

Advanced Materials Modeling

Seminar May 20 17:00

Online

Wavefunction analyses in real space using Quantum Chemical Topological Methods **Carlo Gatti**

CNR-SCITEC, Istituto di Scienze e Tecnologie Chimiche, "Giulio Natta", Milano, Italy

Consiglio Nazionale delle Ricerche

2

6

 ~ 100 researchers

CNR-SCITEC, Istituto di Scienze e Tecnologie Chimiche «Giulio Natta»

CHIMICA

COMPUTA-

ZIONALE

- Retrieving chemical bonding information from the wf: compresses the information contained in the wf by using its probabilistic interpretation reduced densities
- \blacktriangleright Bond descriptors from reduced densities (ρ and related quantities; first and second order matrices)
- How to analyse reduced densities. Pros and cons of deformation densities topology
- The theory of Gradient dynamical systems partitioning of the molecular space topological features/study of the scalar associated to the gradient field
- > QTAIM as a specific very important case (topological basin **____** topological atom **____** quantum atom)
- > Some important hints on QTAIM chemical bonding classification and on the use of the density Laplacian
- > Didactic example on the use of QTAIM to detect packing effects (urea crystal)

Spin density topology

Electrostatic potential Source Function (applied to enantioseparation outcome in HPLC)

Do the peculiar physical properties of phase change materials entail unusual chemical bonding features? (LI and DI application)

Why retrieving chemical (bonding) information from the model wavefunction of a material? (or, in general, of any investigated system of some fundamental and/or practical interest?)

- Thoughtful searches for more and more performing materials or of materials with novel properties and functions require a profound understanding of their structure-property relationships
- The detailed knowledge of the structure of a material, either through experimental and/or in silico approaches, is a necessary and fundamental prerequisite for its study.
- Yet the geometrical, electronic and (magnetic) structure of a material is ultimately related to its chemical bonding features, which are just a function of its chemical composition/stoichiometry, and of external constraints (applied P, T and external fields)

Material's properties are determined by chemical bonding GeSe: orthorhombic, poor thermoelectrics \rightarrow covalent bonding (2c-2e) GeTe: almost cubic, good thermoelectrics \rightarrow metavalent bonding (1c-2e)

How retrieving chemical (bonding) information from wavefunctions?

The amount of information stored in a wavefunction becomes soon so large with increasing number of electrons that it escapes human comprehension **an information compression technique is needed** Vleck JHV. Phys Rev. 1932;49:232

Two main strategies:

- A. Take advantage of the models/approximations used to solve Schrödinger's equation. In HF, e.g., ψ is written as a Single Determinant (SD) constructed from one-electron functions or orbitals φ mean-field (MF) approach: e⁻ move in the average potential created by the rest of the particles (e⁻ and n) of the system Knowledge and manipulation of the N (number of e⁻) 3D φ of a system is much easier than that of the full wf. However, this simplification **comes at the expense of several problems and caveats:** (a) ψ is invariant to unitary transformations of orbitals orbital interpretations are method (MO, VB, etc.) dependent; (b) when the MF is abandoned and electron correlation is taken into account, the pristine SD orbital concept vanishes and (MC approaches) many more than N partially occupied functions appear
- **B**. compress the information contained in the wavefunction by using its probabilistic interpretation

Ángel Martín Pendás and Carlo Gatti, Chapter 3: Quantum theory of atoms in molecules and the AIMAII software in *Complementary Bonding Analysis*, S. Grabowsky Ed, De Gruyter 2021

G. Saleh, D. Ceresoli, G. Macetti and C. Gatti*,
Chapter 5: Chemical Bonding Investigations for
Materials, in *Computational Materials Discovery*,
A.R. Oganov, G. Saleh, A.G. Kvashnin Eds., RSC 2019

From wavefunctions to chemical bond descriptors

Forget about the behavior of all e^{-} but 1 or 2 and get the density of finding e^{-} or e^{-} pairs at given positions of R^{3} or R^{6} . These **reduced densities** are QM observables (experimentally accessed in principle), invariant under orbital transformations do not depend on models of computational methods, and have clear-cut interpretations

$$\Psi_{el}(\boldsymbol{r,r_2,...r_N};\boldsymbol{R})$$

System of N_{el} and M nuclei; Ψ_{el} : stationary *wf* for fixed nuclear space coordinates (BO approx.) *R*: ensemble of nuclear coordinates for the *M* nuclei

$$\Psi_{el}(\boldsymbol{r}_1, \boldsymbol{r}_2, \dots, \boldsymbol{r}_N; \boldsymbol{R}) \cdot \Psi_{el}^*(\boldsymbol{r}_1, \boldsymbol{r}_2, \dots, \boldsymbol{r}_N; \boldsymbol{R}) d\boldsymbol{r}_1 d\boldsymbol{r}_2, \dots, d\boldsymbol{r}_N$$

Born's interpretation of the wf

 $\rho(\mathbf{r}_1)d\mathbf{r}_1$ probability of finding any of its electrons at \mathbf{r}_1 regardless of the exact position of the other e

where the corresponding *probability density* is the *position electron density* (ED) $\rho(\mathbf{r})$

$$\rho(\boldsymbol{r}) = N \int \Psi_{el}(\boldsymbol{r}, \boldsymbol{r}_2, \dots, \boldsymbol{r}_N; \boldsymbol{R}) \cdot \Psi_{el}^*(\boldsymbol{r}, \boldsymbol{r}_2, \dots, \boldsymbol{r}_N; \boldsymbol{R}) d\boldsymbol{r}_2, \dots, d\boldsymbol{r}_N$$

Density matrices are a convenient mathematical device for evaluating the expectation values of operators corresponding to physical observables, $\langle \psi_{el} | O | \psi_{e} \rangle$

$$\gamma_{p}(\mathbf{r}_{1}\mathbf{r}_{2}..\mathbf{r}_{p};\mathbf{r}_{1}'\mathbf{r}_{2}'..\mathbf{r}_{p}') = \left(\frac{N}{p}\right) \int \psi_{el}(\mathbf{r}_{1}\mathbf{r}_{2}..\mathbf{r}_{p}\mathbf{r}_{p+1}..\mathbf{r}_{n})\psi_{el}^{*}(\mathbf{r}_{1}'\mathbf{r}_{2}'..\mathbf{r}_{p}'\mathbf{r}_{p+1}'..\mathbf{r}_{n}')d\mathbf{r}_{p+1}...d\mathbf{r}_{n}$$

A numerical value is assigned to γ_p by two sets of indices. γ_p may be seen as an element of a matrix and $\gamma_p(\{r\}; \{r'\})$ as the corresponding matrix with infinite elements. The diagonal elements $(\mathbf{r_1} \equiv \mathbf{r_1'})$ of this matrix, correspond to the probability of finding p electrons with given space coordinates and regardless of those of the remaining (N-p) electrons. This is a p-particles density, motivating why $\gamma_p(\{r\}; \{r'\})$ is called a *density matrix*

is a binomial coefficient ensuring proper normalization

$$\gamma_{2}(\mathbf{r}_{1}\mathbf{r}_{2};\mathbf{r}_{1}'\mathbf{r}_{2}') = \frac{N(N-1)}{2} \int \psi_{el}(\mathbf{r}_{1}\mathbf{r}_{2}\mathbf{r}_{3}..\mathbf{r}_{n})\psi_{el}^{*}(\mathbf{r}_{1}'\mathbf{r}_{2}'\mathbf{r}_{3}'..\mathbf{r}_{n}')d\mathbf{r}_{3}...d\mathbf{r}_{n}$$

$$\gamma_{1}(\mathbf{r}_{1};\mathbf{r}_{1}') = N \int \psi_{el}(\mathbf{r}_{1}\mathbf{r}_{2}..\mathbf{r}_{n})\psi_{el}^{*}(\mathbf{r}_{1}'\mathbf{r}_{2}'.\mathbf{r}_{n}')d\mathbf{r}_{2}...d\mathbf{r}_{n}$$

Since only one- and two-body interactions take place among electrons, we need just γ_1 and γ_2

$$\gamma_1(\mathbf{r}_1;\mathbf{r}_1) = N \int \psi_{el}(\mathbf{r}_1\mathbf{r}_2 \dots \mathbf{r}_n) \psi_{el}^*(\mathbf{r}_1'\mathbf{r}_2' \dots \mathbf{r}_n') d\mathbf{r}_2 \dots d\mathbf{r}_n \quad \text{First order density matrix (DM)}$$

$$\gamma_{2}(\mathbf{r}_{1}\mathbf{r}_{2};\mathbf{r}_{1}'\mathbf{r}_{2}') = \frac{N(N-1)}{2} \int \psi_{el}(\mathbf{r}_{1}\mathbf{r}_{2}\mathbf{r}_{3}..\mathbf{r}_{n})\psi_{el}^{*}(\mathbf{r}_{1}'\mathbf{r}_{2}'\mathbf{r}_{3}'.\mathbf{r}_{n}')d\mathbf{r}_{3}...d\mathbf{r}_{n}$$

Second order DM

The expectation value of any one- and two-electron operators may be expressed as

$$\left\langle \hat{O}_{1} \right\rangle = \left\langle \sum_{i}^{N} O_{1}(\boldsymbol{r}_{i}) \right\rangle = \int_{\boldsymbol{r}_{1}=\boldsymbol{r}_{1}} O_{1}(\boldsymbol{r}_{1}) \gamma_{1}(\boldsymbol{r}_{1};\boldsymbol{r}_{1}) d\boldsymbol{r}_{1}$$

$$\left\langle \hat{O}_{2} \right\rangle = \left\langle \sum_{i,j}^{N} \left| O_{2}(\mathbf{r}_{i}\mathbf{r}_{j}) \right\rangle = \int_{\mathbf{r}_{1}=\mathbf{r}_{1};\mathbf{r}_{2}=\mathbf{r}_{2}} \int_{\mathcal{O}_{2}} (\mathbf{r}_{1}\mathbf{r}_{2}) \gamma_{2}(\mathbf{r}_{1}\mathbf{r}_{2};\mathbf{r}_{1}\mathbf{r}_{2}) d\mathbf{r}_{1} d\mathbf{r}_{2}$$

using the convention that the operators act only on functions of the unprimed variables and that **r'** is put equal to **r** after operating with the operators but before completing the integration

All 1-electron and all 2-electron properties may be obtained from the first and second order DMs

From wavefunctions to chemical bond descriptors

$$\Psi_{el}(\boldsymbol{r}, \boldsymbol{r}_{2}, \dots, \boldsymbol{r}_{N}; \boldsymbol{R})$$

$$\gamma_{1}(\boldsymbol{r} = \boldsymbol{r}') \equiv \rho(\boldsymbol{r}) \qquad \rho(\boldsymbol{r}) = N \int \Psi_{el}(\boldsymbol{r}, \boldsymbol{r}_{2}, \dots, \boldsymbol{r}_{N}; \boldsymbol{R}) \cdot \Psi_{el}^{*}(\boldsymbol{r}, \boldsymbol{r}_{2}, \dots, \boldsymbol{r}_{N}; \boldsymbol{R}) d\boldsymbol{r}_{2}, \dots, d\boldsymbol{r}_{N}$$

$$\downarrow$$
Derived from the ED ρ : $\rho, \nabla^{2}\rho$, ESP, EF, SF, RDG, etc.

SF Source Function; ESP Electrostatic Potential; EF Electric Field, RDG Reduced Density Gradient

$$\gamma_1(\boldsymbol{r}_1;\boldsymbol{r}_1') = N \int \psi_{el}(\boldsymbol{r}_1\boldsymbol{r}_2 \dots \boldsymbol{r}_n) \psi_{el}^*(\boldsymbol{r}_1'\boldsymbol{r}_2' \dots \boldsymbol{r}_n') d\boldsymbol{r}_2 \dots d\boldsymbol{r}_n$$

$$\downarrow$$
Derived from $\gamma_1(\boldsymbol{r}_1;\boldsymbol{r}_1')$: G,V, H, LOL, ELF, etc.

G,V,H : kinetic, potential and energy densities, ELF : Electron Localization Function

Derived from $\gamma_2(\mathbf{r}_1\mathbf{r}_2;\mathbf{r}_1\mathbf{r}_2)$ $\rho_2(\mathbf{r}_1,\mathbf{r}_2) \equiv \gamma_2(\mathbf{r}_1,\mathbf{r}_2;\mathbf{r}_1,\mathbf{r}_2)$ $\rho_2(\mathbf{r}_1,\mathbf{r}_2)$ Pair density $\rho_2(\mathbf{r}_1,\mathbf{r}_2)$ Pair density $\rho_2(\mathbf{r}_1,\mathbf{r}_2) \equiv \gamma_2(\mathbf{r}_1,\mathbf{r}_2;\mathbf{r}_1,\mathbf{r}_2)$ $\rho_2(\mathbf{r}_1,\mathbf{r}_2) \equiv \gamma_2(\mathbf{r}_1,\mathbf{r}_2;\mathbf{r}_1,\mathbf{r}_2)$

LI/DI: local/deloc indices; DAFH Domain Average Fermi Hole, ELI, Electron Localizability Indicators

From wavefunctions to chemical bond descriptors: LI and DI

Pair Density : all information on the correlated motion of electrons $\rho_2(\mathbf{r}_1,\mathbf{r}_2) \equiv \gamma_2(\mathbf{r}_1,\mathbf{r}_2;\mathbf{r}_1,\mathbf{r}_2)$

 $\rho_{2,xc}(\mathbf{r}_1,\mathbf{r}_2)$ It is the so called *exchange-correlation density*, which incorporates all non classical effects and measures to which degree the density is excluded at r_2 because of the presence of an electron at \mathbf{r}_1 .

