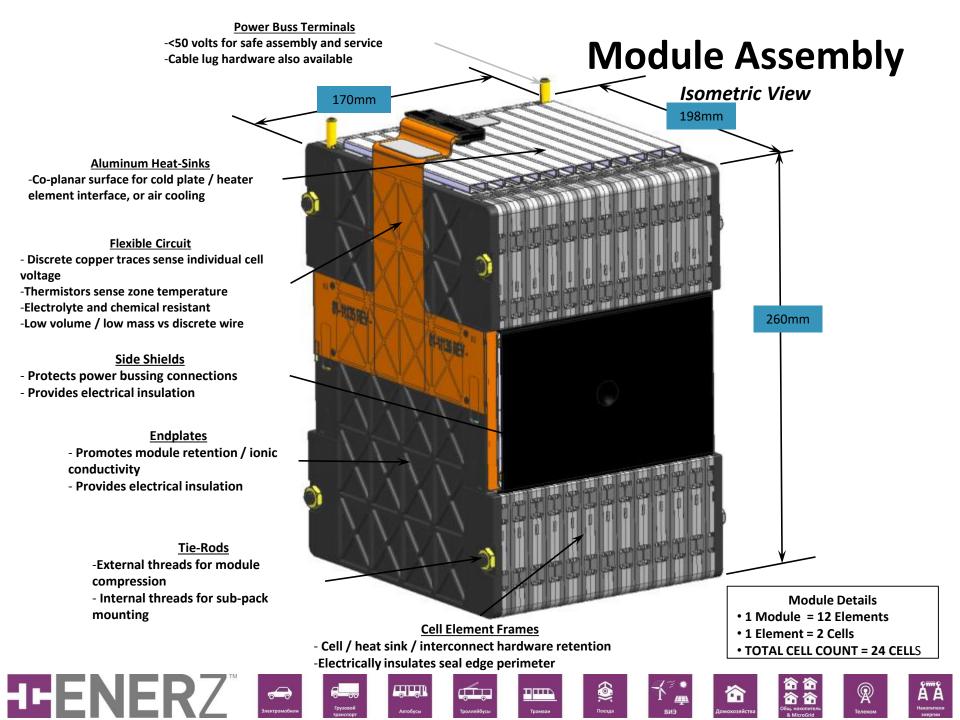
-{~ ₽ ₽

виэ












**А** Телеком АТА Накопители энергии

合

мохозяйства



### **Safety Features - Pack**

#### **Module Assembly**

Isometric / Exploded View

**Module Attributes** 

-Mechanical interconnects allow disassembly down to cell level for first time quality repair, service, or end of life recyclability and Guaranteed Residual Value (GRV)



# **Mechanical Architecture**

# 

ЪE

Cell



Module

<u>\_\_\_\_</u>

6-00

|            |          | EnerDel - Pack Arrangement - Quantity |         |        |             |      |                    |                      |
|------------|----------|---------------------------------------|---------|--------|-------------|------|--------------------|----------------------|
|            |          | Cell                                  | Element | Module | Sub<br>Pack | Pack | Cells in<br>Series | Cells in<br>Parallel |
| Assy Level | Cell     | 1                                     |         |        |             |      |                    |                      |
|            | Element  | 2                                     | 1       |        |             |      |                    |                      |
|            | Module   | 24                                    | 12      | 1      |             |      |                    |                      |
|            | Sub pack | 48                                    | 24      | 2      | 1           |      |                    |                      |
|            | Pack     | 384                                   | 192     | 16     | 8           | 1    | 96                 | 4                    |

Sub-Pack w/o Case



(FI)

