Transmission electron microscopy: fundamentals and application for battery materials

D. Batuk

Outline

1. The tool

- lenses
- holders
- sample preparation
- 2. TEM modes:
 - Electron Diffraction
 - Imaging (conventional TEM, STEM)
 - Spectroscopy (elemental analysis)

Why electrons?

Ruska and Knoll 1930s

Resolution limit of an optical system (Rayleigh criterion): $\delta \approx 0.61\lambda/NA \approx \lambda/2$

Visible light: $\lambda \approx 500 \text{ nm} \rightarrow \delta$ [500nm] $\approx 250 \text{ nm}$

Electrons:
$$\lambda = \frac{h}{\sqrt{2em_0 U}} = \frac{12.26}{\sqrt{U}}$$

 $\lambda = 0.034$ Å (120kV); 0.020Å (300kV)

δ^{theor} [300kV] ≈ 0.02Å δ^{real} [300kV] ≈ 0.5Å

Typical TEM tools (@EMAT, University of Antwerp)

FEI Tecnai G2

FEI Tecnai Osiris

FEI Titan

Electron source

Typical HT: 60-300 kV

Field Emission Guns (FEGs)

Advantages:

- ✓ high brightness
- ✓ high coherency
- ✓ small source size
- ✓ better stability

Electromagnetic lenses

lens

magnetic field

Electromagnetic lenses

trajectory

Field: $\mathbf{B} = \mathbf{B}_z + \mathbf{B}_r$

Lorentz force: $\mathbf{F} = -\mathbf{e}(\mathbf{v} \cdot \mathbf{B})$

 $\mathbf{v}_{z} \parallel \mathbf{B}_{z}, \mathbf{v}_{z} \land \mathbf{B}_{r} \bowtie \mathbf{F}_{q} = -\mathbf{e}(\mathbf{v}_{z} \land \mathbf{B}_{r})$ $\mathbf{v}_{q} \land \mathbf{B}_{z} \bowtie \mathbf{F}_{r} = -\mathbf{e}(\mathbf{v}_{q} \land \mathbf{B}_{z})$

 $\mathbf{F}_{\theta} - \mathbf{rotates}$ about the optical axis

 \mathbf{F}_r – moves towards the optical axis

- spherical lens
- rotates the electron beam around the optical axis
- only focusing lenses
- variable focal length (strength) depending on the current

Functions of the lenses

condenser system: controls beam intensity

- \checkmark controls convergence of the electron beam:
 - parallel-beam illumination
 - convergent-beam illumination

objective system: ✓ focusing of the electron beam on the sample

projection system: ✓ magnification

✓ switching between real space (imaging)

and reciprocal space (diffraction)

Spherical aberrations

Spherical aberrations correction

Light optics: stacks of focusing and defocusing lenses

Electron optics: use of non-spherical elements

condensed system – probe corrector objective system – image corrector

- + improved resolution
- high cost
- complex alignment

TEM sample holders

- single tilt
- tomography
- double tilt
- tilt-rotation
- cooling
- heating
- vacuum transfer
- *in situ* electrochemical testing
- mechanical testing

Tilts and TEM grids

Sample preparation - powders

Method 1:

- 1. grinding under solvent (DMC, EtOH, hexane) 1. r
- 2. putting a few drops of dispersion on grids

Method 2:

- 1. no solvent
- 2. pressing TEM grid against dry powder

Air sensitive samples

Sample preparation in an Ar-filled glove box

Transfer to the microscope under Ar

Focused Ion Beam (FIB)

NaO₂ particles on carbon fibers

Electron interaction with the mater

Illumination modes

parallel-beam illumination

Electron Diffraction (ED) low magnification TEM High Resolution TEM (HRTEM)

focused-beam illumination

Scanning TEM (STEM) HAADF-STEM and ABF-STEM

Parallel Illumination

Real and reciprocal space in TEM

Selected Area Electron Diffraction (SAED)

Tecnai G2: SAED aperture $10\mu m \rightarrow ~100nm$ circle on the sample

Diffraction conditions – Ewald sphere

- 1. Radius: $1/\lambda$
- 2. Crystal (i.e. scattering center) at the center of the sphere
- 3. Incident beam wave vector \mathbf{k}_0
- 4. Origin of the reciprocal lattice O* at the end of ${\bf k}_{\rm 0}$
- Diffraction condition: when *hkl* node lies on the Ewald sphere (vectror k)

Diffraction conditions – Ewald sphere

Electron Diffraction

ED pattern is a section of the reciprocal lattice!