> $\rho_{2,xc}(\mathbf{r}_1,\mathbf{r}_2)$ integrates to N, so that integration of $\rho_2(\mathbf{r}_1,\mathbf{r}_2)$, ½(N²-N) = ½ N(N-1), yields the total number of distinct pairs, $\frac{1}{2}$ N(N-1)

The probability of finding one electron at \mathbf{r}_1 and another one at \mathbf{r}_2 deviates from the purely classical description of a product of independent EDs because of Coulomb and Fermi correlation of e⁻ motions

$$\lambda(A) = \iint_{A A} \rho_{2,xc}(\mathbf{r}_1, \mathbf{r}_2) d\mathbf{r}_1 d\mathbf{r}_2$$

 $\delta(A,B) = 2 \cdot \int \int \rho_{2,xc}(\mathbf{r}_1,\mathbf{r}_2) d\mathbf{r}_1 d\mathbf{r}_2$

 λ (A) Electron localization index, LI

 δ (A,B) Electron delocalization index, **DI**

A and B are "atomic" basins (to be defined)

$$N(A) = \lambda(A) + \frac{1}{2} \sum_{B \neq A} \delta(A, B)$$

Source of information

ρ

$$(\mathbf{r}) \equiv \rho_1(\mathbf{r}, \mathbf{r}) \longrightarrow \nabla^2 \rho, \text{ESP}, \text{EF}, \text{SF}, \text{RDG}, \text{etc.}$$

Only indirect information on electron correlation

C. Gatti, PJ Mac Dougall and RFW Bader, Effect of electron correlation on the topological properties of molecular charge distributions, *J. Chem. Phys.* 88, 3792 (1988)

$$\rho_1(\mathbf{r},\mathbf{r}') \longrightarrow G(\mathbf{r}), V(\mathbf{r}), H(\mathbf{r}), LOL, ELF,$$

$$\rho_2(\mathbf{r}_1,\mathbf{r}_2) \equiv \rho_2(\mathbf{r}_1,\mathbf{r}_2;\mathbf{r}_1,\mathbf{r}_2)$$

Pair Density : all information on the correlated motion of electrons

$$\rho_{2}(\mathbf{r}_{1},\mathbf{r}_{2}) = \frac{1}{2} [\rho(\mathbf{r}_{1})\rho(\mathbf{r}_{2}) - \rho_{2,xc}(\mathbf{r}_{1},\mathbf{r}_{2})] \longrightarrow \text{LI, DI, DAFH, ELI's family...}$$

$$\lambda(A) = \iint_{A,A} \rho_{2,xc}(\mathbf{r}_{1},\mathbf{r}_{2})d\mathbf{r}_{1}d\mathbf{r}_{2} \quad \text{Electron localization index, LI}$$

$$\delta(A,B) = 2 \cdot \iint_{A,B} \rho_{2,xc}(\mathbf{r}_{1},\mathbf{r}_{2})d\mathbf{r}_{1}d\mathbf{r}_{2} \quad \delta(A,B) \text{ Electron delocalization index, DI}$$

$$\frac{\theta(A,B)}{\theta(A)} = [\lambda(A)/N(A)] \cdot 100 \quad \frac{\theta(A,B)}{\theta(A)} = \sum_{A\neq B} [0.5 \cdot \delta(A,B)/N(A)] \cdot 100$$

100

How to analyse reduced densities

Reduced densities, are dominated by the nuclear positions

It was thus clear from the beginning that a theory of chemical bonding based on electron densities (or functions derived thereof) should focus on density differences, i.e. on how electrons redistribute in chemical processes

□ Yet, the "arbitrary choice of the reference density can completely alter the interpretation

Analyse the density itself

Examine its topology. If we want to study the behavior of a scalar function without recourse to an external reference, only its value and that of its derivatives are available (Paul Mezey).

 $\Delta \rho = \rho - \rho_{ref}$

Nancy 2009

Deformation densities: pros and cons

$$\Delta \rho(\mathbf{r} ; \mathbf{X}) = \rho(\mathbf{r} ; \mathbf{X}) - \rho_{ref}(\mathbf{r} ; \mathbf{X})$$

 $\Delta\rho\,$ standard deformation electron density

 $\rho~$ total electron density, either ρ_{th} or $\rho_{\text{exp},\text{MM,static}}$

 $\rho_{ref} = \sum_{atoms} \rho_a(\mathbf{r} - \mathbf{R}_a)$ where ρ_a is the ground state spherically averaged atomic electron density

Total electron density

ρ, urea crystal0.01 au contour intervalsDovesi et al., JCP 92, 7402 (1990)

Deformation electron density

 $\Delta \rho$ (bulk minus atoms) **0.01** au cont. int.

Interaction electron density

 $\Delta\rho$ (bulk minus molecular superposition) **0.002** au cont. int.

Useful! Yet DD may have serious drawbacks.....

 $\mathbf{P}_{ref}(\mathbf{r}; \mathbf{X})$ is a non physical quantity: the antisymmetry requirement is only fulfilled separately by each ρ_a

In the case of an atom with spatially degenerate or nearly degenerate GS (e.g. atoms with an open valence shell, like B, C, O or F) many alternative ρ_a may be chosen.

Orientational freedom exists for degenerate atomic GSs

The spherically averaged density might not be the best reference choice to give insight on the way an atom it is bonded to other atoms

Some covalent bonds do not show the expected accumulation of the electron density along the internuclear axis

$\Delta \rho$ in F_2

------ Depletion; interval 0.04 au Accumulation

 $2p_{\sigma} : 5/3 e^{-}$ for each F 10/3 e⁻ in the promolecule $2p_{\sigma}$ M.O. $2e^{-}$ in the molecule $2 - 10/3 e^{-} = -4/3 e^{-}$

Ζ

In the p_{σ} region there are globally 4/3 e⁻ less than for the promolecule \longrightarrow depletion in the internuclear region (typical behaviour for atoms with more than half-filled valence shells

$$(2s)^{2} (2p\pi_{x,y})^{4} (2p_{z})^{1} \quad F: {}^{2}P_{z}$$

2 - 2 e⁻ = 0 e⁻ \longrightarrow accumulation and depletion along z ($\Delta \rho_b$ =0.05 au; $\Delta \rho_{\text{lone pair maximum}}$ =0.07 au)

 $\Delta\rho$ and total ρ in strained hydrocarbons

Jackson J, Allen, LC JACS, 106, 591 (1984)

Bicyclo [1.1.1] pentane

1.1.1 propellane

Wiberg KB, Bader RWF et al., JACS,109, 985 (1987)

(3,-1) saddle;

 ρ_b = 0.203 au \cong 4/5 of a normal CC bond (in this plane is a local maximum)

The theory of gradient dynamical systems and scalar field topology

R. H. Abraham, C. D. Shaw *Dynamics: The Geometry of Behavior*; Addison Wesley: Redwood City, CA, 1992; (b) R. H. Abraham, J. E. Marsden, *Foundations of Mechanics*, Addison Wesley: Redwood City, CA, 1994.

 \bigcirc y differentiable vector field

Let's introduce a fictitious time coordinate *t* and the system of equations

dr/dt = y (this trick transforms the field into a gradient dynamical system)

Solution of this system of equations defines the trajectories or field lines of r(t) and the theory of dynamical systems allows us to fully classify their properties

□ Let's turn to R^3 and take a scalar function f (carrying the physical or chemical information, for instance it may be the ED, the ELF, etc) and define an associated vector field through its gradient ∇f

 $d\mathbf{r}/dt = \nabla f$

an explicit form for the field (or flux) lines of the gradient field is given by:

 $r(t) = r(t_0) + \int_{t_0}^t \nabla f(r(s)) ds$

which is simply interpreted as a temporal movement guided by the gradient field ∇f at the position reached at the (fictitious) time t

$$\boldsymbol{r}(t) = \boldsymbol{r}(t_0) + \int_{t_0}^t \nabla f(\boldsymbol{r}(s)) ds$$

- Except that at special points (Critical Points, CPs)
 - a) Only one gradient line passes through each point *r*
 - b) ∇f is tangent to the trajectory at every point
 - c) the trajectories are orthogonal to isoscalar surfaces of the field at any point
- every line must begin and end where $\nabla f(\mathbf{r}) = 0$. All other points are *wandering* points
- □ The points r_c where $\nabla f(r_c) = 0$ are the so called Critical Points (CPs) of the field f. Their number and properties characterize its global structure (**or topology**)

CPs are classified in terms of rank and signature

Hessian matrix
$$H(\mathbf{r}_{c}) = \begin{bmatrix} \frac{\partial f(\mathbf{r}_{c})}{\partial x^{2}} & \cdots & \frac{\partial f(\mathbf{r}_{c})}{\partial x \partial z} \\ \vdots & \ddots & \vdots \\ \frac{\partial f(\mathbf{r}_{c})}{\partial z \partial x} & \cdots & \frac{\partial f(\mathbf{r}_{c})}{\partial z^{2}} \end{bmatrix}$$
 H Diagonalization \longrightarrow Eigenvalues λ_{i} Eigenvectors v_{i} (i=1,3)
CP(RANK, SIGNATURE)

RANK: number of non zero λ_i SIGNATURE: difference between the number of positive and negative curvatures λ_i NON DEGENERATE CPs : (3, -3), (3, -1), (3, +1) and (3, +3) Behaviour of the trajectories of the field along each eigendirection v_i depends on the sign of its associated λ_i value. Either they start or end at the CP when sgn λ_i is positive or negative, respectively

- $\Box \quad \text{Ordering } \lambda_i \text{ such that } \lambda_1 \leq \lambda_2 \leq \lambda_3 :$
 - a) all $\lambda_i < 0$, (3,-3) sink or attractor: all trajectories converge toward the CP
 - b) λ_1 and $\lambda_2 < 0$, $\lambda_3 > 0$, (3,-1) saddle point of the first kind; in the plane defined by v_1 and v_2 the gradient lines approach the CP, in the orthogonal direction v_3 direction escape from it
 - c) $\lambda_1 < 0$, λ_2 and $\lambda_3 > 0$, (3,+1) saddle point of the second kind; in the plane defined by v_2 and v_3 the gradient lines escape from the CP, while approach the CP in the orthogonal direction v_1
 - d) all $\lambda_i > 0$, (3,+3) source or repellor: every field line escapes the CP in all directions

Figure 3.1: The four types of CPs of a 3D scalar field.

Ángel Martín Pendás and Carlo Gatti, Chapter 3: Quantum theory of atoms in molecules and the AIMAII software in Complementary Bonding Analysis, S. Grabowsky Ed., De Gruyter 2021

- Either the attraction basins of the (3,-3) CPs or the repulsion basins of the (3,+3) CPs are 3D regions. So, e.g., the union of all the (3,-3) attraction basins of the field is the full R³ space, except a null measure set formed by the 2D surfaces or 1D lines which correspond to the attraction basins of the other CPs.
- The attraction (or repulsion) basins of a field induce a topology in R³, i.e. an exhaustive partition into disjoint regions

 $R^3 \equiv \bigcup_A \Omega_A$, A runs over all the attraction (repulsion) basins

 \Box Surfaces that separate the basins are called separatrices. At all their points ∇f is parallel to the surface, so :

Separatrices are local zero-flux surfaces of ∇f : $\nabla f(\mathbf{r}_s) \cdot \mathbf{n}_s = 0$

- The theory of gradient dynamical systems leads to a space partitioning analogous to the well-known partition made in hydrology in river basins delimited by watersheds.
- In our case the space is that of an *in vacuo* system or of the unit cell of a periodic system.

- Number and type of CPs of a given scalar field is limited through topological invariants, which depend only on the intrinsic properties of the space in which the field is defined
- □ In *R*³, the space where we embed finite molecules, the Euler-Poincaré or Morse invariant (Morse M. Trans Am Math Soc. 1931;33:72–91) reads:

n(3,-3) - m(3,-1) + i(3,+1) - k(3,+3) = 1

(n, m, i, k, being the number of CPs with signatures -3, -1,+1 and +3)

For 3D periodic systems (e.g. crystal), the space in which the unit cell is embedded is not R³, but a 3D torus, S³, since each spatial direction is equivalent to a closed line or circumference. The invariant (Morse relations) reads:

$$n(3,-3) - m(3,-1) + i(3,+1) - k(3,+3) = 0$$

- Those Wyckoff positions of the space group that have three fixed coordinates must contain a critical point of the crystal structure (For more details see: C. K. Johnson, M.M. Burnett and W. D. Dunbar, "Crystallographic Topology and Its Applications <u>https://digital.library.unt.edu/ark:/67531/metadc675925/</u> and A. Martín Pendás, A. Costales, V. Luaña, PRB 55, 4275 (1997))
- □ In a periodic 3D crystal, $k \ge 1$, $i \ge 3$, $m \ge 3$ $n \ge 1$, so at least 8 CPs

Quantum Theory of Atoms in Molecules (QTAIM) and crystals (QTAIMC)

- Uses as scalar *f* the total ρ as an information source from which to (re)formulate chemical concepts
- Provides a bridge between chemistry and QM and shows that all chemistry is already hidden in ρ (no need to invoke any arbitrary reference density)
- **QTAIM** goes far beyond a simple topological study of ρ .

It provides a full consistent QM framework for the definition of the atoms or groups of atoms in a molecule or crystal and for the treatment of the mechanics of their interaction

Richard Bader

$$\nabla \rho = \mathbf{i} \frac{d\rho}{dx} + \mathbf{j} \frac{d\rho}{dy} + \mathbf{k} \frac{d\rho}{dz}$$

 $H \equiv \nabla \nabla \rho =$

Hessian matrix

Topological study of
$$\rho(r;X)$$

$$\nabla \rho(\mathbf{r}_c) = 0$$
 $\mathbf{r}_c = Critical Point, CP$

1) find CPs

$\left(\frac{\partial^2 \rho}{\partial x^2}\right)$	$\frac{\partial^2 \rho}{\partial x \partial y}$	$\frac{\partial^2 \rho}{\partial x \partial z}$
$\frac{\partial^2 \rho}{\partial y \partial x}$	$\frac{\partial^2 \rho}{\partial y^2}$	$\frac{\partial^2 \rho}{\partial y \partial z}$
$\left(\frac{\partial^2 \rho}{\partial z \partial x}\right)$	$\frac{\partial^2 \rho}{\partial z \partial y}$	$\frac{\partial^2 \rho}{\partial z^2}$

Diagonalize H at r.

 $H_{12} = \partial^2 \rho / (\partial x \partial y)$

Η

$(\nabla \nabla \rho) \mathbf{v}_i = \lambda_i \mathbf{v}_i ; i=1,2,3$

• Get its eigenvalues λ_i (curvatures)

Get H matrix eigenvalues λ_i (curvatures)

 $\lambda_3 \geq \lambda_2 \geq \lambda_1$

Ring Critical Point

Cage Critical Point

2) Classify CPs by (RANK, SIGNATURE) the CP of ρ in R³

(3, +1)

(3, +3)

Non degenerate CPs (rank 3) ———

RCP

CCP

(3,- <mark>3</mark>)	>	NUCLEI	(an	d i	n sp	pecial cases NNA)
(3,- <mark>1</mark>)	\longrightarrow	BONDED	AT	DM	S ((∈"chemical bonds")
(3,+ <mark>1</mark>)		RING				
(3,+ <mark>3</mark>)		CAGES				
Name		Acronym	λ	λ_2	λ	(rank,signature)
Nuclear a Bond Crit	ttractor ical Point	NA BCP	-	-	- +	(3, -3) (3, -1)

- + +

+

+

The $\nabla\rho$ vector field and the definition of the molecular structure

•
$$dr(s)/ds = \nabla \rho[r(s); X]$$
 for a given $r(0) = r_0$

• $r(s) = r_0 + \int \nabla \rho[r(t); X] dt$ Gradient Paths

3D, (3,-3) \bullet $\nabla \rho$ attractors

3D, (3,-3) 🔴

+ $\nabla \rho$ attractors

2D (3,-1)

 ρ contours + $\nabla\rho$ lines of 2D attractors : molecular graph (BPs) and intersections of IAS

Basin + 3D attractor \equiv topological atom

$$\left\langle \hat{O} \right\rangle_{molecule} = \sum_{i}^{\substack{\text{all atoms}\\molecule}}} \left(N \int_{\Omega_{i}} \left\{ \int \frac{1}{2} \left[\Psi^{*} \hat{O} \Psi + (\hat{O} \Psi)^{*} \Psi \right] d\tau' \right\} d\mathbf{r} \right)$$

$$= \sum_{i}^{\substack{\text{all atoms}\\molecule}\\in the\\molecule}} \left(\int_{\Omega_{i}} \rho_{O} d\mathbf{r} \right) = \sum_{i}^{\substack{\text{all atoms}\\molecule}\\in the\\molecule}} O(\Omega_{i})$$

Atomic properties

 $\int d\tau'$ integration over the coordinates of all electrons but one and summation over all spins

Any molecular property O which can be expressed in terms of a corresponding property density in space $\rho_o(\mathbf{r})$ can be written as a sum of atomic contributions