Трамваи

Автобусы

Integrated Sub-packs and BMS Components

仚

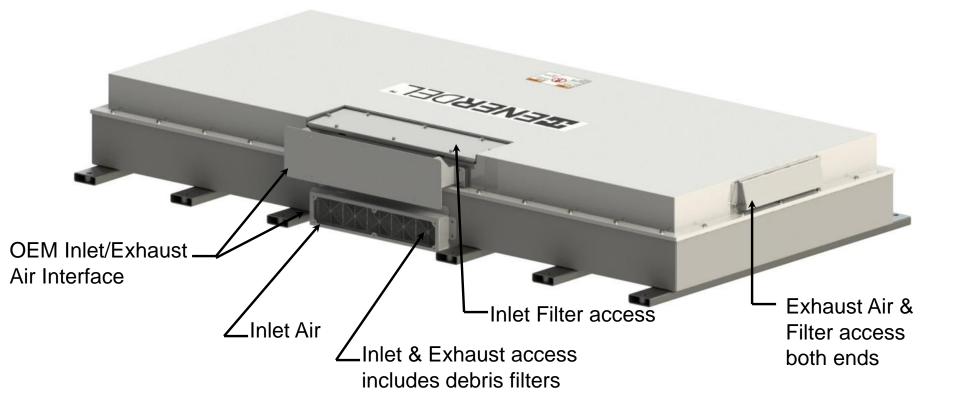


T m

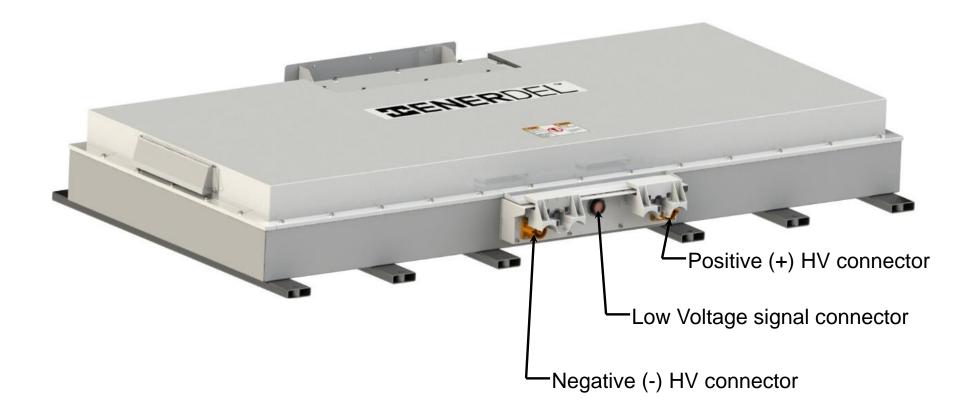
виэ

٩

Поезда


Assembled System

R

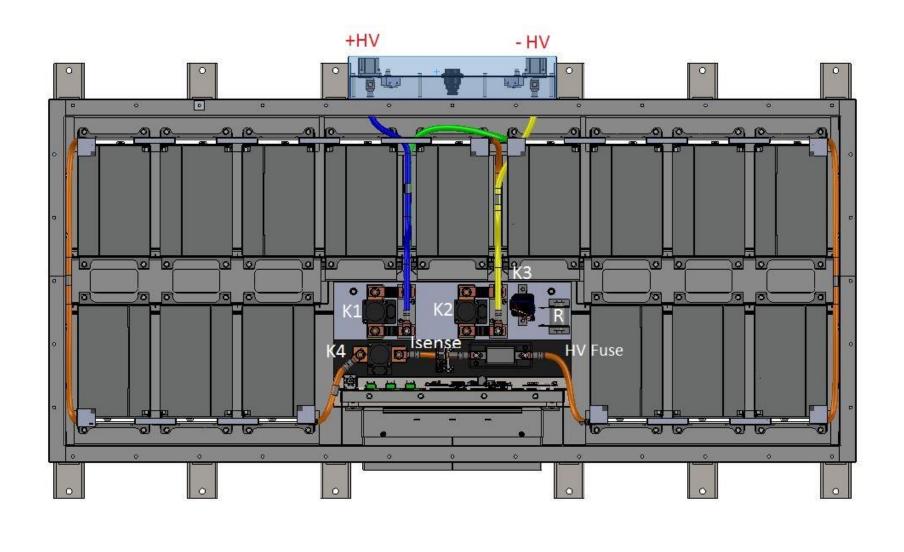

Телеком

ÅÅ

合合合










**TENER** 

олектромоби

Грузовой

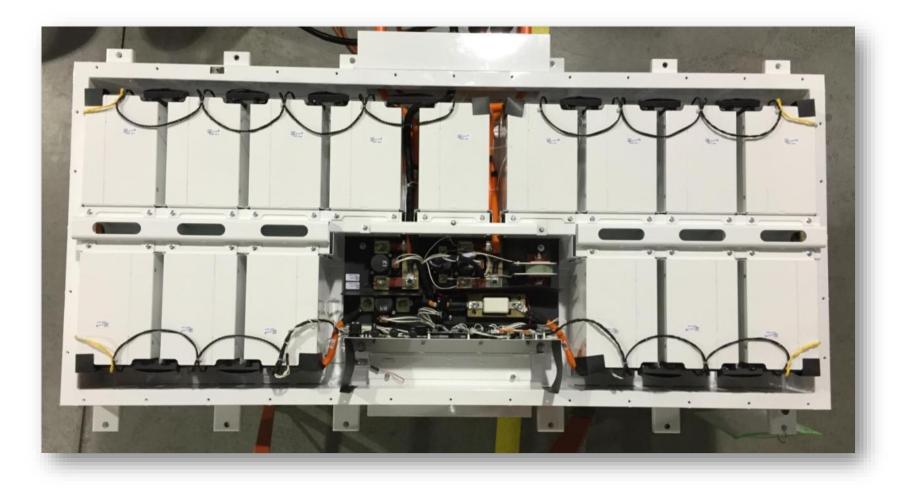


d T n

<u>()</u>

Поезда

ÅÅ


R

Телеком

 $\widehat{}$ 

виз

合合



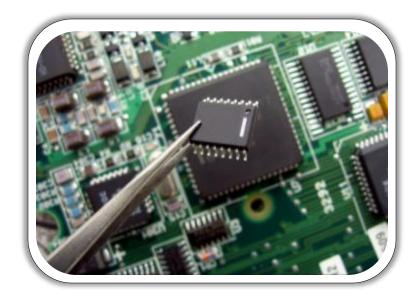
#### **Design compatible with air-cooled module**



# **Battery Management System**

#### High-speed battery control system

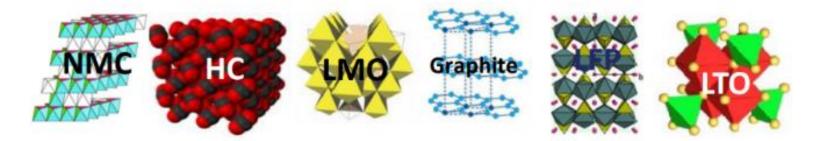
- Temperature
- State of Charge
- Voltage
- State of Health


#### Cell monitoring and control

- Optimizes capacity
- Maintains precise state of balance
- Ensures safe and efficient operation of the pack
- Achieves optimal performance and life expectancy

#### **BMS** system controls

- Pre-charge
- Closing sequence of contactors
- Opening sequence of contactors
- Online DC response: immediate
- Offline DC response: < 2 Seconds possible


(TTT)



R

# **Chemistry choice**

Electrode production experience with more than 10 different kinds of chemistry



# 318 patents, including LTO and current choice is NMC+Graphite



# **Comparative analysis**

Грузовой транспорт

Троллейбусы

Трамваи

**Электромобили** 

**JENER**Z

| Cell Chemistry             | Chemistry<br>Name | Max.<br>Charge<br>Voltage | Nominal<br>Voltage | Min.<br>Discharge<br>Voltage | Energy<br>Density<br>(Wh/kg) | Cycles                             | Advantages                                                        | Disadvantages                                                                 |
|----------------------------|-------------------|---------------------------|--------------------|------------------------------|------------------------------|------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Nickel Manganese<br>Cobalt | NMC               | 4.2                       | 3.7                | 2.5                          | 150-240                      | 1,000-2,000<br>(EnerDel<br>>3,500) | Highest energy<br>density, Good<br>balance of power<br>and energy | Cost                                                                          |
| Nickel Cobalt<br>Aluminum  | NCA               | 4.2                       | 3.6                | 3.0                          | 200-260                      | 500                                | Very high specific<br>energy                                      | Not fast charge<br>capable, limited<br>specific power,<br>Cobalt is expensive |
| Iron Phosphate             | LFP               | 3.6                       | 2.3                | 2.0                          | 90-120                       | 1,000-2,000                        | Safer than NMC?<br>High power                                     | More cells in series<br>for application                                       |
| Manganese Oxide            | LMO               | 4.2                       | 3.7                | 2.5                          | 100-150                      | 300-700                            | High power,<br>Least expensive                                    | Short Life                                                                    |
| Titanium Oxide<br>(Anode)  | LTO               | 2.8                       | 2.25               | 1.8                          | 70-80                        | 3,000-7,000                        | High Cycle Life,<br>High Power                                    | More cells in series<br>for application,<br>expensive                         |
| Cobalt Oxide               | LCO               | 4.2                       | 3.6                | 2.5                          | 150-200                      | 500-1,000                          | Very high specific<br>energy                                      | Not fast charge<br>capable, limited<br>specific power,<br>Cobalt is expensive |

