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Research pipeline: from theory to applications

experiment e
> applications




Schrodinger equation

Hamiltonian: describes the system

d 1
Schrédinger equation: 11—V, = H, W,

dtI /

state vector: describes the state of the system

Hamiltonian that does not depend on time

|

stationary Schrodinger equation: HWVY = FW¥

\

equilibrium state vector = eigenstate



Far-from-equilibrium driven quantum many-body dynamics:
complexity

far-from-equilibrium driven guantum many-body dynamics

d is exponential in system size
vector of length d

d 1 \ e.g. d = 2" for N qubits

store the state of:

matrix d X d ~40 qubits on laptop

~75 gubits with the
differential equation with variable coefficients whole world data storage



Far-from-equilibrium driven guantum many-body dynamics:
approaches

e approximate methods:
* perturbation theory (small parameter required)
* Floquet-Magnus theory (periodic driving, large frequencies)

e various numerical techniques

* exactly solvable models



Exactly solvable many-body models

Benefits:

 beautiful!

* bring an in-depth understanding of physical phenomena

* can be used to benchmark approximate techniques

Possible issue:

* can display non-generic behavior



Quantum point contact (QPC)
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Driven QPC between two 1D conductors: a model

Maximally simplified model:

* noninteracting fermions

 conductors modelled as one-dimensional lattices

from http://psychsciencenotes.blogspot.com/

* time-dependent fields restricted to two edge sites

driven QPC
left tight-binding o right tight-binding

chain / \ chain

j= 1 2 . L1,0 #1,+2 . 2L



Driven QPC between two 1D conductors: a model

. : : dri PC

noninteracting fermions left tight-binding riven Q right tight-binding

on a 1D lattice: chain I ————— \ chain

Vi
Hy=Hy + Hp +V; O—O—O—OJ-@ @-'-o—o—o—o
J = L+1 L+2 ..
\ —————
B L—1/ t t _ 2L—-1 7 T

Hp = —3 Zg 1 (C Cjt1 T Cg+1cj) Hp = —35 Z] L+1(C Cj+1 T Cj—l—lcj)

1 *
V, = —5 (Jt CE cr+1 + J; C}A—l Cr, + UtL CE Cr, + UtR CE—H CL_|_1)



Conformal QPC

driven QPC
left tight-binding right tight-binding

chain ( \ chain

|
Hy=Hp+ Hr+V;
j= 1 2 . L1 L [+1)1+2 .. 2

1 E S
Vi = —3 (Jt c} cr+1 1+ J4 CE_H cr, + UtL c} cr, + UtR CEH CL_|_1)

4 )

Jy =sinwt, Ul =-Ul = coswt
. J




Floguet theory for periodically driven systems
Hy = Hi i

T = 2m/w - period

stroboscopic times:  t, =n7T, n=0,1,2,...

stroboscopic dynamics: U, = U"T,, U = Texp( IK Ht/dt’)
1f — p—t HeT

Hr - Floquet Hamiltonian



Floguet theory for periodically driven systems

r N
. conf
\Ij'm- — e tnT Hg \IJO
\ y,
far-from-equilibrium guantum many-body dynamics

differential equations ‘ differential equations
with variable coefficients with constant coefficients

) . . . L BN
typically Floquet Hamiltonian is not known P



Conformal QPC: exact Floquet Hamiltonian

H f ont driven QPC
Hézonf zth/QHconf —iwtd /2 (= _V_ - ‘
O—O—O—OT@M@TO—O—O—O
- L T j=1 2 .. L[-I\L_ L+ [+2 ..
Y= 4(cjcon41—5 —hec.)

. . conf
U, = ezth/Ze Z(HO +w2/2)t\110

[ Hgonf Hconf 1 %2 . % ]




Conformal QPC: from driven to quench dynamics

_ _—inT HEont
\IJTLT — € THE \IJO

dynamics of noninteracting fermions with time-independent Hamiltonian

amenable to analytical treatment!



Conformal QPC: heating rate and current

conformal defect, L=100, Ni=60, w=12
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Conformal QPC: heating function and transmission
coefficient
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Conformal QPC: no heating above critical frequency
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Other QPCs: heating above w_ still absent

exploring non-exactly-solvable QPCs numerically:
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Tunneling QPC: no current above w,
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Beyond conformal QPC: no current above w,

tunneling QPC:

Jy = sin wt

numerical observation:

[720 for w>wc]
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No current above w_: when and why?

In general, the question is open

Numerics suggests that the following conditions are sufficient (but not necessary!):

d fOT Jt dt — O
e J¢ isreal
¢ (‘%Ut =0

No deep understanding of the effect, calls for further studies!



Approximate techniques: Floquet-Magnus expansion

expansion at large frequencies: Hp = Zio:o w=" M)

O -1 / H, dt, 0-0-0-0-@ ©-0-0-0-0
t1
M W ] dt, / dty [Hy, , Hy,], 0-0-0-6-6 8-0-0-0-0

1 to
M(Q) :F /(; dtl‘/o dt2‘/0\ dt3 [Ht17 [Htngtg,] —|_ [Ht;g? [Htngtl]ﬂ)ﬂ M‘@‘O‘O

requires O(L) terms to get a true Floquet Hamiltonian: @




Approximate techniques: perturbation theory

small V; can be treated as a perturbation
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Approximate techniques: perturbation theory
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Interacting fermions

Tentitative conclusions (with Ivan Dudinets):
* Interaction only within QPC: all the effects remain

* |nteraction in the bulk: heating rate and current are (at least) strongly

suppressed above the critical frequency

Work in progress!



Outlook: possible applications

* Absence of heating — (almost) always welcome!

* Switching the current on and off by varying the frequency:

frequency-controlled quantum switch!



Summary

exactly solvable model for a driven QPC studied
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Nonequilibrium phase tr:
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ns through a periodically driven quantum point contact (QPC)
Initially, each chain is prepared in its own equilibrium enerally with
potentials and temperatures. We examine the heating rate (or, allernatively, energy increase

quilibrium time-periodic steady state established after initial transient dynamics. We find
that the heating rate vanishes identically when the driving frequency exceeds the bandwidth of the chain. We
first establish this fact for o particular type of QPCs where the heating rate can be calculated analytically
Then we verify numerically that this nonequilibrium phase transition is present for a generic QPC. Finally
we derive this effect perurbatively in leading order for cases when the QPC Hamiltonian be considered
2 small perturbation. Strikingly, we discover that for certain QPCs the current averaged over the driving cycle
nishes al the critical frequency, despite a persistent bias. This shows that a driven QPC can ac
frequency-controlled quantum switch.

nonequilibrium phase transition above a critical frequency discovered

phase transition is there for other (non-exactly-solvable) models

heating rate (always) and current (sometimes) vanish above the critical frequency

a frequency-controlled quantum switch can be anticipated
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post scriptum

We also use conformal QPC to benchmark quantum speed limits
and adiabatic conditions for many-body systems
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