Atomic kinetic energyK(r) =
$$N k \int d\tau' [[\psi^* \nabla^2 \psi + (\nabla^2 \psi)^* \psi]$$
In terms of the Laplacian operatorMany alternative formulas
for the kinetic energy densityK(r) = $N k \int d\tau' [[\psi^* \nabla^2 \psi + (\nabla^2 \psi)^* \psi]$ In terms of the Laplacian operator $k = -h^2/(16\pi^2 m_e)$ In terms of the dot product of the moment
operator $G(r) = N \frac{1}{2} k \int d\tau' \nabla \psi^* \bullet \nabla \psi$ In terms of the dot product of the moment
operator $f_{\Omega} [K(r) - G(r)] d\tau = K(\Omega) - G(\Omega) = k \int_{\Omega} \nabla^2 \rho(r) d\tau = k \int_{\Omega} \nabla \cdot \nabla \rho(r) d\tau = \oint_{S(\Omega)}^{\cdot} \nabla \rho \cdot n(r_s) ds \equiv 0$ The local zero flux condition
enables to define a kinetic
energy for the atom $\equiv -E(\Omega)$ TOPOLOGICAL ATOM \equiv "QUANTUM" ATOMDivergence theoremvirial fragment, as is for
the whole system

$$Q_{ij}(\Omega) = -\int_{\Omega} d\tau \rho(\mathbf{r}) (3r_i r_j - r_{\Omega}^2 \delta_{ij}) ; i,j = 1-3$$

Atomic quadrupole moment tensor (traceless)

Real symmetric matrix which can be diagonalized

 Γ_{Ω}

origin

RFW Bader, Atoms in Molecules, Oxford Press 1990

Atomic volumes

 $\sum_{\Omega \text{ of all cell}} V(\Omega) = V_{cell}$

Generally infinite in the molecular case; always finite in the crystalline case

Normally the atomic volume is however defined as the region of space enclosed by the intersection of the atomic zero-flux surface and a particular envelope of ρ

$V_{0.001}(\Omega) \equiv V1 = \int_{\Omega^*} d\tau$; $\Omega^*: \forall \mathbf{r} \in \Omega$ where $\rho \ge 0.001$ au

 $V_{0.001}$ yields molecular sizes in agreement with those determined from the analysis of the kinetic theory data for gas-phase molecules (van der Waals volumes)

 $V_{0.002}(\Omega) \equiv V2 = \int_{\Omega^{**}} d\tau$; $\Omega^{**}: \forall \mathbf{r} \in \Omega$ where $\rho \ge 0.002$ au

 $V_{0.002}$ yields molecular sizes compatible with the closer packing found in the solid state

 $\nabla^2\rho$ and the local contributions to the energy

$$\frac{1}{4}\nabla^2 \rho(\mathbf{r}) = 2\mathbf{G}(\mathbf{r}) + V(\mathbf{r})$$

Local expression of quantum virial theorem

V(r) electronic potential energy density, ≤ 0 always

 $\int_{\Omega} V(\mathbf{r}) = V(\Omega) = 2E_e(\Omega)$

• $G(\mathbf{r})$ positive definite kinetic energy density , ≥ 0 always

 $\int_{\Omega} G(\mathbf{r}) = T(\Omega) = -E_e(\Omega);$

• $2T(\Omega) + V(\Omega) = -2E(\Omega) + 2E_e(\Omega) = 0$; virial theorem

Regions where ∇²ρ <0, V(r) dominates over G(r)
 Regions where ∇²ρ >0 , G(r) dominates over V(r)

$$\begin{split} G(\mathbf{r}) &= \frac{1}{2} (\nabla \bullet \nabla') \Gamma(1)(\mathbf{r}, \mathbf{r}') | \mathbf{r} = \mathbf{r}' \approx & \text{Using semiclassical Thomas-Fermi equation} \\ T \propto \rho(\mathbf{r})^{5/3} \text{ with the total form of Kirzhnitz's} \\ \text{gradient quantum corrections} \\ G(\mathbf{r}) &\approx (3/10)(3\pi^2)^{2/3}\rho(\mathbf{r})^{5/3} + (1/72)[\nabla\rho(\mathbf{r})]^2/\rho(\mathbf{r}) + (1/6)\nabla^2\rho(\mathbf{r}) \\ & \text{Yu A. Abramov, Acta} \\ \text{Cryst. A53 264 (1997)} &= 0 \text{ at bcp} \end{split}$$

Assuming that the multipole derived electron distributions obey the local virial theorem (though they don't), one gets also V(r)

 $\frac{1}{4} \nabla^2 \rho$ (**r**) = 2 *G*(**r**) + V(**r**)

Relatively accurate description in the medium-range behaviour (1-4 a.u. from the atomic nucleus) of G(r)

Agreement with "exact" G(r) values nearly quantitative for closed-shell interactions (bcps at large distances from nuclei)

Agreement only qualitative and often rather poor (Δ > 300%) for typical shared interactions

The dicothomous classification based on the sign of $\nabla^2 \rho$ Bader, R.F.W.; Essén, H., J. Chem. Phys. 80 (1984) 1943 Local expression of quantum virial theorem $\frac{1}{4} \nabla^2 \rho$ (**r**) = 2 G(**r**) + V(**r**) $G(\mathbf{r}) > 0$ $\nabla^2
ho_b$ $V(\mathbf{r}) < 0$ Chemical Interactions Closed Shell shared $\nabla^2 \rho_b > 0$ $\nabla^2 \rho_b < 0$ $G(\mathbf{r}_{b})$ in local excess $V(\mathbf{r}_{b})$ in local excess respect to the average respect to the average $2G(\Omega) = -V(\Omega)$ $2G(\Omega) = -V(\Omega)$

The dicothomous classification based on the sign of $\nabla^2 \rho$

Property	Shared shell, ∇²ρ _b < 0	Closed-shell, ∇²pb> 0		
	Covalent and polar bonds	Ionic, H- bonds and vdW molecules		
λ_{I}	$\lambda_{1,2}$ dominant ; $ \lambda_{1,2} / \lambda_3 > 1$	λ_3 dominant; $ \lambda_{1,2} / \lambda_3 <<1$		
VSCC	The VSCCs of the two atoms form one continuous region of CC	$\nabla^2\rho$ >0 over the entire interaction region. The spatial display of $\nabla^2\rho$ is mostly atomiclike		
ρ_{b}	Large	Small		
Energy Lowering	By accumulating ρ in the interatomic region	Regions of dominant V(r) are separately localized within the boundaries of interacting atoms		
Energy components	2G _b < V _b ; G _b /ρ _b <1; G _b << G _{b⊥} ; H _b <0	$2G_{b} > V_{b} $; $G_{b}/\rho_{b}>1$, $G_{b } >> G_{b\perp}$; H_{b} any value		
Electron sharing is decreasing (ond polarity increasing) Electron sharing (covalency) is increasing (and polarity decreasing)				

The classification based on the adimensional $|V_b|/G_b$ ratio Espinosa, E. et al. , J. Chem. Phys. 117 (2002) 5529

Shared shell (SS) V _b /G _b >2	Transit region, incipient covalent bond formation 1< V _b /G _b <2	Closed-shell (CS) V _b /G _b <1
H _b <0; ∇²ρ _b < 0	H _b <0; ∇²ρ _b > 0	H _b >0; ∇²ρ _b > 0
Bond degree (BD)= H _b /ρ _b ≡ Covalence degree (CD) BD large and negative The larger is BD the more covalent is the bond	BD = CD BD negative and smaller in magnitude than for SS interactions BD Approaching zero at the boundary with CS region	$BD = H_b/\rho_b = Softness$ degree (SD) SD positive and large The larger is SD the weaker and closed- shell in nature is the bond

Identified with the region of incipient covalent bond formation using a NBO analysis

Formulated for X-H....F-Y systems. 79 cases with $d_{H_{...F}}$ ranging from 0.8 to 2.5 Å.
The Laplacian of the electron density, $\nabla^2\rho$

CC regions : a net ∇ρ flux enters the region
CD regions : a net ∇ρ flux leaves the region
∇²ρ>0 electron density is depleted at r
∇²ρ<0 electron density is concentrated at r

Through the Divergence theorem $\int_{V} \nabla^{2} \rho(\mathbf{r}) d\tau = \int_{V} \nabla \bullet \nabla \rho(\mathbf{r}) d\tau$ $= \oint_{S(\Omega)}^{U} \nabla \rho \bullet \mathbf{n}(\mathbf{r}_{s}) dS$

The Laplacian as a Magnification Glass for the Shell Structure of Atoms

The 1:1 correspondence of the $\nabla^2\rho$ distribution with the shell structure of isolated atoms is lost for all the d-block elements

Sagar et al., J. Chem. Phys. 88, 4367 (1988); Shi et al. J. Chem. Phys. 88, 4375 (1988)

Shell M (3s,3p,3d) : 0.298 Å \leq r \leq 0.463 Å VSCC 0.463 Å \leq r to ∞ VSCD

From Sc to Ge, the N shell becomes indistinguishable from the M shell and the corresponding regions of CC and CD are missing

Sagar et al., J. Chem. Phys. 88, 4367 (1988); Shi et al. J. Chem. Phys. 88, 4375 (1988)

From Sc to Ge, the N shell becomes indistinguishable from the M shell Zn: M-shell and N-shell contributions M-shell CD overweights N-shell CC

M and N shells separate again from As up to Kr, but the sign of the Laplacian at the outermost minimum is found to be positive, rather than negative as for the other minima.

Similar trends were observed for the successive rows, with five being the number of maximum distinguishable shells

Warning for bonding classification schemes in terms of the sign of the $\nabla^2\rho$

The shell structure of atoms and the Laplacian of the charge density Zheng Shi and Russell J. Boyd

Citation: J. Chem. Phys. 88, 4375 (1988); doi: 10.1063/1.454711

Atom	r ₂	<i>r</i> ₃	At	om	r ₂	<i>r</i> ₃	r ₄	A	tom	r ₂	r ₃	<i>r</i> 4	r ₅
	2.494				0.226	0.981	4.938			0.106	0.381	1.376	5.516
Li ² S	0.002		ĸ	² S	1115	2.219	-3.1E-5	Rb	² S	49 977	435.2	0.152	3.5 <i>E</i> 5
	1.594				0.213	0.898	3.773			0.103	0.367	1.278	4.369
∃e ⁱ S	0.027		Ca	^{1}S	1544	3.818	-1.2E-4	Sr	'S	58 191	541.4	0.275	-2.0E-4
	1.188				0.201	0.834				0.100	0.354	1.204	
3 ² P	0.141		Sc	^{2}D	2067	5.804		Y	² D	67 246	653.7	0.517	
	0.942				0.190	0.779				0.098	0.342	1.140	
C ³₽	0.506		Ti	³ F	2712	8.478		Zr	${}^{3}F$	77 430	788.6	0.879	
	0.776				0.181	0.731				0.095	0.331	1.082	
¶ ⁴S	1.447		v	⁴F	3507	12.05		Nb	⁴F	88 851	943.2	1.438	
	0.658				0.172	0.691				0.092	0.320	1.031	
) ³₽	3.480		Cr	⁵D	4433	15.84		Mo	۶D	101 420	1116	2.277	
	0.569				0.165	0.652				0.090	0.310	0.984	
? ²₽	7.592		Mn	•S	5614	22.71		Tc	°S	115 450	1320	3.450	
	0.500				0.158	0.618				0.088	0.301	0.940	
Ne ¹ S	15.29		Fe	5D	6993	30.39		Ru	⁵ D	131 010	1551	4.976	
	0.442	3.436			0.151	0.587				0.086	0.292	0.901	
Na ² S	29.99	1.5E - 4	Co	⁴ F	8648	39.84		Rh	4F	148 210	1807	7.074	
	0.396	2.549			0.145	0.559				0.084	0.284	0.865	
Ag ¹ S	55.61	0.002	Ni	³ F	10 554	51.67		Pd	³ F	167 080	2092	9.772	
	0.359	2.081			0.140	0.535				0.082	0.276	0.830	
$1^2 P$	96.15	0.009	Cu	^{2}S	12 705	63.72		Ag	^{2}D	187 700	2413	13.22	
	0.327	1.760			0.134	0.510		0		0.080	0.269	0.802	
i ³ P	157.4	0.038	Zn	1S	15 398	83.76		Cd	1S	210 880	2691	17.66	
	0.301	1.522		~	0.130	0.487			~	0.078	0.261	0.770	
• 4S	247.4	0.115	Ga	^{2}P	18 494	109.0		In	2 P	236 010	3186	23.23	
-	0.278	1.341		-	0.125	0.466			•	0.076	0.254	0.740	
3 p	375.3	0.273	Ge	3 p	22 126	140.2		Sn	3 p	263 580	3662	30.14	
•	0.258	1.198		-	0.121	0.446	2.175	0.11	•	0.075	0.248	0.713	
1 2 P	553.3	0.592	As	45	26 303	179.7	- 0.026	Sb	45	293 890	4186	38.66	
	0 241	1 080		~	0 117	0 427	1 833	50	~	0.073	0 242	0 688	
r ¹ S	794.7	1,196	Se	3 P	31 124	226.9	- 0.025	Te	3 <i>P</i>	327 020	4779	48.91	
				•	0.113	0.410	1.652		•	0.072	0.236	0.665	2 228
			Br	2 p	36 615	288 3	- 0.010	T	2 p	363 180	5446	61 10	
			Di	1	0 110	0 394	1 503	•	,	0.070	0.230	0 643	2 000
					0.110	0.354	1.505			0.070	0.230	0.045	2.000

*Each radius, r_i, is followed by the negative value of the Laplacian of the charge density at a radial distance r_i. All values are in atomic units.

VSCC maxima of - $\nabla^2 \rho$ (au)

Te 1s²2s²2p⁶3s²3p⁶3d¹⁰4s²4p⁶4d¹⁰5s²5p⁴ Shell-L Shell-M Shell-N

Shell-N and -O are not resolved, only 3 rather than 4 maxima for shells with n=2-5

R, au	0.073	0.242	0.688	
ic r	527 020	4119	40.71	
-∇²ρ (au)	Shell-L	Shell-M	Shell-N	

 $\nabla \rho = 0 \longleftarrow CPs \longrightarrow \nabla(\nabla^2 \rho) = 0$

Made available through a Creative Commons CC-BY <u>License</u>

C-BY <u>License</u> ACS AUTHORCHOIC

Letter

pubs.acs.org/JPC

Charge Density Analysis of Actinide Compounds from the Quantum Theory of Atoms in Molecules and Crystals

Alessandro Cossard, Jacques K. Desmarais, Silvia Casassa, Carlo Gatti, and Alessandro Erba*

Cite This: J. Phys. Chem. Lett. 2021, 12, 1862–1868

Read Online

Need to be very careful !!

The VSCC for n=7 is not visible both for the isolated U atom $\nabla^2\rho$ profile and for the UF₆⁻ compound as the negative $\nabla^2\rho$ due to n=7 concentration region is overcompensated by positive $\nabla^2\rho$ contributions due to the depletion regions of the innermost shells

Figure 3. Topology of the Laplacian $\nabla^2 \rho(\mathbf{r})$ of the electron density of UF_6^- : (a) electron density profile along the U- F_e bond (the red circle denotes the location of the bond critical point); (b) Laplacian profile along the U- F_e bond (the dashed red vertical line separates the n = 5 from the n = 6 valence radial region); (c) spatial distribution of the VSCC critical points (3, +3) of the Laplacian around the U atom in present calculations, in the experiments, and in previous calculations. A zoomed-in view in the vicinity of the U atom is also provided for the first three data sets (*i.e.*, for present calculations and previous experiments).