Orientation of the crystal

ED for Space Group determination K₂Cu₂(SO₄)₃

Reflection conditions

h00: h = 2n 0k0: k = 2n 00/: l = 2n $S.G. P2_12_12_1$

Cell parameters (ED): $a \approx 18.2 \text{ Å}, b \approx 11.5 \text{ Å}, c \approx 4.8 \text{ Å}$

Multiple scattering

S.G. $P2_12_12_1$ h00: h = 2n0k0: k = 2n00/: l = 2n

Lander L. et al, Inorg. Chem. 2017, 56, 2013–2021

ED for Space Group determination KVPO₄F

ED for Space Group determination KVPO₄F

Fedotov S. S. et al, Chem. Mater. 2016, 28, 411-415

Pristine: KVO_4F 0kl: k + h = 2n h0l: h = 2n hk0: -S.G. Pnam/Pna2₁

Charged: $K_{0.17}VO_4F$ 0k!: k + h = 2n h0!: h = 2n hk0: h + k = 2n*S.G. Pnan*

Discharged: $Li_{0.7}K_{0.12}VO_4F$ 0kl: k + h = 2n h0l: h = 2n hk0: h + k = 2nS.G. Pnan

ED tomography (EDT) for structure solution

EDT workflow:

- 1. Data collection
 - ED pattern every 1°
 - avoiding main zone axes
- 2. 3D reciprocal space reconstruction
 –> quasi-kinematical intensities
- 3. Structure solution

Fedotov S. S. et al, Chem. Mater. 2016, 28, 411-415

courtesy O. Karakulina, EMAT

High Resolution TEM (HRTEM)

- high dose rate -> bad for beam sensitive materials
- extremely sensitive to misorientaions
- contrast depends on the thickness and defocus

High Resolution TEM (HRTEM)

Focused beam illumination, HAADF-STEM

- Focused probe ~1Å
- Detector in the diffraction plane
- Image: Intensity vs. position of the probe
- Annular-shape detector

High Angle Annular Dark Field Scanning Transmission Electron Microscopy (HAADF-STEM)

 $I \sim Z^{1.6-1.9}$ (Z - average at. number)

 $Li_{x}RhO_{2}$ $3.85 V \qquad 4.1 V$ $LiRhO_{2} \qquad charge \qquad Li_{0.55}RhO_{2} \qquad charge \qquad Li_{x}RhO_{2}$ $-0.45 Li^{+} \qquad -0.45 Li^{+}$ In-situ synchrotron powder diffraction in electrochemical test cells

Li_xRhO₂

Structure solution:

- 1. SAED -> symmetry
- 2. EDT -> Rh and O positions
- 3. Monte Carlo simulations to optimize Li

Mikhailova D. et al, Inorg. Chem. 2016, 55, 7079–7089

Structure confirmation: HAADF-STEM

Li_xRhO₂ transformation mechanism

Mikhailova D. et al, Inorg. Chem. 2016, 55, 7079–7089
Li_xRhO₂ transformation mechanism

Li_xRhO₂ transformation mechanism

Li_xRhO₂ lithiation of the 3D structure

- 1. Partially reversible transformation $3D \rightarrow 2D$
- 2. 3D structure hosts extra 20% Li in rutile channels

Li₃Ru_{1-y}Nb_yO₄: Li-rich structures

Rock-salt structures, but the topology of (Ru,Nb) distribution is different

Li₃RuO₄

Li₃Ru_{0.5}Nb_{0.5}O₄

Spiral (Ru,Nb)O₆ chains each segment 2 octahedra

Defects:

- (100) APBs that shift the spirals over *a*/2
- cooperative variations in the Li/(Ru,Nb) ordering pattern

XRD + NPD refinement:
partial Li/(Ru,Nb) mixing

Jacquet Q. et al, Chem. Mater. 2017, 29, 5331-5343

Li₃Ru_{0.3}Nb_{0.7}O₄

Jagged (Ru,Nb)O₆ chains each segment 2 octahedra

Defects:

cooperative variations in the Li/(Ru,Nb) ordering pattern

XRD + NPD refinement: partial Li/(Ru,Nb) mixing

$Li_3Ru_{0.1}Nb_{0.9}O_4$

Jacquet Q. et al, Chem. Mater. 2017, 29, 5331-5343

APB type 1 ($\triangleright \lhd$): shift over $a/4 + 90^\circ$ rotation

$\rm Li_3Ru_{0.1}Nb_{0.9}O_4$

Jacquet Q. et al, Chem. Mater. 2017, 29, 5331-5343

O sublattice uninterrupted

Small size of the coherent domains

anisotropic reflection broadening in the XRD + NPD refinement

ABF-STEM vs. HAADF-STEM

- ✓ straightforward interpretation of STEM images
- ✓ contrast robust to thickness variations
- sensitive to the design of the microscope (i.e. type of gun, probe-corrector)