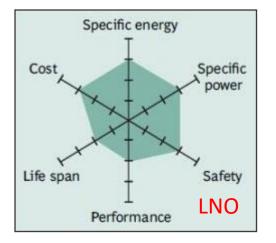
/\*\* • T #

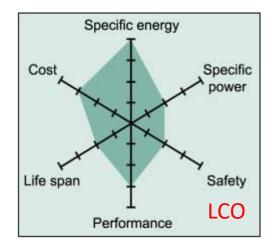
виэ

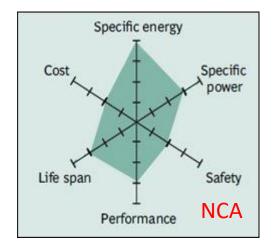
合

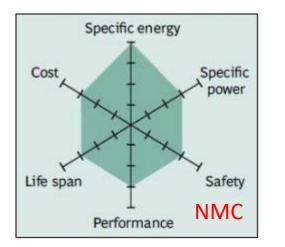
охозяйства

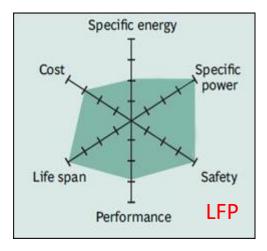
<u>()</u>

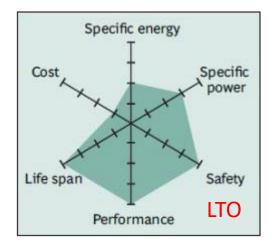

Поезда


Стария Стария Справод Собща. нокопители & MicroGrid


**А** Телеком ÅÄ

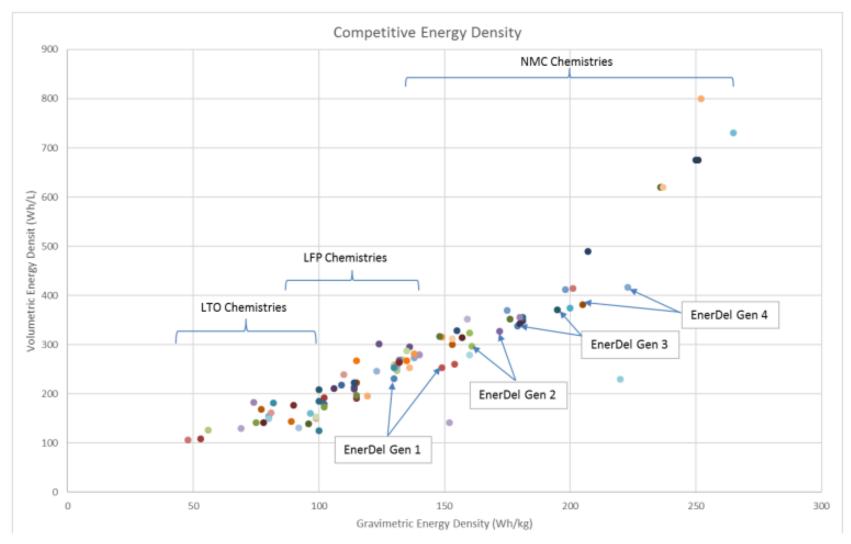

Накопители


### **Balanced characteristics of NMC**














#### Competitive Cell Analysis All Chemistries



#### Higher Energy and higher progress dynamics of NMC.



### **Evolution of cells**

Электромобили

6-00

Автобусы

رژ ا Трамваи

#### Gen 2 launched in 2017, Gen launch – beginning of 2018

|                   |       | Gen1        |      | Gen2        | Gen3        | Gen4         |       |
|-------------------|-------|-------------|------|-------------|-------------|--------------|-------|
|                   |       | EV          | PHEV | Energy      | Energy      | Energy       | Power |
| Capacity (Ah)     |       | 17.5        | 16   | 20          | 25          | 28           | 26    |