Bond classification

Macchi, P., Proserpio, D. M., Sironi, A., J. Am. Chem. Soc. 120 (1998) 13429 Macchi, P.; Sironi, A.: Coordination Chem. Rev. 238-239 (2003) 383.

P. Macchi

The classification ^d based on the atomic valence shell and on both the local (<i>bcp</i>) and integral properties						
	Qb	$\nabla^2 \varrho_b$	G_b/ϱ_b	H_b/ϱ_b	$\delta(A,B)$	$\oint_{AB} \varrho(\mathbf{r}_s) \mathrm{d}\mathbf{r}_s$
Bonds between light atoms						
Open-shell (covalent bonds); e.g. C-C, C-H, B-B	Large	$\ll 0$	<1	$\ll 0$	\sim Formal bond order	Large
Intermediate interactions (polar bonds, donor-acceptor bonds; e.g. C–O, H ₃ B–CO	Large	any value	≥ 1	≪0	< Formal bond order	Large
Closed-shell (ionic bonds, HBs, van der Waals interactions; e.g. LiF, HO, NeNe	Small	>0	≥ 1	> 0	~ 0	Small
Bonds between heavy atoms						
Open-shell (e.g. Co-Co)	Small	~ 0	<1	< 0	Formal bond order (unless bond delocalisation occurs)	Medium/large
Donor acceptor (e.g. Co-As)	Small	>0	~ 1	<0	< Formal bond order	Medium/large

General and detailed discussion on several bond classification schemes Gatti, C. , Chemical bonding in crystals: new directions, (2005) Z. Kristallogr. 220, 399-457

		SI	hared	intera	ctions	5		
SYSTEM	BOND	R _e (Å)	ρ _b	$\nabla^2 \rho_b$	λ_1	λ2	λ_3	λ ₁₂ /λ ₃
UREA	C-O C-N N-H	1.261 1.345 1.009	0.38 0.35 0.34	-0.3 -1.2 -2.0	-1.0 -0.9 -1.5	-1.0 -0.8 -1.4	1.8 0.5 0.9	0.6 1.6 1.6
DIAMOND	C-C	1.545	0.26	-0.9	-0.5	-0.5	0.2	2.5
	Not	shared	d clos	ed-sh	ell inte	eracti	ons	
SYSTEM	BOND	R _e (Å)	ρ _b *10	∇²ρ _b *10	λ ₁ * 10	λ ₂ *10	λ ₃ *10	λ ₁₂ /λ ₃
Dative int	eraction	s						
LCOB ^a	Co-N Li-O	1.966 2.030	0.92 0.21	5.4 2.0	-0.7 -0.4	-0.6 -0.4	6.7 2.8	0.1 0.2
Hydrogen	bonds							
UREA	NHO	2.05 8	0.19	0.8	-0.3	-0.2	1.3	0.2
lceVIII	ОН О	2.08 0	0.18	0.6	-0.2	-0.2	1.0	0.2
LCOB ^a	CHO	2.52 8	0.06	0.4	-0.1	-0.1	0.5	0.1
(a) Lithiun	n Bis (tetran	nethylammo	onium)Hex	anitrocob	altate (III)			
lonic (or r	not shar	ed) inte	raction	S				
Li oxide K oxide	Li-O K-O	1.980 2.789	0.29 0.18	2.2 0.8	-0.5 -0.1	-0.5 -0.1	3.1 1.0	0.2 0.1
Li-H	Li-H	2.042	0.13	0.7	-0.1	-0.1	1.0	0.1
Li-H	H-H	4.083	0.09	0.1	-0.1	-0.0	0.2	0.2
Metals								
SYSTEM	BOND	R _e (Å)	ρ _b *100	∇²ρ _b *100	λ ₁ * 100	λ ₂ *100	λ ₃ *100	λ_{12}/λ_3
Li, bcc		3.040	0.81	0.6	-0.1	-0.1	0.8	0.1

Chemical bond nature vs BCP properties in solids

 $\begin{array}{l} \rho_b, \nabla^2 \rho_b, \lambda_{1\text{-3}} \text{ of closed shell} \\ \text{interactions are generally one or} \\ \text{two order of magnitude smaller} \\ \text{than for shared interactions} \end{array}$

 $|\lambda_{1,2}|/\lambda_3 \approx 1$ shared interactions $|\lambda_{1,2}|/\lambda_3 \approx 0.1$ closed-shell int.

Acta Cryst. (1996). B52, 471-478

Theoretical and Experimental (113 K) Electron-Density Study of Lithium Bis(tetramethylammonium) Hexanitrocobaltate(III)

Some general warning about chemical bonding characterization

- Use of too precise rules to characterize a specific bonding interaction may be dangerous and should be always done *cum grano salis*, especially if these rules are given in terms of typical intervals for the values of properties at BCP, like ρ_b , $\nabla^2 \rho_b$, G_b , V_b , and H_b .
- Regardless of the nature of bonding (ionic, covalent, metallic, charge-shift, etc.), the numerical values of any bond property for a given A–B pair are very much related to the principal quantum number of the A and B valence shell electrons and to their difference from A to B
- By keeping in mind this fact, bond properties, especially for 'heavy atoms,' that is, from the firsttransition element row on, are often more properly understood if compared with those predicted by the IAM model. Or even better, and, whenever possible, with those predicted by the fragment model – the sum of electron densities of not-interacting fragments, that is, of a model system where the bond under study is not yet formed

B. Silvi*, R.J. Gillespie*, C. Gatti*, Electron Density
See analysis, J. Reedijk and K. Poeppelmeier, Eds, in *Comprehensive Inorganic Chemistry* II vol. 9, Elsevier 2013

Inorganic Chemistry

Article pubs.acs.org/IC

Experimental and Theoretical Charge Densities of a Zinc-Containing Coordination Polymer, $Zn(HCOO)_2(H_2O)_2$

Mads R. V. Jørgensen,[†] Simone Cenedese,[‡] Henrik F. Clausen,[†] Jacob Overgaard,^{*,†} Yu-Sheng Chen,[§] Carlo Gatti,[‡] and Bo B. Iversen^{*,†}

General discussion on several bond classification schemes: Gatti, C., Chemical bonding in crystals: new directions, (2005) Z. Kristallogr. 220, 399-457, special issue on *Computational Crystallography*, edited by A.R. Oganov

Chemical bonding in crystals: new direction	ms					409	
Table 4. Classification of atomic interaction	ons.						
The dichotomous classification ^a based or	n the sign o	f ∇²𝑔 _b					
Property	Shared shell, $\nabla^2 \varrho_b < 0$ Covalent and polar bonds				Closed-shell, $\nabla^2 \rho_b > 0$ Ionic, H-bonds and vdW molecules		
λι	$\lambda_{1,2}$ dor	ninant; $\lambda_{1, 2}$ / /	$\lambda_3 > 1$		λ_3 dominant; $ \lambda_{1,2} / \lambda_3 \ll 1$		
VSCC ^b	The VS0 continou Large	CCs of the two is region of ch:	atoms form arge concent	ration	$\nabla^2 \rho > 0$ over the entire intera spatial display of $\nabla^2 \rho$ is most Small	action region. The ly atomic-like	
Energy lowering	By accu	mulating ϱ in (the interaton	nic region	Regions of dominant $V(\mathbf{r})$ are lized within the boundaries of	e separately loca- interacting atoms	
Energy components	$2G_b < $	$V_b ; G_b/\varrho_b < 1;$	$G_{b\parallel} \ll G_{b\perp}$; $H_b < 0$	$2G_b > V_b ; G_b/\varrho_b > 1, G_b \gg$ any value	$G_{b\perp}; H_b$	
	Bond polari	ty is increasing	3		- Doud acual		
					Вона сочан	ency is increasing	
The classification ^c based on the adimens	ional $ V_b /c$	$G_b < 1$ ratio			r		
Shared shell (SS)	Transit r formatic	egion, incipien	it covalent b	ond	Closed-shell (CS)		
$ V_b /G_b > 2$	$1 < V_b $	/G _b < 2			$ V_b /G_b < 1$		
$H_b < 0; \nabla^2 \varrho_b < 0$ Bond degree (BD) = $H_b/\varrho_b \equiv$ Covalence degree (CD)	$H_b < 0;$ BD $\equiv 0$	$\nabla^2 \varrho_b > 0$			$H_b > 0; \nabla^2 \varrho_b > 0$ BD \equiv Softness degree (SD)		
BD large and negative	BD neg for SS i	ative and small nteractions	er in magnit	ude than	SD positive and large		
The larger is BD the more covalent is the bond	BD App region	roaching zero	at the bound	lary with CS	The larger is SD the weaker and closed-shell in nature is the bond		
The classification ^d based on the atomic	valence shel	l and on both	the local (l	cp) and inte	gral properties		
	Qb	$\nabla^2 \varrho_b$	G_b/ϱ_b	H _b /Q _b	$\delta(A,B)$	$\oint_{AB} \varrho(\mathbf{r}_s) \mathrm{d}\mathbf{r}_s$	
Bonds between light atoms	[
Open-shell (covalent bonds); e.g. C-C, C-H, B-B	Large	$\ll 0$	<1	≪0	\sim Formal bond order	Large	
Intermediate interactions (polar bonds, donor-acceptor bonds; e.g. C–O, H ₃ B–CO	Large	any value	≥ 1	≪0	< Formal bond order	Large	
Closed-shell (ionic bonds, HBs, van der Waals interactions; e.g. LiF, HO, NeNe	Small	>0	≥ 1	> 0	~ 0	Small	
Bonds between heavy atoms	l						
Open-shell (e.g. Co-Co)	Small	~ 0	<1	< 0	Formal bond order (unless bond delocalisation occurs)	Medium/large	
Donor acceptor (e.g. Co-As)	Small	>0	~ 1	<0	< Formal bond order	Medium/large	
a: according to Ref. [90].							

b: VSCC is the Valence Shell Charge Concentration, that is the valence region of the isolated atom where the Laplacian is negative [13] c: according to Ref. [93]

d: according to Ref. [109]; the lower part of this Table is an adaptation of Table 5 and Table 4 of Ref. [109] and Ref. [97], respectively. Ref. [109] defines as heavy atoms the atoms having more than three atomic shells, i.e. from K atom onwards

B. Silvi*, R.J. Gillespie*, C. Gatti*, Electron Density analysis, J. Reedijk and K. Poeppelmeier, Eds, in *Comprehensive Inorganic* Chemistry II vol. 9, Elsevier 2013

C. Gatti and P. Macchi. Eds, Springer 2012

G. Saleh, D. Ceresoli, G. Macetti and C. Gatti*, Chapter 5: Chemical **Bonding Investigations for Materials,** in Computational Materials Discovery, A.R. Oganov, G. Saleh, A.G. Kvashnin Eds., RSC 2019

C. Gatti Centro CNR per lo Studio delle Relazioni tra Struttura e Reattività Chimica, via Golgi 19, 1-20133 Milano, Italy

V. R. Saunders DRAL Daresbury Laboratory, Daresbury, Warrington, Cheshire, WA4 4AD, United Kingdom

C. Roetti Gruppo di Chimica Teorica, Università di Torino, via Giuria 5, I-10125 Torino, Italy

JCP 101, 10686-10696 (1994)

Crystal graph – retrieving intermolcular interactions in the crystal

- How important are packing effects on intramolecular bonds?
- ✓ Does the packing have different impact on the different atoms/chemical groups present in the molecule?
- ✓ How large is the enhancement of the molecular dipole on crystallization?
- ✓ How can each oxygen atom in the urea crystal be involved in four OH...O hydrogen bonds (HBs)?

Fully-automated and chain-like CP searches

Sequence of the chainlike search strategy for locating CPs

At each search stage, an EF step specific for the kind of CP searched for is adopted.

Fully-automated and chain-like CP searches

- 1. Search of (3,-3) associated to nuclear maxima, starting from the nuclear position of each of the unique atoms of the unit cell
- 2. Search of all (3,-1) unique bcps associated to the unique bonded atom pairs within the cluster. Search started from internuclear axis midpoint

- 3. Non-nuclear (3,-3) attractors, if any, are recovered at this stage by determining the nature of the termini of the atomic lines (bond paths) associated to the unique (3,-1) CPs found
- 4. Search of unique (3,+1) rcps by considering all unique nuclear triplets having at least 2 of their 3 atoms bonded to each other and CM (Center of Mass) not too differently distant from each of the 3 nuclei. CP search started from CM (mass =1 assigned to each nucleus)
- 5. Search of unique (3,+3) cage CPs between all pairs of ring CPs

Brute force approach: Search on a grid

Constraint	Constraint type
1	X ≤ ay
2	X ≤ (a+y)/2
3	Y≤ax
4	Y ≤ min [a - x, (a + x)/2]
5	Y ≤ min (x, a - x)
6	Y ≤ min (2x, a - x)
7	Y ≤ a – x
8	z≤ay
9	z≤a+y
10	z ≤ min (y, a - x)

A grid-search for CPs in a given portion of the cell

- \Rightarrow xmin xmax xinc
- \Rightarrow ymin ymax yinc
- \Rightarrow zmin zmax zinc

all in fractionary units

Warning: the grid search is very costly if the whole asymmetric unit is explored.

■ The CP search algorithm can be chosen (EF or NR). NR is strongly recommended here, because the starting point of the CP search is moved slightly and smoothly during the search on a grid. On top of this, the general interest is in locating all CPs in the asymmetric unit, rather than one peculiar type of CP

Space group constraints among x,y,z fractional coordinates may be exploited

Brute force approach: Search on a grid

Why?

$$n - b + r - c = 0$$

For a closed domain Morse Relation

n	(3,-3) nuclei or NNA					
b	(3,-1) bcps					
r	(3,+1) rcps					
С	(3,+3) ccps					

Grid search in the asymmetric unit may be the only way to fulfill Morse's relationship

Fulfilment of the relationship implies a compatible CP set, not necessarily the complete set of CPs within the cell !

Fulfillment of Morse relationship in urea crystal

<u></u>	m									
c	2	(3,	-3)	С			С	2	(3,+1)	ring
с	2	(3,	-3)	0	W	. Wyckoff positions	e	Δ	(3+1)	rina
e	4	(3,	-3)	Ν	•••	,,	C	Т	(3,11)	ing
e	4	(3,	-3)	Н'		m, multiplicity	e	4	(3,+1)	ring
e	4	(3,	-3)	Н"			f	8	(3,+1)	ring
С	2	(3,-1)		C-0		1	f	8	(3,+1)	ring
e	4	(3,-1)		C-N			e	4	(3,+3)	cage
e	4	(3,-1)		N-H ²	,		a	2	(3,+3)	cage
e	4	(3,-1)		N-H'	,		b	2	(3,+3)	cage
	1	(2 1)			r,	n - b + r - c = 0				
e	4	(3,-1)		Оп	L	16 - 26 + 18 - 8 = 0)			
e	4	(3,-1)		ОН	•••	Gatti at al TCP 1011	0684	(100/)		
d	4	(3,-1)	N.	N, 4	.3 Å	00111 ET 01. JCF, 101,1	.0000) (1774)		
f	8	(3,-1)	N.	N, 3	.4 Å	<u> 16 – 34 + 26 – 8 = 0</u>				

The complete bond network in urea crystal

N...N, 3.4 Å

N...N, 4.3 Å

Crystal field effects on the topological properties of the electron density in molecular crystals: The case of urea

C. Gatti Centro CNR per lo Studio delle Relazioni tra Struttura e Reattività Chimica, via Golgi 19, I-20133 Milano, Italy

V. R. Saunders DRAL Daresbury Laboratory, Daresbury, Warrington, Cheshire, WA4 4AD, United Kingdom

C. Roetti Gruppo di Chimica Teorica, Università di Torino, via Giuria 5, I-10125 Torino, Italy

JCP 101, 10686-10696 (1994)

How important are packing effects on intramolecular bonds?

