Basics of Transmission Electron Microscopy

Dr. Maria Kirsanova, Prof. Artem Abakumov

Outline

- TEM column
- Wave properties of electrons
- Sample preparation
- Parallel-beam illumination mode

Selected area electron diffraction

High-resolution TEM

- Focused-beam mode (STEM)
- Analytical TEM

Examples of transmission electron microscopes

FEI Technai G2, EMAT, Antwerp

FEI Titan Themis Z, Skoltech Skoltech

Column of transmission electron microscope

Wave properties of electron and resolution limit

Energy of electron accelerated in the potential U:

$$E = eU = \frac{m_o v^2}{2} \Rightarrow v = \sqrt{\frac{2eU}{m_o}}$$

$$E = eU = \frac{m_o v^2}{2} \Rightarrow v = \sqrt{\frac{2eU}{m_o}}$$

$$\frac{100}{200}$$

$$\frac{100}{200}$$

$$\frac{100}{200}$$

$$\frac{100}{200}$$

$$\frac{100}{200}$$

$$\frac{100}{200}$$

$$\frac{100}{200}$$

$$\frac{12.26}{\sqrt{U}}$$

$$\frac{100}{\sqrt{2em_0U}} = \frac{12.26}{\sqrt{U}}$$

$$\frac{100}{\sqrt{U}}$$

$$\frac{100}{\sqrt$$

Sample preparation: powders and air sensitive materials

Sample preparation: FIB

Transferring into TEM column

and Technology

TEM modes with parallel-beam illumination

Diffraction mode

Formation of image: direct and Fourier space

Crystallographic planes and reciprocal lattice

Set of the \mathbf{H}_{hkl} vectors form a reciprocal lattice of crystal

Vectors of reciprocal space:

a* ⊥ **bc** plane

 \mathbf{k}_0 – wave vector of the incident beam, $|\mathbf{k}_0| = 1/\lambda$ \mathbf{k} – wave vector of the diffracted beam, $|\mathbf{k}| = 1/\lambda$ $\mathbf{H}_{hkl} \perp hkl$ plane, $\mathbf{H} = \mathbf{k} - \mathbf{k}_0$

Bragg's condition is satisfied if $|\mathbf{H}| = 2\sin\theta/\lambda = 1/d_{hkl}$

c* ⊥ **ab** plane

b* ⊥ **ac** plane

Reciprocal lattice and the Ewald sphere

- 1. Ewald sphere with the radius of $1/\lambda$
- 2. Crystal at the center of the sphere
- 3. Incident beam wave vector \mathbf{k}_0
- 4. Origin of the reciprocal lattice O* at the intersection of the Ewald sphere and \mathbf{k}_0
- 5. Diffraction condition: when hkl node intersects the Ewald sphere (vector k)

Selected area electron diffraction (SAED)

From single SAED pattern to series of images

Electron diffraction tomography (EDT)

U. Kolb et al. Ultramicroscopy, 2007, 107, 6-7.

- 1. Registration of ED pattern each 0.5-1°
- Data treatment and integration of intensities in quasi-kinematical approximation
- 3. Reconstruction of 3D reciprocal space
- 4. Search for structure model by charge flipping or other algorithm

Electron diffraction tomography (EDT)

Reciprocal lattice sections from EDT

SAED patterns

[010] zone axis is (almost) not possible to observe experimentally!

оку X2,700 бµт 0158 11 60 SEI

[001]

[001

Na₅Ni₂(PO₄)₃·H₂O, P2₁/n, a = 14.039 Å, b = 5.185 Å, c = 16.474 Å, $\beta = 110.42^{\circ}$ Imaging in parallel beam

TEM modes with parallel-beam illumination

High-resolution TEM imaging

HRTEM image – reality modified by microscope

Contrast in HRTEM

T(**g**) is large, constant and negative - atoms appear dark

Phase shift of the scattered wave:

$$\chi(g) = \pi \Delta F \lambda g^2 + \frac{\pi C_s \lambda^3 g^4}{2}$$

 ΔF – defocus

- C_s spherical aberration coefficient
- g diffraction vector
- λ wavelength

Phase-contrast transfer function (CTF):

 $T(\mathbf{g}) = A(\mathbf{g})D(\alpha, \Delta)\sin\chi(\mathbf{g})$

HRTEM: examples

Imaging in focused beam – Scanning Transmission Electron Microscopy (STEM)

Focused beam mode - STEM

HAADF-STEM imaging

HAADF-STEM – High Angle Annular Dark Field Scanning Transmission Electron Microscopy

- Focused probe ~ 1 Å
- ADF detector is located in the diffraction plane
- Intensity of signal is highly dependent on Z number: I ~ Z²

Adapted from Y. Kotaka, Appl. Phys. Lett. 2012, 101, 133107.

HAADF- vs. ABF-STEM imaging

ABF-STEM – Annular Bright Feld Scanning Transmission Electron Microscopy

Skolkovo Institute of Science and Technolog

Visualization of light elements (Li, O...)

iDPC and dDPC STEM mapping

segmented detector,

inserted in the BF-region of the illuminating cone

Registering DPC-maps

Adapted from N. Shibata et al., *Nature Commun.*, **2017**, 8, 15631.

Resolution limit: aberrations of lenses

<u>Principle</u>: non-spherical elements of electron optic create divergent lens

aberration corrected

Skolkovo Institute of Science and Technolo

Analytical tools of TEM

Chemistry at atomic resolution

Adapted from D. Muller, *Nature Mater.*, **2009**, 8, 263.

Near Edge Structure

STEM-EDX

STEM-EELS

All-round help – Prof. Artem Abakumov FIB SEM images – courtesy of Dr. Ilya Krupatin