| Energy<br>density | Wh/kg | 149         | 130  | 158         | 195         | 223          | 205   |
|                   | Wh/L  | 253         | 227  | 297         | 371         | 416          | 381   |
| Chemistry         |       | NCM(333)/HC |      | NCM(622)/HC | NCM(622)/GP | NCM(811)/SiC |       |
| Availability      |       | 2010        |      | 2016        | 2018 Q1     | 2019 Q2      |       |
|                   |       |             |      | -           |             |              |       |

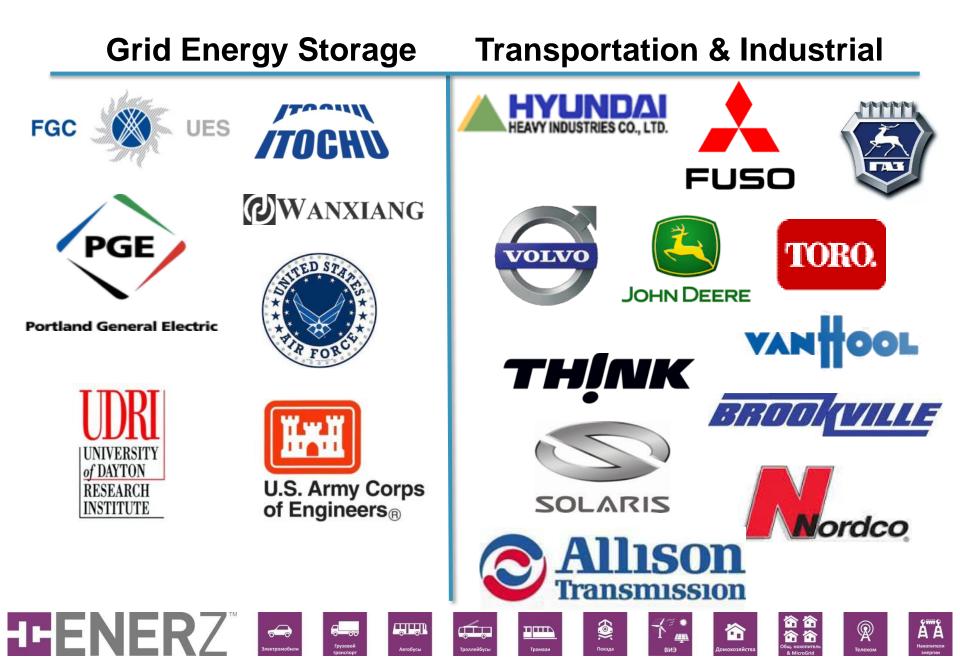
+14% +43% +60%

виэ

合合

**А** Телеком

à à


<u>()</u>

Поезда

### **About customers**



### **Our customers**





#### GAZ Group: electro bus 6274

Trial operation from January till July 2017 in M2 route, Moscow Metro Kitay-gorod – Park Pobedy Next destination for trial is a regional city



dÉго

0

R

À À



#### SpethAutoInginiring holding: Gazel NEXT Electro





### **Electro buses in Korea since 2010**



Клиент: HYUNDAI HEAVY INDUSTRIES Начало сотрудничества: 2010 г. Продукт: системы накопления энергии для первых в мире коммерческих электроавтобусов. Регулярные маршруты г. Сеул