- Does the packing have different impact on the different atoms/chemical groups present in the molecule?
- ✓ How large is the enhancement of the molecular dipole on crystallization?
- ✓ How can each oxygen atom in the urea crystal be involved in four OH...O hydrogen bonds (HBs)?
- ✓ How does the global molecular volume contraction observed in the solid result from the individual atomic volume change on crystallization?

Deformation and interaction density and changes in bcp properties of urea

X-Y	ρ	$ abla^2 ho$	λ ₃	8 🛶	all in au $(2, (2, 1))$
	0.274	0.550	1 400	0.029	$k = (k_1 / k_2)^{-1}$
C-0	0.374	-0.550	1.409	0.038	0
	0.384	-0.666	1.239	0.125	
	0.384	-0.666	1.229	0.125	
	0.299	0.118	0.974	0.038	ctio sity
C-N	0.342	-0.952	0.721	0.143	ens
	0.334	-0.825	0.817	0.097	d d
	0.334	-0.825	0.817	0.097	
	0.262	-0.099	0.627	0.044	
N-H	0.347	-2.003	0.874	0.052	ity .
	0.346	-1.735	0.945	0.070	
	0.346	-1.735	0.945	0.070	Ŭ T
	0.234	-0.271	1.240	0.006	
OH'N	0.023	0.081	0.143	0.024)efc Defr
d _{OH} =	0.021	0.092	0.147	0.003	
1.992	0.030	0.088	0.164	0.059	Mc
OH"N	0.019	0.080	0.130	0.034	
d _{OH} =	0.019	0.086	0.136	0.006	
2.058	0.026	0.083	0.145	0.045	(procrystal)

The dicothomous classification based on the sign of $\nabla^2 \rho$

Property	Shared shell, ∇²ρ _b < 0	Closed-shell, ∇²p _b >0				
	Covalent and polar bonds	Ionic, H- bonds and vdW molecules				
λ_{I}	$\lambda_{1,2}$ dominant ; $ \lambda_{1,2} / \lambda_3 > 1$	λ_3 dominant; $ \lambda_{1,2} / \lambda_3 <<1$				
VSCC	The VSCCs of the two atoms form one continuous region of CC	$\nabla^2\rho$ >0 over the entire interaction region. The spatial display of $\nabla^2\rho$ is mostly atomiclike				
ρ_{b}	Large	Small				
Energy Lowering	By accumulating ρ in the interatomic region	Regions of dominant V(r) are separately localized within the boundaries of interacting atoms				
Energy components	2G _b < V _b ; G _b /ρ _b <1; G _b << G _{b⊥} ; H _b <0	$2G_{b} > V_{b} $; $G_{b}/\rho_{b}>1$, $G_{b } >> G_{b\perp}$; H_{b} any value				
Electron sharing is decreasing Electron sharing (covalency) is Electron sharing (covalency) is increasing (and polarity decreasing)						

Interaction density and changes in BCP properties of urea

C=O, N-H become more ionic; C-N more covalent

Interaction density and changes in BCP properties of urea. The dimer model

Crystal field effects on the topological properties of the electron density in molecular crystals: The case of urea

C. Gatti Centro CNR per lo Studio delle Relazioni tra Struttura e Reattività Chimica, via Golgi 19, 1-20133 Milano, Italy

V. R. Saunders DRAL Daresbury Laboratory, Daresbury, Warrington, Cheshire, WA4 4AD, United Kingdom

C. Roetti Gruppo di Chimica Teorica, Università di Torino, via Giuria 5, I-10125 Torino, Italy

JCP 101, 10686-10696 (1994)

✓ How important are packing effects on intramolecular bonds?

✓ Does the packing have different impact on the different atoms/chemical groups present in the molecule?

- How large is the enhancement of the molecular dipole on crystallization?
- ✓ How can each oxygen atom in the urea crystal be involved in four OH...O hydrogen bonds (HBs)?
- ✓ How does the global molecular volume contraction observed in the solid result from the individual atomic volume change on crystallization?

Evaluation of molecular dipole from the basin charge and first moment Bader, Larouche, Gatti et al. JCP 87, 1142 (1987)

$$\mu = \mu_{el} + \mu_{nuc} = \Sigma_{\Omega} \left[-\int_{\Omega} \mathbf{r} \rho(\mathbf{r}) d\tau + \mathbf{X}_{\Omega} Z_{\Omega} \right]$$
$$\mathbf{r} = \mathbf{r}_{\Omega} + \mathbf{X}_{\Omega} \quad ; \mathbf{q}_{\Omega} = Z_{\Omega} - \int_{\Omega} d\mathbf{r} \rho(\mathbf{r}) = Z_{\Omega} - \mathbf{N}_{\Omega}$$

$$\boldsymbol{\mu} = \boldsymbol{\Sigma}_{\Omega} \left[- \int_{\Omega} \boldsymbol{r}_{\Omega} \rho(\boldsymbol{r}) d\tau + \boldsymbol{X}_{\Omega} (\boldsymbol{Z}_{\Omega} - \int_{\Omega} \rho(\boldsymbol{r}) d\tau \right]$$

$$\boldsymbol{\mu} = \boldsymbol{\Sigma}_{\Omega} \left[\boldsymbol{M}_{\Omega} + \boldsymbol{X}_{\Omega} \boldsymbol{q}_{\Omega} \right] = \boldsymbol{\mu}_{AP} + \boldsymbol{\mu}_{CT}$$

Both sums are origin independent (if $\Sigma q_{\Omega}=0$) For μ_{AP} also each term in the Σ is origin independent

Non interacting

molecules

Enhancement of molecular dipole moment of urea in the bulk

The non-interacting molecules and the crystal periodic RHF densities look very much alike despite the 37% |μ| enhancement in the crystal

Inter. density , Highest contour level ±2.10-3 au

Contribution	OG Mol.	CG Mol	Crystal
μ_A ,($\Delta \mu_A $ %)	0.71	0.54	0.45 (-16.7)
μ_{CT} ,($\Delta \mu_{CT} $ %)	-2.52	-2.56	-3.22 (+25.8)
μ , (Δ μ %)	-1.81	-2.01	-2.77 (+37.1)

|µ| values are very sensitive to the atomic boundaries location and to the atomic ED distribution changes

Gatti et al, JCP 101, 10686 (1994)

Crystal

Clearly the result of a more polarized molecule in the bulk

All the heavy atoms gain electrons at the expense of the H's in the bulk

Following HB formation there is a net flux of 0.067 e⁻ from the amino-group hydrogen donor to the carbonyl acceptor.

Ω	Mol (CG)	Crystal		
	<mark>Ν (</mark> Ω)	Ν(Ω)	Δ Ν(Ω)	
С	3.512	3.545	+0.032	
0	9.383	9.476	+0.092	
Ν	8.481	8.568	+0.087	
H	0.508	0.454	-0.053	
Н"	0.565	0.465	-0.100	
СО	12.895	13.021	+0.126	
NH ₂	9.554	9.487	-0.067	

Gatti et al, JCP 101, 10686 (1994)

Crystal field effects on the topological properties of the electron density in molecular crystals: The case of urea

C. Gatti Centro CNR per lo Studio delle Relazioni tra Struttura e Reattività Chimica, via Golgi 19, 1-20133 Milano, Italy

V. R. Saunders DRAL Daresbury Laboratory, Daresbury, Warrington, Cheshire, WA4 4AD, United Kingdom

C. Roetti Gruppo di Chimica Teorica, Università di Torino, via Giuria 5, I-10125 Torino, Italy

JCP 101, 10686-10696 (1994)

✓ How important are packing effects on intramolecular bonds?

- ✓ Does the packing have different impact on the different atoms/chemical groups present in the molecule?
- ✓ How large is the enhancement of the molecular dipole on crystallization?
- How can each oxygen atom in the urea crystal be involved in four OH...O hydrogen bonds (HBs)?
- ✓ How does the global molecular volume contraction observed in the solid result from the individual atomic volume change on crystallization?

 $\nabla \rho = 0 \longleftarrow CPs \longrightarrow \nabla(\nabla^2 \rho) = 0$

The Laplacian distribution and the H-bonds

HBs may be seen in terms of a generalized Lewis acid and base interaction

Generally the approach of the acidic hydrogen to the base will be such as to align the (3,+3) minimum in the VSCC of the H with the most suitable (3,-3) Base maximum

3D-Hydrogen Bonding network in urea: the $-\nabla^2\rho$ description

Gatti et al. , JCP 101, 10686 (1994)

(3,-1)

crystal

1.261 Å

 $abla^2
ho_{crystal}$

Crystal field effects on the topological properties of the electron density in molecular crystals: The case of urea

C. Gatti Centro CNR per lo Studio delle Relazioni tra Struttura e Reattività Chimica, via Golgi 19, 1-20133 Milano, Italy

V. R. Saunders DRAL Daresbury Laboratory, Daresbury, Warrington, Cheshire, WA4 4AD, United Kingdom

C. Roetti Gruppo di Chimica Teorica, Università di Torino, via Giuria 5, I-10125 Torino, Italy

JCP 101, 10686-10696 (1994)

✓ How important are packing effects on intramolecular bonds?

- ✓ Does the packing have different impact on the different atoms/chemical groups present in the molecule?
- ✓ How large is the enhancement of the molecular dipole on crystallization?
- ✓ How can each oxygen atom in the urea crystal be involved in four OH...O hydrogen bonds (HBs)?
- How does the global molecular volume contraction observed in the solid result from the individual atomic volume change on crystallization?

Atomic volumes

 $\sum_{\Omega \text{ of all cell}} V(\Omega) = V_{cell}$

Generally infinite in the molecular case; always finite in the crystalline case

Normally the atomic volume is however defined as the region of space enclosed by the intersection of the atomic zero-flux surface and a particular envelope of ρ

$V_{0.001}(\Omega) \equiv V1 = \int_{\Omega^*} d\tau$; $\Omega^*: \forall \mathbf{r} \in \Omega$ where $\rho \ge 0.001$ au

 $V_{0.001}$ yields molecular sizes in agreement with those determined from the analysis of the kinetic theory data for gas-phase molecules (van der Waals volumes)

 $V_{0.002}(\Omega) \equiv V2 = \int_{\Omega^{**}} d\tau$; $\Omega^{**}: \forall \mathbf{r} \in \Omega$ where $\rho \ge 0.002$ au

 $V_{0.002}$ yields molecular sizes compatible with the closer packing found in the solid state

Ω	Molecule (CG)		Crystal		
	V1	V2	V1	V2	V_{tot}
С	19.9	18.5	21.0	19.1	21.2
0	132.2	111.1	115.6	104.6	124.3
Ν	117.9	101.4	120.2	107.5	135.0
Η'	24.6	18.8	16.8	15.3	17.7
Н"	27.4	20.8	18.2	16.3	18.7
СО	152.1	129.6	136.6	123.7	145.5
NH ₂	170.0	140.9	155.2	139.1	171.4
Molec	492.2	411.5	447.0	401.8	488.2

As a reaction of molecules to the intermolecular exch. forces:

 \checkmark V1 -10% ; V2 -2% ; V_{tot, cry} \approx V1, gas phase

 \checkmark V2 is \approx 90% and 83% of V1 in the bulk and gas phase: the molecular density dies off more rapidly in the bulk

 \checkmark the reported trends do not apply to single $\Omega,$ but they do to the functional groups CO and NH2

 \checkmark Contraction of mol. volume in crystal arises primarily from contraction of the $\Omega's$ directly involved in H-bonds

 $O: \Delta V_2 = -6\%, \Delta V_1 = -13\%; H'(H''): \Delta V_2 = -19(-28)\%$

Article
Spin Density Topology

Giovanna Bruno ¹, Giovanni Macetti ², Leonardo Lo Presti ¹ and Carlo Gatti ^{3,4,*}

Spin density topology

Molecules **2020**, *25*, 3537; <u>doi:10.3390/molecules25153537</u>

- □ Few studies have appeared on *s*(**r**) thus far despite its role in Spin DFT Functional theory and it being the basic observable for describing and understanding magnetic phenomena
- A systematic full topological analysis of this function is lacking, in seemingly contrast to the blossoming in the last 20 years of many studies on the topological features of other scalar fields of chemical interest.
- Filling this gap, we may unveil that kind of information hidden in the *s*(**r**) distribution which only its topology can disclose.

s(r) Critical points (CPs)

$$\nabla s(\boldsymbol{r}_{CP}) = \nabla \big(\rho_{\alpha}(\boldsymbol{r}_{CP}) - \rho_{\beta}(\boldsymbol{r}_{CP}) \big) = 0 \quad \rightarrow \nabla \rho_{\alpha}(\boldsymbol{r}_{CP}) \equiv \nabla \rho_{\beta}(\boldsymbol{r}_{CP})$$

This condition is opposite to that for $\rho(\mathbf{r})$ at CP : $\nabla \rho_{\alpha}(\mathbf{r}_{CP}) \equiv -\nabla \rho_{\beta}(\mathbf{r}_{CP})$). This latter, in the case of a non-spin-polarized system is also more stringent as both derivatives need to be equal to zero.

 $s(\mathbf{r})$ CPs will clearly differ in number and location relative to those of $\rho(\mathbf{r})$

H_2O in the 3B_1 state

s spin graph (α - α maxima joining paths) and molecular graph (CAS)

s spin graph of only s_{mag} (CAS)

- s topology is richer and less trivial than that of ρ(r), 25 CPs vs 5, 15 vs 3 unique CPs (CAS level).
- □ *s*(**r**), differently from ρ(**r**) and likewise ESP or $\nabla^2 \rho(\mathbf{r})$ exhibits either positive (*s*₊) or negative (*s*₋) local values. The only constraint on *s* is that $\int_{R^3} s(\mathbf{r}) = n_\alpha$ (number of the excess α-electrons)
- □ The possibility of negative values for a scalar has an impact on the total number and kind of its CPs. The scalar is topologically analysed by separating regions where it is >0 from those where it is <0 and by treating each of them as a distinct system.
- \Box s₊ topology is (almost) stable with the method, while s₋ is largely method dependent (or absent by nature, ROHF)
- Each s(r) may be decomposed into a magnetic (due to the fully unpaired αelectron density, SONOs) and a relaxation part (due to the remaining α- and βelectrons density). The magnetic part is "stable" and resembles s₊ while the relaxation part is rather method dependent
 - □ $n_{-3} n_{-1} + n_{+1} n_{+3} = n_{+} n_{-}$ (n_{+} and n_{-} number of asymptotic minima and maxima) If the s_ regions are **fully embedded** in s_{+} regions, n_{-} will be equal to 0 and the CPs of the whole $s(\mathbf{r})$ fulfils $n_{-3} - n_{-1} + n_{+1} - n_{+3} = 1$ as $\rho(\mathbf{r})$ (Poincaré-Hopf relationship)
- s spin graph $(\beta - \beta \text{ maxima})$ joining paths) 3,-3 3,-1 -s(r)
- The collection of α-α maxima (or β-β maxima) joining paths is a molecular spin graph. A spin-polarised system has as many α-α and β-β molecular spin graphs as is the number of its s₊ and s₋ separate regions. α-α (β-β) maxima joining paths link maximally α- (β-)polarized centers

Two kinds of structures are associated with a spin-polarized molecule:

- $\square Molecular graph structure (defined through <math>\nabla \rho$ and the collection of bond paths) +
- **Spin graph** magnetic structure (defined through ∇s and composed in general by at least two independent spin graphs, related to spin-density maxima and minima)

- □ The spin structure of the ³B₁ H₂O molecule is more complex than its total electron structure, but both concur to a complete description of the molecule. It is like observing the same molecule by wearing two different pairs of lenses.
- One of these pairs is working in summation of the α- and β-densities, while the other in subtraction of the same densities.

