Electronic structure of battery materials

Artem Abakumov

Center for Energy Science and Technology, Skoltech

Li-ion battery energy diagram

Cathode materials

Bonding in oxides

MO diagram for the MO_6^{n-} octahedral complex – a building unit of many oxide structures

M – transition metal with the electronic configuration nd^m (n+1)s² (n+1)p⁰

Bonding in oxides

BO₆ⁿ⁻ octahedron: **MO** diagram

BO₆ⁿ⁻ octahedron: **MO** diagram

Simplified band structure

ReO₃: band structure

NiO: metal or insulator?

NiO: metal or insulator?

Skolkovo Institute of Science and Technology

Mott-Hubbard insulators

Two competing trends:

- the kinetic energy acts to delocalize the electrons, leading to metallic behaviour.
- the electron-electron Coulomb repulsion energy *U* wants to localize the electrons on sites.

Mott-Hubbard insulators

Mott-Hubbard scheme of the metal-to-insulator (MI) transition

Mott-Hubbard vs charge transfer regimes

Three parameters: on-site Coulomb energy U, bandwidth W and d-band – p-band energy difference (charge transfer energy) Δ

 $U: \mathbf{d}_i^n + \mathbf{d}_j^n \to \mathbf{d}_i^{n-1} + \mathbf{d}_j^{n+1} \qquad \Delta: \mathbf{d}_i^n \to \mathbf{d}_i^{n+1} + L \left(L - \text{ligand hole}\right)$

Skolkovo Institute of Science and Technology

Cathode materials

Abakumov, Fedotov, Antipov, Tarascon, Nature Comm., 11, 4976 (2020)

Cathionic redox

Skolkovo Institute of Science and Technolog

Abakumov, Fedotov, Antipov, Tarascon, Nature Comm., 11, 4976 (2020)

Cationic redox in ZSA diagram

Zaanen – Sawatsky – Allen diagram

Pure ionic model neglecting the orbital overlap:

 $U_0 = I_{\nu+1}(M) - I_{\nu}(M) - e^2/d_{M-M}$ I – ionization potential

$$\begin{split} \Delta_0 &= e\Delta V_{\rm M} + A({\rm O}^{\text{-}}) - I_{\rm v}({\rm M}) - e^2/d_{\rm M-O} \\ \Delta V_{\rm M} - \text{change in Madelung potential} \\ A - \text{electron affinity} \end{split}$$

J.B. Torrance et al., Physica C, 182, 251, 1991

Cationic redox in ZSA diagram

Cationic redox in ZSA diagram

Zaanen – Sawatsky – Allen diagram

Band structure upon charge/discharge

Skolkovo Institute of Science and Technol

Anionic redox

Skolkovo Institute of Science and Technolog

Abakumov, Fedotov, Antipov, Tarascon, Nature Comm., 11, 4976 (2020)

Lattice oxygen oxidation

Lattice oxygen oxidation

J.-C. Dupin et al., Phys.Chem.Chem.Phys., 2000, 2, 1319

Anionic redox

Abakumov, Fedotov, Antipov, Tarascon, Nature Comm., 11, 4976 (2020)

Li-rich layered oxides

CECAM workshop DO NOT DISTRIBUTE

 $\begin{array}{l} \text{LiCoO}_2 \\ \text{LiNi}_{1/3}\text{Mn}_{1/3}\text{Co}_{1/3}\text{O}_2 \end{array}$

 $Li_{1+\gamma}(Ni,Mn,Co)_{1-\gamma}O_2$

SKOLKOVO INSTITUTE OF SCIENCE and Technology

High capacity layered cathodes: excess capacity

High capacity layered cathodes

Skolkovo Institute of Science and Technology

Mechanism: orphaned Li-O-Li O2p orbitals

Anionic redox and oxygen evolution

Skolkovo Institute of Science and Technolo

Novák, Van Tendeloo, Dominko, Tarascon, *Science*, 2015, 350,1516

Redox potential of the Mn+/M(n+1)+ pairs

Redox potential of the Mⁿ⁺/M⁽ⁿ⁺¹⁾⁺ pairs

Covalency vs ionicity

Skolkovo Institute of Science and Technolog

Abakumov, Fedotov, Antipov, Tarascon, Nature Comm., 11, 4976 (2020)

Covalency vs ionicity

Skolkovo Institute of Science and Technology

Covalency vs ionicity

Skoltech

Skolkovo Institute of Science and Technology

Abakumov, Fedotov, Antipov, Tarascon, Nature Comm., 11, 4976 (2020)

Electronic configuration

Electronic configuration

Skoltech

A.Gutierrez, N.A.Benedek, A.Manthiram, Chem. Mater. 2013, 25, 4010

Thank you for your attention!