 $Na_{x}(Ni_{0.2}Mn_{0.6}Co_{0.2})O_{2}$

Stabilization of the P2 phase using Na₂CO₃ excess

y-total Na/M ratio

Sathiya M. et al, Chem. Mater. 2017, 29, 5948-5956

 $Na_{x}(Ni_{0.2}Mn_{0.6}Co_{0.2})O_{2}$ stacking of metal layers

Sathiya M. et al, Chem. Mater. 2017, 29, 5948–5956

Na positions in P2 structure

Na2 positions are preferentially occupied in the structure

Turbostratic defects in P2 structure, y = 0.7

	C

	Atteresterrestering and a second
	······································
	Adding the second s
	Sector and and a sector and a sector
	And the set of the set
	በብወወገ

*************	20102000000000000000000000000000000000
	matthentertertertertertertertertertertertertert
	eretaspasci pretisarrertertertertettett bit fitette
*******	ebigenstellertabilderesterri mertiattillerttin mer
[210]	[210]
	رەتكا
	This was been a loss and a start a loss of a loss of
	In the second
	Hereard and the states and the feature of the state of th
<u>2 nm</u>	<u>2nm</u>
	and a state of the state of the ball of the state of the

[100

Sathiya M. et al, Chem. Mater. 2017, 29, 5948–5956

Na₂IrO₃ structure of the pristine material

honeycomb layer

- 1. cubic close packing of O atoms
- 2. Every second octahedral layer is occupied by Ir, which alternate with Na layers
- 3. 1/3 of the Ir atoms is replaces with Na forming a honeycomb arrangement of Ir atoms

Na_{2-x}IrO₃ pristine

Measured Na:Ir = 1.61(17) \rightarrow normalised to Na:Ir = 2

Perez A. J. et al, J.-M. M. Chem. Mater. 2016, 28, 8278-8288

O3 structure: 1) *ccp* O packing 2) systematic shifts of the honeycomb layers

Electrochemical oxidation

Perez A. J. et al, J.-M. M. Chem. Mater. 2016, 28, 8278-8288

$Na_{2-x}IrO_3$ charged to 3.65 V

Measured Na:Ir = $0.62(6) \rightarrow$ normalised to Na:Ir = 0.77(11)

hcp O packing
 systematic
 shifts of the
 honeycomb
 layers

Perez A. J. et al, J.-M. M. Chem. Mater. 2016, 28, 8278-8288

$Na_{2-x}IrO_3$ charged to 4.2 V

Measured Na:Ir = $0.62(6) \rightarrow$ normalised to Na:Ir = 0.77(11)

O1 structure: 1) hcp O packing 2) honeycomb layers on top of each other

Na_xIrO₃: anion redox

Fully charged $Na_x IrO_3$ (4.3 V)

shortening of 3 out of 6 O-O (projected) distances: formation peroxo-like dimers

Data consistent with the NPD refinement!

Perez A. J. et al, J.-M. M. Chem. Mater. 2016, 28, 8278–8288

Li₂IrO₃ polymorphs

$\alpha - Li_2 IrO_3$ $\beta - Li_2 IrO_3$ $\int_{[111]_{NaCl}}$

- 1. Both are based on the cubic close packing of the O atoms
- 2. In the pristine state Ir and Li occupy octahedral sites

Pearce P. E. et al, Nat. Mater. 2017, 1–8

 β -Li₂IrO₃

Electron diffraction

S.G. *Fddd* a ≈ 5.9 Å b ≈ 8.4 Å c ≈ 17.8 Å

Pearce P. E. et al, Nat. Mater. 2017, 1-8

Structure evolution of $\beta\text{-Li}_x\text{IrO}_3$ upon the electrochemical oxidation

Ir arrangement does not change!