The spin density structure does not have a direct connection between O and H nuclei as in the molecular graph. Yet, it exhibits a direct link between the maxima located nearby the H nuclei. The two O-H linkages of the conventional structure of H_2O are replaced in the spin graph by 4 much longer linkages between maxima associated with the unpaired electrons of the O atom, lying quite far apart from the nucleus and the maxima close to the H nuclei. In addition, there are 3 more gradient paths, all contained within the O atomic basin

The four kind of CPS may be further classified in 18 different types depending on relative concentration/depletion of the α and β densities at CP

	CP(r,s)	$-\nabla^2 s$	Туре	$-\nabla^2 \rho_{\alpha}$	$-\nabla^2 ho_{eta}$	Constraint
	(3, –3), max	>0	1	> 0	> 0	$-\nabla^2 \rho_{\alpha} > -\nabla^2 \rho_{\beta}$
3		> 0	2	> 0	< 0	None
5		> 0	3	< 0	< 0	$ -\nabla^2 \rho_{\alpha} < -\nabla^2 \rho_{\beta} $
	(3, −1), 1st order SP	> 0	1	> 0	> 0	$-\nabla^2 \rho_{\alpha} > -\nabla^2 \rho_{\beta}$
		> 0	2	> 0	< 0	None
6		> 0	3	< 0	< 0	$ -\nabla^2 \rho_{\alpha} < -\nabla^2 \rho_{\beta} $
0		< 0	4	> 0	> 0	$-\nabla^2 \rho_{\alpha} < -\nabla^2 \rho_{\beta}$
		< 0	5	< 0	> 0	None
		< 0	6	< 0	< 0	$ -\nabla^2 \rho_{\alpha} > -\nabla^2 \rho_{\beta} $
6	(3, +1), 2nd order SP	Same as for $(3, -1)$				
	(3, +3), min	< 0	1	> 0	> 0	$-\nabla^2 \rho_{\alpha} < -\nabla^2 \rho_{\beta}$
ว		< 0	2	< 0	> 0	None
3		< 0	3	< 0	< 0	$ -\nabla^2 \rho_{\alpha} > -\nabla^2 \rho_{\beta} $

18 in total

Electron Spin density (3,-3) and (3,-1) CPs in the $H_2O^{3}B_1$ state

N	М	WFN	Туре	s	S _{mag}	ρ	$\nabla \rho_{\alpha} \equiv \nabla \rho_{\beta}$	$ abla^2$ s	$ abla^2 ho_{lpha}$	$ abla^2 ho_{eta}$	SPI(r _c)	43
1	2	ROHF	3	0.603	0.603	1.938	8.715	-26.978	81.209	108.186	1.269	57
	2	UHF	3	0.613	0.607	1.816	7.714	-25.944	71.334	97.278	1.346	
	2	CAS	3	0.617	0.615	1.820	7.681	-25.670	71.105	96.775	1.351	2 6
2	2	ROHF	1	0.018	0.018	0.263	0.341	-0.697	-5.517	-4.821	0.765	1
	2	UHF	2	0.015	0.016	0.090	0.123	-0.119	-0.091	0.028	0.923	$\rho_{r}(\mathbf{r})/\rho\beta(\mathbf{r})$
	2	CAS	3	0.012	0.014	0.072	0.096	-0.082	0.003	0.086	0.936	$SPI(\mathbf{r}) = \frac{\Gamma_{\alpha}(\gamma) \Gamma(\gamma)}{N_{\alpha}/N\beta}$
3	1	ROHF	1	0.683	0.683	295.534	557.768	-5.6×10^{3}	-1.2×10^{6}	-1.2×10^{6}	0.670	
	1	UHF	1	0.840	0.706	295.432	587.366	-6.7×10^{3}	-1.2×10^{6}	-1.2×10^{6}	0.670	Spin Polarization
	1	CAS	1	1.262	0.725	295.814	408.328	-10.1×10^{3}	-1.2×10^{6}	-1.2×10^{6}	0.672	Index
4	2	ROHF	1	0.367	0.367	82.250	648.694	-45.534	-4.85 × 10 ³	-4.80×10^{3}	0.673	mack
	2	UHF	1	0.415	0.380	64.569	503.389	-47.064	-1.91 × 10 ³	-1.86×10^{3}	0.675	SPI = 1 if local
	2	CAS	1	0.474	0.417	41.885	323.092	-45.172	-66.122	-20.950	0.682	
												polarization is = to
5	1	ROHF	6	0.094	0.094	1.265	1.691	2.051	8.785	6.734	0.773	the average
	1	UHF	6	0.130	0.100	1.308	1.921	1.206	11.013	9.807	0.813	
	1	CAS	6	0.147	0.102	1.327	2.032	0.850	11.728	10.877	0.833	> 1 higher: < 1
												lower
6	4	ROHF	6	0.006	0.006	0.085	0.098	0.023	0.099	0.077	0.744	1000001
	4	UHF	6	0.005	0.006	0.048	0.057	0.013	0.086	0.073	0.819	
	4	CAS	6	0.004	0.005	0.039	0.047	0.010	0.076	0.066	0.826	No polarization
	4	DOUE	2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2 455	$1/(N_{\alpha}/N\beta)$
	1	KOHF	3	0.003	0.003	0.006	0.003	-0.002	0.003	0.006	2.455	$(0.667 \text{ for } H_{2} O^{3} B)$
	1	UHF	3	0.003	0.004	0.006	0.003	-0.003	0.003	0.005	2.575	(0.007101120121)
	1	CAS	3	0.003	0.003	0.006	0.003	-0.003	0.002	0.005	2.581	state)

³B₁H₂O CAS spin-density basins

Basins labelled by their enclosed (3, -3) spin maximum or, for basin 15, by its enclosed (3, +3) spin minimum

Each basin retains the same colour in all panels

Basins bounded by local Zero-Flux Surfaces (ZFS) of ∇s

May contain points with either $s(\mathbf{r})>0$ and $s(\mathbf{r})<0$ The $\nabla s ZFS$ basins are not "quantum" object, so other basins are worth of being considered

Basins bounded by s = 0 isosurfaces (s_+ and s_- basins)

They contains only positive (s_{+}) or only negative (s_{-}) *s* points. This disjoint, exhaustive and alternative R^{3} space partition, separates molecular regions in terms of their α - or β -density dominance. The sum of population of s_ basins yields a quantitative measure of the spin counter-polarization effect, enabling to judge the quality of the wf model ($\Sigma = 0$ for ROHF)

Panels **b** (**d**) differ from panels **a** (**c**) for the removal of basins 1 and 1'. The small, embedded basin 3 around the O nucleus is disclosed

Ω	М	WFN	N _Ω	SP_{Ω}	$SP_{mag,\Omega}$	SPI_{Ω}	V1 _Ω	$V2_{\Omega}$	$\overline{s}_{arOmega}$
				∇ho ZFS bo	oundaries				
0	1	ROHF	8.867	1.409	=	0.919	180.6	127.4	0.008
	1	UHF	8.856	1.417	1.409	0.921	179.2	126.8	0.008
	1	CAS	8.743	1.406	1.387	0.922	173.3	122.5	0.008
H	2	ROHF	0.565	0.294	=	2.113	71.8	39.8	0.004
	2	UHF	0.571	0.290	0.295	2.046	72.2	40.3	0.004
	2	CAS	0.628	0.296	0.306	1.856	76.9	42.6	0.004
∇s ZFS boundaries									
Ω ₁	2	ROHF	3.469	0.587	=	0.938	53.9	42.0	0.011
	2	UHF	3.740	0.597	0.591	0.920	52.1	40.9	0.011
	2	CAS	3.620	0.604	0.595	0.934	52.4	40.9	0.012
Ω2	2	ROHF	0.901	0.409	=	1.773	108.3	61.4	0.004
	2	UHF	0.907	0.402	0.407	1.727	109.8	62.7	0.004
	2	CAS	0.913	0.394	0.403	1.676	111.2	63.0	0.004
Ω ₃	1	ROHF	1.231	0.006	=	0.673	0.04	0.04	0.174
	1	UHF	0.699	0.003	0.002	0.672	0.01	0.01	0.196
	1	CAS	0.935	0.005	0.002	0.674	0.02	0.02	0.231
			s = 0 is	ovalue su	rface bour	ndaries			
Ω ₁	2	UHF	3.574	0.598	0.587	0.935	50.9	39.7	0.012
	2	CAS	3.509	0.606	0.589	0.945	51.6	40.2	0.012
Ω2	2	UHF	0.836	0.403	0.409	1.906	109.4	62.3	0.004
	2	CAS	0.821	0.395	0.407	1.901	110.6	62.3	0.004
Ω ₃	1	UHF	0.640	0.002	0.002	0.671	0.01	0.01	0.210
	1	CAS	0.916	0.005	0.004	0.674	0.02	0.02	0.237
Ω ₁₅	2	UHF	0.173	-0.002	0.002	0.653	1.02	1.02	-0.002
	2	CAS	0.212	-0.003	0.003	0.650	1.45	1.45	-0.002
Ω ₁₆	2	UHF	0.097	-0.000	0.001	0.660	0.68	0.68	-0.001

$$SPI_{\Omega} = \frac{N_{\alpha,\Omega} / N\beta_{,\Omega}}{N_{\alpha} / N_{\beta}}$$

Basin SPI :Same meaning as the local SPI, but referred to the whole basin

$\bar{s}_{\Omega} = SP_{\Omega}/V1_{\Omega}$

 \bar{s}_{Ω} is an absolute measure of the basin average α -electron excess.

Ω	М	WFN	Ν _Ω	SP_{Ω}	$SP_{mag,\Omega}$	SPI_{Ω}	$V1_{\Omega}$	V2 _Ω	$\overline{s}_{arOmega}$
			1	abla ho ZFS bo	oundaries	5			
0	1	ROHF	8.867	1.409	=	0.919	180.6	127.4	0.008
	1	UHF	8.856	1.417	1.409	0.921	179.2	126.8	0.008
	1	CAS	8.743	1.406	1.387	0.922	173.3	122.5	0.008
Н	2	ROHF	0.565	0.294	=	2.113	71.8	39.8	0.004
	2	UHF	0.571	0.290	0.295	2.046	72.2	40.3	0.004
	2	CAS	0.628	0.296	0.306	1.856	76.9	42.6	0.004
			,	∇s ZFS bo	oundaries				
Ω ₁	2	ROHF	3.469	0.587	=	0.938	53.9	42.0	0.011
	2	UHF	3.740	0.597	0.591	0.920	52.1	40.9	0.011
	2	CAS	3.620	0.604	0.595	0.934	52.4	40.9	0.012
Ω2	2	ROHF	0.901	0.409	=	1.773	108.3	61.4	0.004
	2	UHF	0.907	0.402	0.407	1.727	109.8	62.7	0.004
	2	CAS	0.913	0.394	0.403	1.676	111.2	63.0	0.004
Ω ₃	1	ROHF	1.231	0.006	=	0.673	0.04	0.04	0.174
	1	UHF	0.699	0.003	0.002	0.672	0.01	0.01	0.196
	1	CAS	0.935	0.005	0.002	0.674	0.02	0.02	0.231
			s = 0 isc	value su	rface bou	ndaries			
Ω ₁	2	UHF	3.574	0.598	0.587	0.935	50.9	39.7	0.012
	2	CAS	3.509	0.606	0.589	0.945	51.6	40.2	0.012
Ω ₂	2	UHF	0.836	0.403	0.409	1.906	109.4	62.3	0.004
	2	CAS	0.821	0.395	0.407	1.901	110.6	62.3	0.004
Ω ₃	1	UHF	0.640	0.002	0.002	0.671	0.01	0.01	0.210
	1	CAS	0.916	0.005	0.004	0.674	0.02	0.02	0.237
Ω ₁₅	2	UHF	0.173	-0.002	0.002	0.653	1.02	1.02	-0.002
	2	CAS	0.212	-0.003	0.003	0.650	1.45	1.45	-0.002
Ω ₁₆	2	UHF	0.097	-0.000	0.001	0.660	0.68	0.68	-0.001

- The electron and (α-β) spin population of all s_ basins sum up to 0.424 and -0.006 e⁻ at the CAS level and to 0.540 and -0.004 e⁻ at the UHF level.
- About 6% of the valence electrons in the molecule are included in these basins.
- The spin populations of these basins are dominated by the relaxation component, SP_{mag,Ω} being, by nature, positive.
- The spin polarization index SPI_Ω needs to be smaller than 2/3, but it is just below this value (about 0.65), marginally different from the $\rho_{\alpha} = \rho_{\beta}$ reference value (2/3)
- N_Ω and SP_Ω values, sizes and other properties of the s₋ basins collectively highlight the relevance of going beyond ROHF restriction

Preliminary Conclusions

- Novel notions, such as spin graphs, spin basins and spin valence, and novel descriptors, such as the local/integral Spin Polarization Indices (SPI) or the basin average spin density
- Two kinds of structures associated with a spin-polarized molecule (the usual one and the magnetic structure consisting of at least two spin graphs
- Local and nonlocal s(r) descriptors help to explain real-space magnetic structure and to single out those features that are largely model dependent
- Spin-density topology discloses a wealth of chemically and physically meaningful information. Most of the introduced spin-density descriptors do not require the explicit knowledge of the system's wavefunction, being therefore amenable to experimental investigation of the s(r) observable
- Pioneering studies based on combined X-ray and neutron structure factors are already available; in the next future, it is foreseeable that a combination of accurate neutron detectors and more intense sources will disclose more and more reliable and precise experimental spin-density distributions in crystalline materials

The topological toolbox helps to gains insights into yet unexplored aspects of complex magnetic structures

The Electrostatic Potential Source Function (EPSF)reconstruction: a valuable tool to study High-PerformanceLiquid Chromatography (HPLC) enantioseparations involving σ - and π -holes as recognition sites

Carlo Gatti (c.gatti@scitec.cnr.it)

Milano, Golgi

29 Aprile 2021

HPLC enantioselective molecular recognition

Stereospecific recognition of chiral molecules is an important issue in various aspects of life sciences and chemistry including analytical separation sciences

 The basis of analytical enantioseparations is the formation of transient diastereomeric complexes driven by hydrogen bonds or ionic, ion-dipole, dipole-dipole, van der Waals as well as π-π interactions