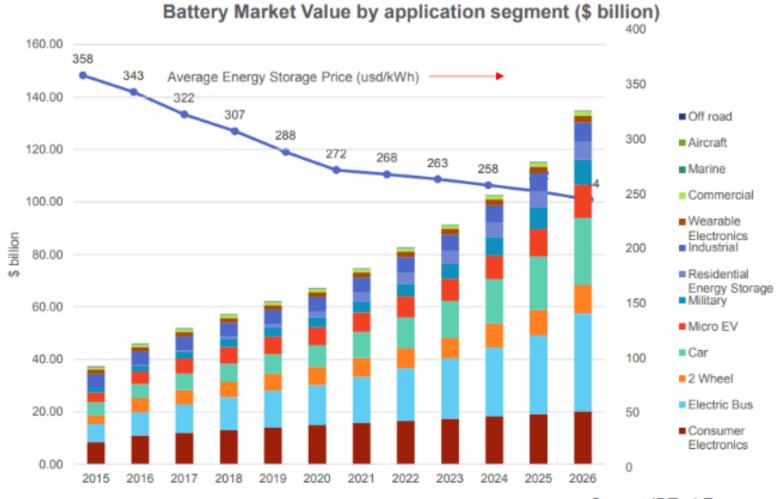
ПАРАМЕТРЫ ПРОДУКТА Система: 100 кВт/ч Автономный ход на одной зарядке: 90 км Максимальная скорость: 100 км/ч



남산투어

Namsan Tour

MARKON PRESS


 $\Theta$ 

6

### **About market**



### **Expected growth of market segments**



Автобусы

Грузовой

dín n

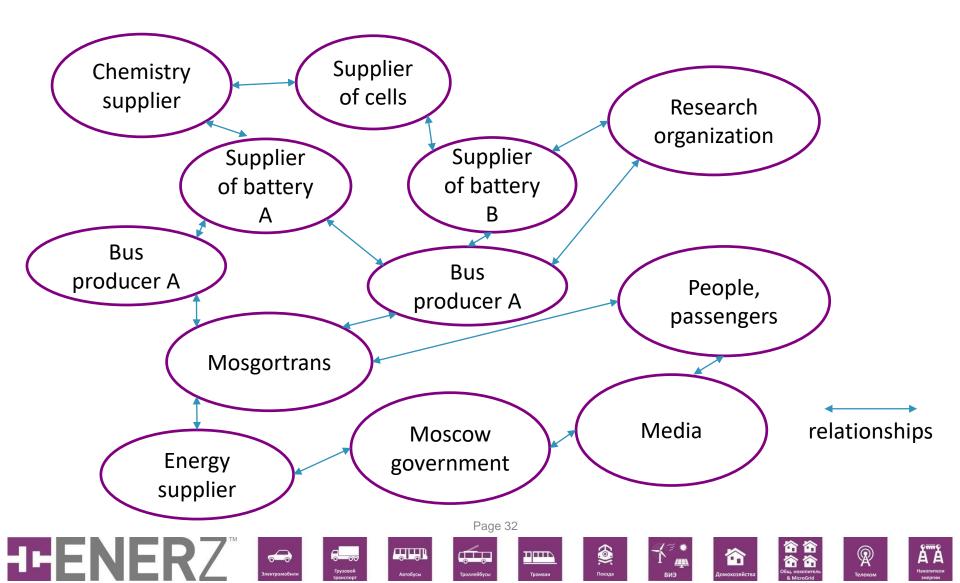
Трамваи

Source: IDTechEx

合合

<u>()</u>

Поезда


виэ

R

Телеком

ÅÅ

#### **Electrobus market from Market as Network prospective**



#### **Comments and conclusion, MAN analysis**

- Market as Network is not a hierarchical view
- Every element of market network could be important source of improvement or risk.

Performanse of the industry = Pchemistry\*Pengineering\*Passembling\*Pinfrastructure\*Pusers\*Precy clers\*Pother

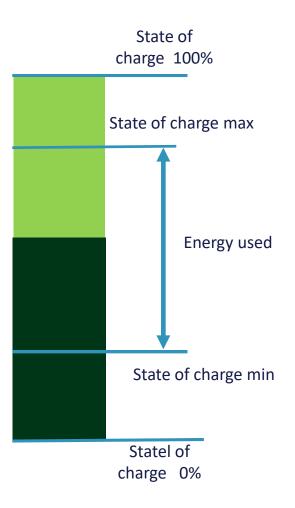


# **Recycling issue**

- "The main challenge of batteries recycling is a high diversity of them. We have to use manual sorting prior to processing". Vladimir Mathsuk, General manager of Megapolis recourse.
- Environmental concern is the major driver of demand. Economic concern currently is less applicable. For instance, electric buses are more expensive then diesel by several times now.



