

Sodium Manganese Oxide (Na₂Mn₃O₇) As A Versatile Battery Insertion Material

Dr. Prabeer Barpanda

Faraday Materials Laboratory Materials Research Center Indian Institute of Science Bangalore- 12, INDIA.

prabeer@iisc.ac.in http//www.prabeer.org

Epicenter (M 38, Indian)

Sulfur Ur. 32.065 238

Uranium 238.02891 14.0067

Energy Generation

Energy Storage

An Ideal Battery is Like an Ideal Spouse

* High Energy Density : Range of Travel (80-200 km/ charge)

- * High Power Density : Fast pick-up and fast charging
- * High Economy : Affordable and easy to manufacture
- * High Safety : Safe operation and storage

Energy Density = Potential (V) x Capacity (Q)

Potassium-ion Batteries

Properties	Li ⁺	Na⁺	K+
Elemental abundance (ppm)	20	23600	20000
Relative atomic mass:	6.94	23.0	39.10
Mass-to-electron ratio	6.94	23.0	39.10
Shannon's ionic radii (Angstrom)	0.76	1.02	1.38
E ⁰ (vs. SHE)/ V	-3.04	-2.71	-2.93
Melting point/ C	180.5	97.7	63.4
Theoretical capacity of ACoO ₂ (mAh g ⁻¹)	274	235	
Molar conductivity in AClO ₄ :PC (S cm ² mol ⁻¹)	6.54	7.16	
Desolvation energy in PC (kJ mol ⁻¹)	218.0	157.3	119.2
Coordination preference	oct/tet	oct/pris.	prismatic
Cost of carbonate (USD/ ton)	23000	200	1000

Battery Electrodes: The Alkali Ions

I. Na₂Mn₃O₇ : A 2.1 V cathode for Na-ion Batteries

* E. Adamczyk et al, V. Pralong, *Materials*, 11, 1021 (2018). * P. Senguttuvan et al. J.M. Tarascon, M.R. Palacin, *Chem. Mater.* 23, 4109 (2013)

2 NaNO₃ + 3 MnCO₃ + O₂ ------ (600 C/ 4h) ----- Na₂Mn₃O₇ + 2 NO₂ + 3 CO₂

* Triclinic (P-1) Layered Structure Material* Non-toxic, Easy to Synthesize, Scalable, Economic

* F.M. Chang, M. Jansen, Z. Anorg. Allg. Chem., 531, 177-182 (1985).
* E. Adamczyk, V. Pralong, Chem. Mater., 29, 4645-4648 (2017).

Na₂Mn₃O₇ as a 2.1 V Sodium Insertion Material

 $Na_4Mn_3O_7 \sim rock salt structure?$

11 85

* E. Adamczyk, V. Pralong, *Chem. Mater.*, 29, 4645-4648 (2017).

II. Na₂Mn₃O₇ : A 4.1 V Anionic Redox Cathode

* B. M. De Boisse et al, A. Yamada, Adv. Energy Mater., 8, 1800409 (2018).

RESEARCH ACCOUNT

Some solid state chemistry with holes: Anion-cation redox competition in solids*

Jean Rouxel

Collège de France, 11 Place Marcelin Berthelot, 75231 Paris Cedex 5, France and Institut des Matériaux de Nantes, UMR 6502, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3, France

Prof. Jean Rouxel (1935-1998, FRA)

1. (extra) Li|Na in MO₆ layers

2. Vacancy in MO₆ layers

* J. Rouxel, *Curr. Sci.*, 73, 31 (1997).

* M. Sathiya et al, J.M. Tarascon, Nat. Mater., 12, 827 (2013).

Galvanostatic Cycling

Na₂Mn₃O₇ ~ Na_{4/7}[□_{1/7}Mn⁴⁺_{6/7}]O₂

Na₂Mn₃O₇ : 2.1 V cationic Redox + 4.1 V anionic redox activity

III. Na₂Mn₃O₇ : A 2.1 V Potassium Insertion Material

15 35

* K. Sada, B. Senthilkumar, P. Barpanda, ACS Appl. Energy Mater., 1, 5410-5416 (2018).

35

* K. Sada, B. Senthilkumar, P. Barpanda, Chem. Commun., 53, 8588-8591 (2017).

Case 2: Na-based compounds for K insertion (Polyanions)

K insertion into Na₂Mn₃O₇ layered oxide

* Na₂Mn₃O₇ : A layered structure triclinic compound
* In Potassium half-cell, it delivers ~2.1 Mn⁴⁺/Mn³⁺ redox activity
* Similar to Na half-cell, it undergoes a biphasic redox activity.

K insertion into Na₂Mn₃O₇ layered oxide

K insertion into Na₂Mn₃O₇ layered oxide

- * $Na_2Mn_3O_7$ undergoes two-phase redox activity
- * $Na_2Mn_3O_7$ | K cell has poor cycling stability similar to $Na_2Mn_3O_7$ | Na cell
- * Structural stability is retained.

IV. Na₂Mn₃O₇ : A 3.1 V Lithium Insertion Material

21 35

* K. Sada, B. Senthilkumar, P. Barpanda, ACS Appl. Energy Mater., 1, 6719-6724 (2018).

Li insertion into Na₂Mn₃O₇ layered oxide

Na₂Mn₃O₇ | Li half cells offer 3.1 V operation with good cycling stability over 200 cycles

Na₂Mn₃O₇ | Li half cells : * undergo triclinic to trigonal structure offer 3.1 V operation * XPS analysis confirms (de)lithiation with steady Na content

Li insertion into Na₂Mn₃O₇ layered oxide

Na₂Mn₃O₇ | Li half cells : * undergo triclinic to trigonal structure offer 3.1 V operation * Involves solid-solution (single-phase) redox mechanism

Na₂Mn₃O₇ work as a 3.1 V lithium-insertion host material

V. Na₂Mn₃O₇ : An 1.4 V Zinc Insertion Material

* K. Sada, B. Senthilkumar, P. Barpanda, Manuscript Submitted.

Mn-based Oxides for Zinc-ion Batteries

charg

400

Mn⁺²

641.3 e

* K. Sada, B. Senthilkumar, P. Barpanda, J. Mater. Chem. A., In Press, 2019. (2019 Early Career Investigators Special Issue)

Cryptomelane $K_{1.33}Mn_8O_{16}$ (K_zMnO_2)

29

- **Step-1** \checkmark 0.2M MnCl₂ + 0.1M Urea (NH₂CONH₂) in distilled H₂O
 - ✓ Calcined for 5 h at 180 $^\circ \rm C$
 - ✓ Resulted MnCO₃ cubes

Step-2 \checkmark 3 MnCO₃ + 2 NaNO₃ $\xrightarrow{600 \text{°C}}$ Na₂Mn₃O₇

Zn insertion into Na₂Mn₃O₇ layered oxide

Na₂Mn₃O₇ work as a ~1.4 V zinc-insertion host material

VI. Na₂Mn₃O₇ : An Aqueous Li Insertion Material

* K. Sada, B. Senthilkumar, P. Barpanda, Manuscript Submitted.

Sonochemical Synthesis: zeolites, oxides, inorganic compounds, ferrites etc.

Designing aqueous batteries with Na₂Mn₃O₇ layered oxide

Na₂Mn₃O₇ work as an efficient insertion host in aqueous batteries

Acknowledgements

- * Prof. Evgeny Antipov
- * Prof. Artem Abakumov
- * Prof. Keith Stevenson

Spaciba | Thank You for Your Kind Attention