Halogen and chalcogen bonds

- **XB** can drive enantioseparations in HPLC environment. XB is profiled as a chemo-, regio-, site- and stereoselective interaction which is active in HPLC environment **besides** other known interactions based on the complementarity between selector and selectand
- Chalcogen bonds (ChB) were also found to act as stereoselective secondary interactions for HPLC enantioseparations

Journal of Chromatography A, 1467 (2016) 228-238

Y X A	$\mathbf{Y} - \mathbf{Ch} - \mathbf{Y} - \mathbf{A}$	Contents lists available at ScienceDirect Journal of Chromatography A journal homepage; www.elsevier.com/locate/chroma Insights into halogen bond-driven enantioseparations Paola Peluso ^{A,*} , Victor Mamane ^{h,*} , Emmanuel Aubert ^C , Alessandro Dessl ³ , Roberto Dallocchio ³ , Antonio Dore ⁶ , Patrick Pale ⁶ , Sergio Cossu ⁶ Vittate de Clemica Biometectory K& CMS, U05 di Sasar, Theorem 16 Cruca J, Brijner Baldon, J 0700 J Path, Samer, 184 ************************************
halogen bond	chalcogen bond	Journal of Chromatography A, 1567 (2018) 119–129 Journal of Chromatography A, 1567 (2018) 119-129 Contents lists available at ScienceDirect
A = CI, Br, I A = Lewis base (O, N, S, haloge	en, π-donor, anion); Y = EWG	Journal of Chromatography A
		Enantioseparation of fluorinated 3-arylthio-4,4'-bipyridines: Insights into chalcogen and π -hole bonds in high-performance liquid chromatography ^{\pm} Paola Peluso ^{4,*} , Carlo Gatti ^{b,c} , Alessandro Dessi ^a , Roberto Dallocchio ^a , Robin Weiss ^d ,
ChB: σ -hole based NCI between a Lewis b group VI, which behaves as a Lewis acid	ase and an electrophilic element of	Emmanuel Aubert [®] , Patrick Pale ^d , Sergio Cossu ¹ , Victor Mamane ^d ,* ^a Istituto di Chimica Biomolecolare ICB, CNR. Sede secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, 07100 Li Punti, Sassari, Italy ^b CNR-STM, Istituto di Scienze e Tecnologie Molecolari, via C. Gogi 19, 20133 Milano, Italy ^c Stituto i Iombardo Accademia di Scienze e Iettere via Biera 28, 20121 Milano, Italy ^a Institut de Chimie de Straubourg, UMR CNR 7177. Equipe LASTROC, 1 rue Biase Pascal, 67008 Straubourg Codes, France ^a Cristaligraphie, Reisonane Magnétique et Modélisations (CRM2), UMR CNR 7078, Dinvestité de Lorraine, Bid des Aiguillettes, 54506 Vandoeurre-Ies-Nancy, France ^a Dipartimento di Scienze Molecolari e Nanosistemi DSMN, Università Ca'Foscari di Venezia, Via Torino 155, 30172 Mestre Venezia, Italy

Selectand and selector examples

X- or Ch- substituted atropoisomeric 4,4'-bipyridines as σ -donors

Cellulose-based polymers as XB acceptors

σ - and π -hole magnitude variability

 \Box How can we interpret these dramatic changes in the σ/π hole V values?

Can we find a tool enabling us to design changes in the σ - and π -hole regions aimed at affecting their potential involvement in noncovalent interactions in a desired way?

The Source Function (SF) Electrostatic potential (SFEP)

 σ - and π -hole regions are important in molecular recognition processes (e.g. in HPLC enantiometric separation)

Hole regions may be revealed through V. *However* V(r) is a function of the whole molecular electron/nuclear distribution

QUESTION : Which group/moiety is/are responsible of ΔV due to chemical/conformational changes?

$$V(\mathbf{r}) = V_{elec}(\mathbf{r}) + V_{nuc}(\mathbf{r}) = \begin{bmatrix} -\int \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' + \sum_{A} \frac{Z_{A}}{|\mathbf{r} - \mathbf{R}_{A}|} \end{bmatrix} = \sum_{\Omega} \begin{bmatrix} -\int_{\Omega} \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' + \frac{Z_{\Omega}}{|\mathbf{r} - \mathbf{R}_{\Omega}|} \end{bmatrix} = \\\Omega, \text{ Bader's atomic or atomic group basin} \\ = \sum_{\Omega} \begin{bmatrix} V_{elec}(\mathbf{r}, \Omega) + V_{nuc}(\mathbf{r}, \Omega) \end{bmatrix} = \sum_{\Omega} V(\mathbf{r}, \Omega) \implies V(\mathbf{r}, \Omega) \equiv SF(\mathbf{r}, \Omega) \text{ to } V(\mathbf{r}) \\ \nabla \rho \cdot \mathbf{n} = 0 \forall \mathbf{r}_{s} \in S \\ are the bounding of quantum atomic of quant$$

ρ

H(1)

H(2)

N(1)

 $\nabla \rho$

H(3)

....O(1)

C(1)

 $\nabla \rho \cdot \mathbf{n} = 0 \forall \mathbf{r}_{\epsilon} \in S$ where S

are the bounding surfaces

of quantum atoms Ω

ANSWER : Rigorous V decomposition in group/moiety contributions enables to get insights on group/atomic contributions to V(r) and enables efficient molecular design

A useful tool or just a nightmare?

SF% decomposition of EP σ -hole close to Cl*

$$V(\mathbf{r}) = V_{elec}(\mathbf{r}) + V_{nuc}(\mathbf{r}) = \left[-\int \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' + \sum_{A} \frac{Z_{A}}{|\mathbf{r} - \mathbf{R}_{A}|} \right] = \sum_{\Omega} \left[-\int_{\Omega} \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' + \frac{Z_{\Omega}}{|\mathbf{r} - \mathbf{R}_{\Omega}|} \right]$$

Two problems:

- V_{elec} and V_{nuc} have different sign and on the 0.002 au ρ isosurface their sum, i.e. V, is very small and typically 4 order of magnitude smaller in magnitude than either V_{elec} or V_{nuc}
- 2) The individual Ω give SF% contributions that are either positive or negative and of the same order of magnitude as the value of V itself

Apparently a nightmare....

*ci

CI CI

C

The suite of developed SW codes and the solution

Multiwfn T. Lu, F. Chen, J.Comp. Chem. 33, (2012) 580-592

□ Quantitative Analysis of Molecular Surfaces based on improved Marching Tetrahedra algorithm, T. Lu, F. Chen, J. Mol. Graph. Model., 38 (2012) 314

□ Other codes, except Gaussian-XX, are home made (C. Gatti)

 $\begin{array}{l} \textbf{ANASFR_EP_ED} \\ \textbf{Check accuracy of SF reconstructions} \\ \textbf{Extract and combine SF}_{v}(\textbf{r},\Omega) \text{ and} \\ \textbf{SF}_{\rho}(\textbf{r},\Omega) \text{ values in SF group contributions} \end{array}$

 $V(\mathbf{r},\Omega) \equiv SF_V(\mathbf{r},\Omega)$ and $SF_\rho(\mathbf{r},\Omega)$ values

SF_ESI code V(r) and ρ(r) SF reconstructions

Example I

Similar $V_{S,max}$ (1-A1 \rightarrow 5-A1) C_{pyr} -Se σ -hole values, yet the roles of the Ch, R and Bipy moieties are strikingly different

Example II

SF (Ch) and SF(R) are almost equal for the two holes, while SF(Bipy) is the responsible for the internal π -hole $V_{s,max}$ of 5-A2 being twice as negative because of the different sign SF contribution from its pyr', hosting the 5'-Br atom. This atom points its p-cloud towards the phenyl ring internal p-hole making this hole negative rather than positive

Example III

Example IV

The molecular transformations of examples III and IV yield quite similar V_S, variations, yet the roles of the Ch, R and Bipy moleties in producing such similar changes strikingly differ. It is shown that **a change of molecular conformation only may be as effective as a chemical substitution in its impact on the V**_S, value</sub>.

Example V

 C_{pvr} -Se σ -hole

Thanks to

all (mentioned + photos!) coauthors

Grundforskningsfond Danish Nationa Research Foundation

> ...to all of you for your attention

Table 1 Crucial properties of phase-change alloys	
Required property of PC material	Specification
High-speed phase transition Long thermal stability of amorphous state Large optical change between the two states (for rewriteable optical storage) Large resistance change between the states (for non-volatile electronic storage) Large cycle number of reversible transitions High chemical stability	Induced by nanosecond laser or voltage pulse At least several decades at room temperature Considerable difference in refractive index or absorption coefficient Natural consequence of the transformation from amorphous to crystalline state More than 100,000 cycles with stable composition High water-resistivity

Can be rapidly and reversibly switched between the amorphous (AS) and the crystalline state (CS). Yet this transition is accompanied by a pronounced change of optical and electronic properties

- Though their transformation occurs through very fast melt, quench and anneal cycles, the 2 states are extremely long lived at ambient T: they do represent 2 stable and competing structural/bonding alternatives
- □ Their portfolio of properties is very appealing for **memory applications** and **photonics**
- PCMs have been successfully employed in : a) rewriteable optical data storage (DVD, Blue Ray, HD Digital Versatile Disks) b) fast, yet nonvolatile electronic memories (PCM, PCME, PRAM, PCRAM, OUM). Their pronounced optical contrast is also utilized in nanophotonic applications and has been discussed as a means to realize ultrafast optical switches

Figure 2 Ternary phase diagram depicting different phase-change alloys, their year of discovery as a phase-change alloy and their use in different optical storage products.

Upon transition to CS....

Special *fingerprints* of PCM crystalline phases

- Unusually high coordination number (Zintl-Klemm 8-N rule no longer fulfilled
- Electronic polarizability rises sharply Extraordinary large optical dielectric constant
- Chemical bond polarizability increases unusually high Born effective charges
- Almost metal-like conductivity
- Vibrational properties are largely affected, with unusual phonon softening Huge mode-specific Grüneisen parameter for transverse optical phonons
- Unusual bond breaking mechanism in laser-assisted atom probe tomography

Zhu, M., Cojocaru-Mirédin, O., Mio, A. M., Keutgen, J., Küpers, M., Yu, Y., Cho, J. Y., Dronskowski, R., Wuttig, M., *Adv. Mater.* 2018, 30, 1706735.

These findings imply that the *bonding* mechanism in crystalline PCMs differs substantially from conventional bonding mechanisms such as metallic, ionic, and covalent bonding....

> *Really a* novel *bonding* mechanism besides those already established?

Metavalent bonding?

Upon transition to CS....

GS Static view of bonding (1e and 2e distributions)

c-GST slighltly distorted cubic, 1c-2e, more delocalized

a-GST short and long nnb distances, 2c-2e more localized. Closer to 8-N ZK rule

Localization and delocalization indices should give an unbiased answer

JCP 145, 154107 (2016)

THE JOURNAL OF CHEMICAL PHYSICS 145, 154107 (2016)

Domain overlap matrices from plane-wave-based methods of electronic structure calculation

Pavlo Golub¹ and Alexey I. Baranov^{1,2,a)} ¹Department of Chemistry and Food Chemistry, Technical University of Dresden, Bergstrasse 66, 01062 Dresden, Germany ²Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Strasse, 40, 01187 Dresden, Germany

Plane waves are one of the most popular and efficient basis sets for electronic structure calculations of solids; however, their delocalized nature makes it difficult to employ for them classical orbital-based methods of chemical bonding analysis. The quantum chemical topology approach, introducing chemical concepts via partitioning of real space into chemically meaningful domains, has no difficulties with plane-wave-based basis sets. Many popular tools employed within this approach, for instance delocalization indices, need overlap integrals over these domains—the elements of the so called domain overlap matrices. This article reports an efficient algorithm for evaluation of domain overlap matrix elements for plane-wave-based calculations as well as evaluation of its implementation for one of the most popular projector augmented wave (PAW) methods on the small set of simple and complex solids. The stability of the obtained results with respect to PAW calculation parameters has been investigated, and the comparison of the results with the results from other calculation methods has also been made. *Published by AIP Publishing*. [http://dx.doi.org/10.1063/1.4964760]

THE JOURNAL OF CHEMICAL PHYSICS 137, 214109 (2012)

Domain-averaged Fermi-hole analysis for solids

Alexey I. Baranov,^{1,a)} Robert Ponec,² and Miroslav Kohout¹ ¹Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Strasse 40, 01187 Dresden, Germany ²Institute of Chemical Process Fundamentals, Academy of Sciences of the Czech Republic v.v.i., Rozvojová 135, 165 02 Prague 6, Czech Republic

(Received 13 August 2012; accepted 31 October 2012; published online 6 December 2012)

JCP 137, 214109 (2012)

$$\rho_{2}(\mathbf{r}_{1},\mathbf{r}_{2}) = \frac{1}{2} \left[\rho(\mathbf{r}_{1}) \rho(\mathbf{r}_{2}) \cdot \rho_{2,xc}(\mathbf{r}_{1},\mathbf{r}_{2}) \right]$$

$$Half N. of e pairs fully localised in A$$

$$DI(A,B) = \lambda(A) = \int_{A} \int_{A} \rho_{2,xc}(\mathbf{r}_{1},\mathbf{r}_{2}) d\mathbf{r}_{1} d\mathbf{r}_{2}$$

$$Half N. of e pairs fully localised in A$$

$$DI(A,B) = \delta(A,B) = 2 \cdot \iint_{A} \rho_{2,xc}(\mathbf{r}_{1},\mathbf{r}_{2}) d\mathbf{r}_{1} d\mathbf{r}_{2}$$

$$N. of e pairs share between A and B$$

$$\sum_{A} \left[\lambda(A) + \frac{1}{2} \sum_{B \neq A} \delta(A,B) \right] = N$$
For HF (and SD wfs ansatz)
$$\rho_{2,xc}(\mathbf{r}_{1},\mathbf{r}_{2}) = \sum_{i,j=1}^{M=N/2} \left[\phi_{i}(\mathbf{r}_{2}) \phi_{i}^{*}(\mathbf{r}_{1}) \phi_{j}(\mathbf{r}_{1}) \phi_{j}^{*}(\mathbf{r}_{2}) \right]$$

$$\lambda(\Omega_{1}) = 2 \cdot \sum_{i,j=1}^{M=N/2} \int_{\Omega_{1}\Omega_{2}} \phi_{i}(\mathbf{r}_{2}) \phi_{i}^{*}(\mathbf{r}_{1}) \phi_{j}(\mathbf{r}_{1}) \phi_{j}^{*}(\mathbf{r}_{2}) d\mathbf{r}_{1} d\mathbf{r}_{2} = 2 \cdot \sum_{i,j=1}^{M=N/2} \left[\int_{0}^{M=N/2} \delta(\Omega_{1},\Omega_{2}) = 4 \cdot \sum_{i,j=1}^{M=N/2} \int_{\Omega_{1}\Omega_{2}} \phi_{i}(\mathbf{r}_{2}) \phi_{i}^{*}(\mathbf{r}_{1}) \phi_{j}(\mathbf{r}_{1}) \phi_{j}^{*}(\mathbf{r}_{2}) d\mathbf{r}_{1} d\mathbf{r}_{2} = 4 \cdot \sum_{i,j=1}^{M=N/2} \int_{0}^{M=N/2} \int_{0}^{M=N/2} \int_{0}^{M=N/2} \int_{0}^{M=N/2} \int_{0}^{M=N/2} \int_{0}^{M} \int$$