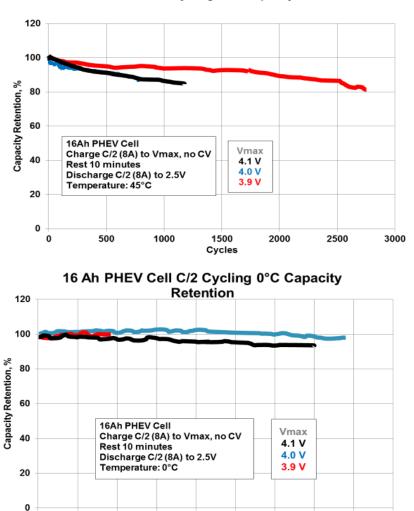
# **Uncertainty issue**


 High level of uncertainty about batteries useful lifetime, safety, reliability and other features diminishes ability of decision makers to adopt new technology.



#### **Batteries parameters**

- Energy Density
- Power
- Cost
- Useful life


Useful life depends on chemistry and character of cycling. The narrow the lag in between max charge and min charge, the longer useful life, but how longer exactly?



R

٢

#### **Cycling results experimental**



0

1000

2000

3000

4000

Cycles

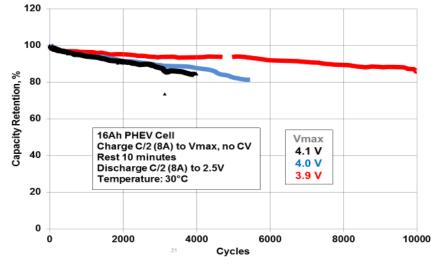
5000

6000

7000

8000

Грузовой


9000

Автобусь

(TT)