β -Li₂IrO₃: anion redox

Electron Energy Loss Spectroscopy (EELS)

EELS for determining oxidation state

MnO + LiF composites

$xLiF + MnO \xrightarrow{charge} MnOF_x + xLi^+ + xe^-$

$F-rich - MnF_2 // O-rich - Mn_3O_4$

Mn-L₃

 $Mn-L_2$

particle

Mn₃O₄

 $Mn-L_3$

 $Mn-L_2$

particle

MnF,

670 675

F-K

Energy Dispersive X-ray analysis

EDX spectrum – set of emission lines

4 detector configuration:

- high count rate
- higher reliability

Quantitative EDX

 $K_2Cu_2(SO_4)_3$

K : Cu : S = 1.97(7) : 1.95(14) : 3.07(14)

NaO₂

Na : O = 0.33(3) : 0.66(3)

EDX elemental mapping

$$y = 0.7$$

$$y = 0.9$$

$$y = 0.9$$

$$y = 1.0$$

$$y = 1.1$$

$$y = 1.1$$

$$y = 1.1$$

$$Na_{x}(Ni_{0.2}Mn_{0.6}Co_{0.2})O_{2}$$
+
$$Na_{2}CO_{3}$$

$$y = Na^{tot}/M$$

Sathiya M. et al, Chem. Mater. 2017, 29, 5948–5956

EDX elemental mapping

 $xLiF + MnO \xrightarrow{\text{charge}} MnOF_x + xLi^{+} + xe^{-}$

MnO, O:Mn = 1.05(6); MnO₂, O:Mn = 2.09(15);

Mn₂O₃, O:Mn = 1.53(14); MnF₂, F:Mn = 1.76(33)

Concluding remarks

- TEM is a versatile tool providing structural and chemical information on a very local scale
- Different TEM techniques provide complementary information, which can also be combined with other experimental method (i.e. XRD/NPD, XPS, bulk chemical analysis...)
- Often application of advanced TEM is challenged the material, i.e. poor crystallinity, beam sensitivity, contamination issues, etc.

Thank you for your attention!

Acknowledgement

Promoters: Prof. Joke Hadermann Dr. Artem Abakumov

HAADF-STEM imaging: Dr. Dmitry Batuk

Collaborators: V. Sumanov Dr. O. Drozhzhin Dr. N. Khasanova Dr. E. Antipov

Moscow State University, Moscow, Russia

Dr. D. Mikhailova

Max Planck Institute for Chemical Physics of Solids, Dresden, Germany

MAX-PLANCK-GESELLSCHAFT

Bulk EDX data

The composition is calculated for 30-60 crystals using the Na-K and Ir-L lines
Reciprocal lattice

Set of the \mathbf{g}_{hkl} vectors form a reciprocal lattice of crystal

 $\mathbf{a}^* \perp \mathbf{b}\mathbf{c} \text{ plane } \mathbf{b}^* \perp \mathbf{a}\mathbf{c} \text{ plane } \mathbf{c}^* \perp \mathbf{a}\mathbf{b} \text{ plane}$ $\mathbf{a}^* = \mathbf{b}\mathbf{b}^* = \mathbf{c}\mathbf{c}^* = 1$ $\mathbf{a}\mathbf{b}^* = \mathbf{b}\mathbf{a}^* = \dots = \mathbf{a}\mathbf{c}^* = 0$ $\mathbf{a}^* = p (\mathbf{b} \times \mathbf{c}) \quad \mathbf{b}^* = p (\mathbf{a} \times \mathbf{c}) \quad \mathbf{c}^* = p (\mathbf{a} \times \mathbf{b})$ $\mathbf{a}\mathbf{a}^* = p [(\mathbf{b} \times \mathbf{c}) \mathbf{a}] = p\mathbf{V} = 1$ $p = 1/\mathbf{V}, \mathbf{V} - \text{unit cell volume}$ $\mathbf{a}^* = (\mathbf{b} \times \mathbf{c})/\mathbf{V} \quad \mathbf{b}^* = (\mathbf{a} \times \mathbf{c})/\mathbf{V} \quad \mathbf{c}^* = (\mathbf{a} \times \mathbf{b})/\mathbf{V}$ $\mathbf{g}_{hkl} = h\mathbf{a}^* + k\mathbf{b}^* + l\mathbf{c}^*$

$$\label{eq:k0} \begin{split} & \mathbf{k}_0 - \text{wave vector of the incident beam, } \mid \mathbf{k}_0 \mid = 1/\lambda \\ & \mathbf{k} - \text{wave vector of the diffracted beam, } \mid \mathbf{k} \mid = 1/\lambda \\ & \mathbf{g}_{hkl} \perp hkl \text{ plane, } \mathbf{g} = \mathbf{k} - \mathbf{k}_0 \end{split}$$

Bragg's condition is satisfied if $|\mathbf{g}| = 2\sin\theta/\lambda = 1/d_{hkl}$