 $S_{ii}^{\Omega_2}$

DOM

Quantitative Electron Delocalization in Solids from Maximally Localized Wannier Functions

A. Otero-de-la-Roza,**[†][©] Ángel Martín Pendás,^{†©} and Erin R. Johnson^{‡©}

CrossMar

[†]Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, 33006 Oviedo, Spain [‡]Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia, Canada B3H 4R2

 $\tilde{\psi}_{j\vec{k}}(\vec{r}) = \sum_{\vec{G}} c_{j\vec{k}}(\vec{G}) e^{i(\vec{k}+\vec{G})\vec{r}}$

Augmented Plane Wave (APW) or Projector Augmented wave (PAW) methods:

- □ Interstitial region (IR)
 - +
- □ Non overlapping atomic or muffin-tin (MT) spheres

$$\begin{split} S_{j\vec{k};j'\vec{k}'}(\Omega) &= \int d\vec{r} \tilde{\psi}^*_{j\vec{k}}(\vec{r}) w^{\Omega}(\vec{r}) \chi_{IR}(\vec{r}) \tilde{\psi}_{j'\vec{k}'}(\vec{r}) \\ &+ \sum_a \int d\vec{r} \psi^{a*}_{j\vec{k}}(\vec{r}) w^{\Omega}(\vec{r}) \psi^a_{j'\vec{k}'}(\vec{r}). \end{split}$$

Atomic spheres contribution

IR : Bloch states with band

index j and k-vector \vec{k} ,

 Σ over the reciprocal

expanded in PWs

lattice vectors G

IR PW contribution $\chi(IR)=1$ in IR and 0 elsewhere

THE JOURNAL OF CHEMICAL PHYSICS 145, 154107 (2016)

Domain overlap matrices from plane-wave-based methods of electronic structure calculation

Pavlo Golub¹ and Alexey I. Baranov^{1,2,a)} ¹Department of Chemistry and Food Chemistry, Technical University of Dresden, Bergstrasse 66, 01062 Dresden, Germany ²Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Strasse, 40, 01187 Dresden, Germany

DOM calculation implemented for the PAW method as a general purpose module of the program DGRID interfaced to the output of the ABINIT code. DOM evaluated for QTAIM basins

M. Kohout, Program Dgrid-4.7, Radebeul, 2012

COMMUNICATION

Adv. Mater. **31**, 1806280 (2019)

Materials Design

A Quantum-Mechanical Map for Bonding and Properties in Solids

Jean-Yves Raty, Mathias Schumacher, Pavlo Golub, Volker L. Deringer, Carlo Gatti, and Matthias Wuttig*

- □ Combine the quantum mechanically based (1*e* and 2*e* distributions) and the property-based perspective to derive a holistic view of bonding in solids
- Do "metavalent" solids exhibit special DI and LI features, besides their 5 "fingerprints properties" ?

For conductivity and coordination numbers, "metavalent" solids are located between the covalent and metallic regimes

They are, however, distinctly different from both because they show

- a) anomalously large response properties
- b) a unique APT (Atom Probe Tomography) bond-breaking mechanism not observed in either covalent or metallic solids

Definition based on a set of observable properties has led to a revision of "resonant" bonding model, previously widely used to describe bonding in PCMs. *Response* properties of PCMs are fundamentally different from those of resonantly bonded benzene and graphite

ç	Structure	IIIA-VA compo	unds:
d		AlN	$P6_3mc$
The second		AlP	$F\bar{4}3m$
Al	E	AlAs	$F\bar{4}3m$
Al	Fm3m Fm2m	AlSb	$F\overline{4}3m$
Sn ^α	F III SIII F d 3m	AlBi	$F\bar{4}3m$
Pb	$Fm\overline{3}m$	GaN	$P6_3mc$
Si	$Fd\overline{3}m$	GaP	$F\bar{4}3m$
Ge	$Fd\overline{3}m$	GaAs	$F\bar{4}3m$
Na	$Im\overline{3}m$	GaSb	$F\overline{4}3m$
Mg	P6 ₃ /mmc	InN^*	$F\overline{4}3m$
Ca*	$P6_3/mmc$	InP	$F\bar{4}3m$
Cdiamond	$Fd\overline{3}m$	InAs	$F\overline{4}3m$
C ^{graphite}	$P6_3/mmc$	InSb	$F\overline{4}3m$
Intermetallics.			
NiAl	$D_{m}\overline{2}_{m}$	IA-VIIA comp	ounds:
		NaCl	$Fm\overline{3}m$
IIAI	P4/mmm	NaF	$Fm\overline{3}m$
		KF	$Fm\overline{3}m$
		KCl	$Fm\overline{3}m$
11 elemental pha	ises	KBr	$Fm\overline{3}m$
74 binary phases	of main-group elements	KI	$Fm\overline{3}m$
11 binary phases	of IIB transition metals	RbCl	$Fm\overline{3}m$
2 Intermetallics		RbBr	$Fm\overline{3}m$
3 Ternary phases		RbBr ^{Pm3m*}	$Pm\overline{3}m$
i motostable she	see of DCM	CsF	$Fm\overline{3}m$
+ metastable pha		$CsF^{Pm\overline{3}m^*}$	$Pm\overline{3}m$

Fernary compounds:
AgBiSe ₂
AgBiTe ₂
AgSbTe ₂

IIA-VIA com	pounds:
BeO	$P6_3mc$
BeS	$F\overline{4}3m$
BeSe	$F\overline{4}3m$
BeTe	$F\overline{4}3m$
MgO	$Fm\overline{3}m$
MgS	$Fm\overline{3}m$
MgSe*	$F\overline{4}3m$
MgTe	$F\overline{4}3m$
CaO	$Fm\overline{3}m$
CaS	$Fm\overline{3}m$
CaSe	$Fm\overline{3}m$
CaTe	$Fm\overline{3}m$
SrO	$Fm\overline{3}m$
SrS	$Fm\overline{3}m$
SrSe	$Fm\overline{3}m$
SrTe	$Fm\overline{3}m$
BaS	$Fm\overline{3}m$
BaSe	$Fm\overline{3}m$
BaTe	$Fm\overline{3}m$
IIB-VIA com	pounds:
ZnO^*	$F\overline{4}3m$
ZnS	$F\overline{4}3m$
ZnS ^{Wurtzite*}	$P6_3mc$
ZnSe	$F\overline{4}3m$
ZnTe	$F\overline{4}3m$
CdS	$F\bar{4}3m$
CdSe	$F\overline{4}3m$
CdTe	$F\overline{4}3m$
HeS	$F\overline{4}3m$
HgSe	$F\overline{4}3m$
HgTe	$F\overline{4}3m$

IVA-VIA	compounds:	
GeSe	Pnma	ı
GeTe ^{220u*}	R3m, d	ist.
GeTe ^{221u*}	R3m, d	ist.
GeTe ^{224u*}	R3m, d	ist.
GeTe ^{227u*}	R3m, d	ist.
GeTe ^{ortho*}	Pnma	ı
GeTe ^{230u*}	R3m, d	ist.
GeTe ^{233u*}	R3m, d	ist.
GeTe ^{R3m}	R3m	
GeTe ^{239u*}	R3m, d	ist.
GeTe ^{242u*}	R3m, d	ist.
GeTe ^{245u*}	R3m, d	ist.
GeTe ^{cub*}	$Fm\overline{3}m$	n
SnO	P4/nm	m
SnS	Pnma	ı
SnSe	Pnma	ı
SnTe	R3m, d	ist.
SnTe ^{cub*}	$Fm\overline{3}n$	n
PbO	P4/nm	m
PbSe ^{u2300*}	R3m, d	ist.
PbSe ^{u2400*}	R3m, d	ist.
PbSe ^{u2440*}	R3m, d	ist.
PbSe ^{u2464*}	R3m, d	ist.
PbSe ^{u2482*}	R3m, d	ist.
PbSe	$Fm\overline{3}n$	n
PbTe ^{u2300*}	R3m, d	ist.
PbTe ^{u2400*}	R3m, d	ist.
PbTe ^{u2440*}	R3m, d	ist.
PbTe ^{u2464*}	R3m, d	ist.
PbTe ^{u2482*}	R3m, d	ist.
PbTe	$Fm\overline{3}m$	n

* indicates metastable phases; the label "dist." signifies gradual Peierls distortions

sp³ tetrahedrally bonded solids

 Distorted and ideal rocksalt types (octahedrally coordinated)

Body-centered

) Closed-packed metal structures

Filled symbols: thermodynamically stable phases (T=0)

Open symbols: metastable phases

GeTe, SnTe,PbTe,PbSe : additional structural intermediates along the Peierls distortion coordinate (gray line, as guide for the eye)

Archetypes of ionic, covalent, and metallic bonding lie in distinctly different, physically meaningful regions

Explains departure from perfect covalency with increasing polarity

Central region of the map which lies between the 3 archetypical mechanisms, without belonging to one of them, and is populated by materials as well

van Arkel-Ketelaar triangles

Arkel, A. E. V. Molecules and Crystals in Inorganic Chemistry; Interscience: New York, 1956.

Ketelaar, J. A. A. Chemical Constitution: An Introduction to the Theory of Chemical Bond, 2nd ed.; Elsevier: New York, 1958.

- Missing aspect: a rigorous link between a compound's location in the 2D map and its physical properties (as relevant for applications)
- Such a link would make it possible not only to classify bonding in materials, but to exploit the quantitative bonding information for materials design.

The *Q*-scale plotted against the bond dissociation energy ΔE in a range of diatomics reveals familiar groups of chemical interactions а

b

IYTO

12

3D maps defining design rules for materials with desired properties

The base plane is defined as in the 2D map

Extending this map in the third dimension three response properties are quantified: (b) Born effective charges, Z* (averaged over atoms) (c) optical dielectric constants, ε_{∞} (d) absolute transverse optical (TO) mode Grüneisen parameters, $|\gamma_{TO}|$ for binary compounds

Ionic materials (**Black**), Covalent (**red**) Metavalent (**green**) (structural intermediates as semitransparent bars)

"Metavalent" bonding is characterized by unusually high values of all three indicators (green bars).

H-bonds may have vdW, ionic, covalent contributions with weights depending from D to A distance. However their properties (e.g OH stretching frequency) vary smoothly with R_{DA}

"Metavalent" bonding is not intermediate, in terms of properties, between covalent and metallic bonding

The 3D map suggests a blueprint to tailor the properties of a MVB material.

Bonding in chalcogenides was suggested to be closely interwoven with a lattice instability, leading to large Gruneisen parameters (S. Lee et al. *Nat. Comm.* **5**, 3525, 2014)

Our 3D plot (d) shows that this anomaly is uniquely linked to MVB. More specifically, to the border between MVB and metallic bonding

Search for thermoelectric good candidates

Move on the 2D map to MVB materials that border on metals, at around $\approx 0.8 \text{ e}$ (0.4 e pair) shared

M. Cagnoni, D. Fuhren, M. Wuttig Adv. Mater. 2018, 30, 1801787

My view: No special need to introduce a new bonding type

But recognize that specific *electron-deficient* covalent bonds may lead to a rapid change and anomalously large values for (three) independent response properties.

So the question again is what we mean for bonding...

Iγ_{TO}

12

2.0

And the message is : look at bonding also upon an external stimulus....

MVB reveals itself only when a dynamic picture of bonding and of its properties is probed and exploited.
FULL PAPER

Int J Quantum Chem. 2018;118:e25600. https://doi.org/10.1002/qua.25600

Spatially resolved characterization of electron localization and delocalization in molecules: Extending the Kohn-Resta approach

Andrey A. Astakhov | Vladimir G. Tsirelson 💿

A study on the electron organization of many-electron systems in the context of *linear response theory*

It highlights the *profound connection* between the variances of the local electron position and momentum operators and the optical conductivity tensor, hence between **electron localization/delocalization in position and momentum space and the observed spectroscopic and conductivity properties**.

Our study seem to emphasizes the dramatic role such connections may play in a peculiar case of bonding, namely, MVB

Tsirelson's study shows that electron localization and delocalization phenomena in atoms and molecules can be probed by external electric field.

The approach provides new electronic descriptors distinguishing and quantifying chemical bonds of different types.

More insights in the property changes upon Peierls distortion

Long-standing issue in the structural study of MVB materials

Many of them crystallize in the rocksalt type with ideal O_h coordination of atoms but some, prominently GeTe, show a small distortion, 3 shorter and 3 longer bonds (referred to as a Peierls distortion, PD)

The progressive PD induces a redistribution of electrons between short and long GeTE bonds which become (a) respectively stronger and weaker, but the *average* amount of electrons shared is almost invariant (b)

- (c) Z*, a measurable indicator for the onset of MVB (average; projected along [111] where the effect of distortion is >)
- (d) ECon, quantifies the gradual departure from the 8-N rule
- (e) the energy cost associated with the distortion relative to GeTe (very small overall)

More insights in the property changes upon Peierls distortion

In the amorphous phases of PCMs the PD becomes extremely large and directionally blurred. Anomalous properties are lost, thus creating the electronic and optical property contrast exploited in device applications

Trends in the figures suggest a route toward the design of properties and thereby of "tailored" MVB materials if one achieves control over the PD. This could be done by strain, alloying, creating defects, or nanostructuring (moving along the horizontal axis in the Figure and modifying the ECoN), and this directly allows to tune the properties.

A Quantum-Mechanical Map for Bonding and Properties in Solids

It opens up a conceptually new avenue for materials design: 1) search for desired properties in a 3D space

2) map this back onto the 2D plane of bonding, navigating structural and composition spaces and identifying highly promising target materials.

COMMUNICATION

Adv. Mater. 2018, 30, 1801787

ADVANCED

Thermoelectricity and Chemical Bonding

Thermoelectric Performance of IV–VI Compounds with Octahedral-Like Coordination: A Chemical-Bonding Perspective

Matteo Cagnoni, Daniel Führen, and Matthias Wuttig*

Electronic transport properties in crystalline $GeSe_xTe_{1-x}$ alloys

Moving along the $GeTe_{1-x}Se_x$ pseudo-binary line

FUNCTIONAL MATERIALS

Article

A functional materials map

Brent Grocholski

Chemical bonding is important for understanding and designing new functional materials. In two papers, Wuttig et al. and Raty et al. propose a bonding type they term "metavalent." Metavalent materials lie between covalently and metallically bound ones but are distinctly different from both. Several of the compounds that plot in the metavalent field have unique and important physical properties that make for good thermoelectric, phase-change, and other functional materials. The new bonding category potentially provides a guide for the development of interesting new materials.

Adv. Mater. 10.1002/adma.201803777, 10.1002/adma.201806280 (2018).

From Chemistry World

NEWS

Bonding rethink called for as new metavalent bond proposed

BY PHILIP BALL | 19 DECEMBER 2018

One of the most basic facts that chemistry students learn is the distinct types of chemical bond in solid-state materials: covalent, ionic and metallic, as well as curiosities such as hydrogen bonding. But if a proposal in two recent papers holds up, they will soon need to be taught about another class: the metavalent bond.

Would we have been *reported* if the term *metavalent* had not been used and a new bonding type had not been claimed?

Mathias Schumcher

Pavlo Golub

Volker L. Deringer

Matthias Wuttig

Jean-Yves Raty

RWTH, Physics Dept, Aachen, Germany

 Dept. of Physics of Solids Interfaces and Nanostructures Université de Liège, Belgium

To DNRF for funding through

...and to all of you for your attention and patience...