Трамваи

16 Ah PHEV Cell C/2 Cycling 45°C Capacity Retention



<u>()</u>

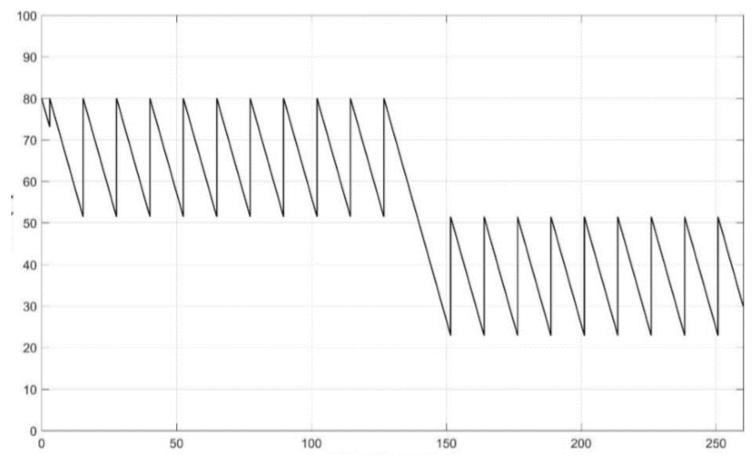
Поезла

виэ

R

Tesevos

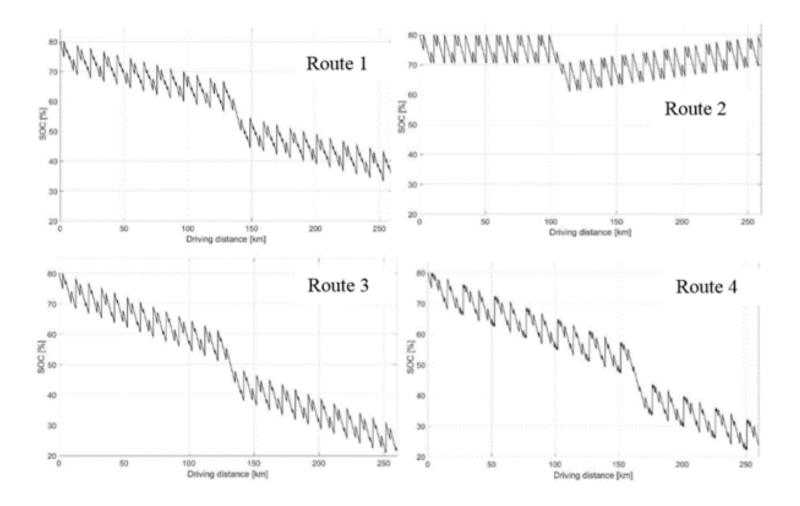
 $\frown$ 


合合

**À À** 

16 Ah PHEV Cell C/2 Cycling 30°C Capacity Retention

### Daily cycling plan for bus






Distance, km



#### More complex depending the route





### **Even more complex in reality**

- Traffic jams
- Whether conditions
- Number of passengers

As result of deviations of conditions, energy spent per km of route may be different from 1.2 to 3.7 kWt\*h/km

Mosgortrans has narrowed the task by defining conditions wich need to be provided by supplier 70 kWt\*h – available energy, maximum energy spent 2.7



### And how to estimate lifetime?

- Testing is the first answer but what about theory?
- A lack of papers about cycling depending various condition

# Performance and reliability assessment of NMC lithium ion batteries for stationary application

Yi Li<sup>1,2,\*</sup>, Noshin Omar<sup>1</sup>, Elise Nanini-Maury<sup>2</sup>, Peter Van den Bossche<sup>1</sup>, Joeri Van Mierlo<sup>1</sup>
<sup>1</sup> Vrije Universiteit Brussel, MOBI Research Group, Pleinlaan 2, 1050, Brussels, Belgium
<sup>2</sup>ENGIE LAB Laborelec, Rodestraat 125, B-1630 Linkebeek, Belgium
\*livi@vub.ac.be

Abstract— One of the main barriers to increasing the market size of lithium ion batteries for stationary applications is their lifetime. In order to select the optimal cells for integrating into grids, battery performance characterization and lifetime analysis need to be carried out to assess the battery performance and reliability under various operating conditions. In this work, a comprehensive investigation has been carried out to address these issues for a lithium nickel manganese cobalt oxide battery type. Moreover, an empirical ageing model for the lifetime prediction is presented.

Keywords-Lithium ion battery; NMC; stationary application;

(TTT

different operating conditions, battery characterization and lifetime tests need to be carried out. Moreover, developing accurate performance models is an economical and effective way to predict the battery performance, ageing status and lifetime, which is a key enabler for the reliable integration of batteries in power grids[9]. Empirical models are often used for battery ageing and lifetime estimation due to their convenience and simplicity. The battery parameters in different ageing stages can be accessed by experimental data and used as input for ageing models. According to the experimental decay tendency the battery lifetime can be

R

### **Data from the article**

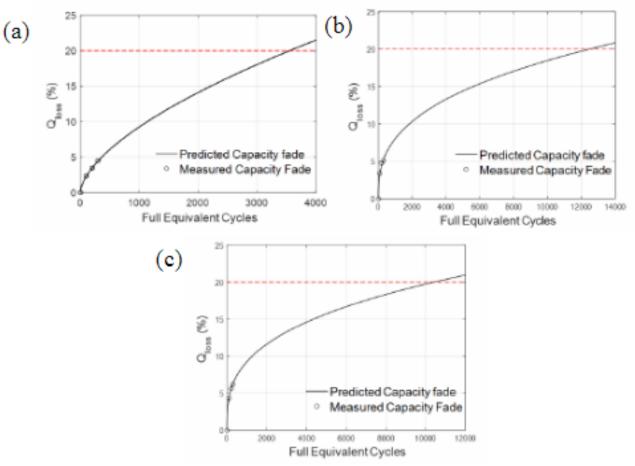



Figure 10. Capacity loss data at different cycling DoD levels (solid color markers) and fitted cycle ageing model (solid line) for cycling at 0.5C at (a) 100% DoD; (b) 80% DoD; (c) 60% DOD until EOL criterion

(TT)

6

Поезда

R

Телеком

合合

ÅÅ

# What would you suggest?



### Thank you for your attention!

#### **Viktor Moskalev**

**Marketing Director** 

v.moskalev@enerz.ru,

cell: +7 916 103 1486

www.enerz.ru

Address for CV - info@enerz.ru

