

<image><image><image><complex-block><image>

6

-0.5

10/8/19

and fall within the	range of 5	d isoti 6 to 6	ropic s 51 GPa	shear mod i.	lulus are i	n good ag	reement,
Fable 1. Elastic properties of Al	-doped and Ta-o	doped Ll	ZO. The	elastic constan	ts and moduli a	re expressed in	GPa.
	Cli	C12	Al-doped		Б	9	V
DFT (0K)	187.0	75.1	71.0	112.4	162.6	64.6	0.26
DFT extrapolated (298 K)					154.5	61.4	
Impulse excitation (298 K)				100.2 ± 0.6	146.1 ± 0.8	58.1 ± 0.3	
Dynamic nanoindentation (298 K)					150.3 ± 2.2	59.8 ± 0.9	
RUS (298 K) Ref. 21				102.8 ± 0.3	149.8 ± 0.4	59.6 ± 0.1	0.257±0.002
			Ta-doped	LLZO			
DFT (0K)	169.8	63.9	69.8	99.2	154.9	62.5	0.24
DFT extrapolated (298 K)					147.2	59.4	
Impulse excitation (298 K)				96.0 ± 1.4	139.9 ± 2.1	55.7 ± 0.8	

lithium odels o	n. If Li.)			
odels o	f Li.)			
Pa. Values Kelvin val	s marked lues by 1	l with a 5%.	n aster	isk ar
		0.00		
Li has ai	nisotro	opic e	elasti	С
propert	ies			
E[100] E[110]) E[111]	G[100]	G[110]	G[11:
	Zero I	Kelvin		
3.6 10.3	26.6	11.3	2.2	1.8
	208 1	Kolvin		
	250 1	Cervini		
3.1 8.8	22.6	9.6	1.9	1.5
4.0*				
	Kelvin va Li has al propert [100] E[110 3.6 10.3 3.1 8.8 4.0*	Li has anisotro properties ::::::::::::::::::::::::::::::::::::	Kelvin values by 15%. Li has anisotropic eproperties [100] E[110] E[111] G[100] Zero Kelvin 3.6 10.3 26.6 11.3 298 Kelvin 3.1 8.8 22.6 9.6 4.0*	Li has anisotropic elastic properties [100] E[110] E[111] G[100] G[110] Zero Kelvin 3.6 10.3 26.6 11.3 2.2 298 Kelvin 3.1 8.8 22.6 9.6 1.9 4.0*

that Li grew through grain boundaries and interconnected pores in short-circuited LIZO [11]. Though previous work certainly points to the formation Li meal propagation through LIZO, we believe that through the combination of precise microstructural control, striking SEM imagery, and the spatial resolution offered using Auger spectroscopy. Ibia article is the first to confirm that LI

[21] R. Nykvitsi, M. vitiksani, Kalputy Jaaing Costs or naturety packs for electric vehicles, Nature Climate Change 9 (2015) 229–230-coganic frameworks for green energy applications, Cryotificationn of Notion 1003 [In-22, 104] K.J. Harry, D.T. Hallman, D.Y. Parkinson, A.A. MacDowell, N.P. Balara, Detection of hereron energy applications, Cryotification 107 (2015) [In-22, 104] K.J. Harry, D.T. Hallman, D.Y. Parkinson, A.A. MacDowell, N.P. Balara, Detection of hererone Natures motivative 13 (2014) [In-23].

Conclusion: Low-Resistance Interfaces

DOI: 10.1021/acs.chemmater.7b03002

M

Validation of Interatomic Potential

The interatomic potential of Jalem gives reasonably good agreement with experimental and DFT-calculated elastic properties

 $Table 1.\ Calculated\ elastic\ constants, C_{ij}, and\ moduli\ (GPa)\ for\ cubic\ LLZO\ as\ a\ function\ of\ dopant\ and\ calculation\ method.\ The\ percent\ difference\ between\ DFT-\ and\ MD-predicted\ values\ for\ pure\ LLZO\ are\ given\ in\ parentheses.$

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	System	Method	C11	C12	C44	в	G	E
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Al-doped LLZO	DFT (0 K) ^a	187	75	71	112	65	163
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Al-doped LLZO	DFT (298 K) ^a					61	155
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Al-doped LLZO	Experiment (298K) ^{a, b}				100.2, 102.8	58.1, 59.8, 59.6	146.1, 150.3, 149.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ta-doped LLZO DFT (298 K) ^a 59 147 Ta-doped LLZO Experiment (298K) ^a 96.0 55.7, 61.2 139.9, 153.8 Pure LLZO DFT (0 K) ^c 186 78 73 114 65 163 Pure LLZO DFT (0 K) ^c 186 78 73 114 65 163 Pure LLZO MD (0 K) ^c , Adams ^d 190 115 29 140 32 90 Pure LLZO MD (0 K) ^c , Adams ^d 211 95 76 134 68 175 Pure LLZO MD (0 K) ^c , Slenk [*] 211 95 76 134 68 175 Pure LLZO MD (0 K) ^c , Jalem ^c 184 79 60 114 57 146 (1%) (1%) (1%) (18%) (0%) (-10%) (-10%) f(9), b: ref[31], c: present study, d: ref[28], e: ref[29], F: ref[30] 58 59 147	Ta-doped LLZO	DFT (0 K) ^a	170	64	70	99	63	155
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ta-doped LLZO	DFT (298 K) ^a					59	147
Pure LLZO DFT (0 K) ^c 186 78 73 114 65 163 Pure LLZO MD (0 K) ^c , Adams ^d 190 115 29 140 32 90 Pure LLZO MD (0 K) ^c , Adams ^d (2%) (47%) (-60%) (23%) (-51%) (-45%) Pure LLZO MD (0 K) ^c , Klenk ^e 211 95 76 134 68 175 (13%) (22%) (4%) (18%) (5%) (7%) (7%) Pure LLZO MD (0 K) ^c , Jalem ^t 184 79 60 114 57 146 (-1%) (1%) (-18%) (0%) (-12%) (-10%) (-10%)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ta-doped LLZO	Experiment (298K)ª				96.0	55.7, 61.2	139.9, 153.8
Pure LLZO MD (0 K) ^c , Adams ^d 190 (2 %) 115 (47 %) 29 (-60 %) 140 (2 3 %) 32 (-51 %) 90 (-45 %) Pure LLZO MD (0 K) ^c , Klenk ^e 211 (13 %) 95 (2 2 %) 76 (4 %) 134 (18 %) 68 175 (7 %) Pure LLZO MD (0 K) ^c , Jalam ^f 184 (1 %) 79 (1 %) 60 114 (5 %) 57 (-12 %) 146 (-10 %) Pure LLZO MD (0 K) ^c , Jalam ^f 184 (-1 %) 79 (0 %) 60% (-12 %) (-10 %) FIO1 brack ^f LL = present study draf [28] eraf ^f [20] (raf [30]) (raf [30]) (raf [30]) (raf [30]) (raf [30])	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pure LLZO	DFT (0 K) ^c	186	78	73	114	65	163
Pure LLZO MD (0 K) ^c , Klenk ^e 211 95 76 134 68 175 Pure LLZO MD (0 K) ^c , Jalem ^f (13%) (22%) (4%) (18%) (5%) (7%) Pure LLZO MD (0 K) ^c , Jalem ^f 184 79 60 114 57 146 (-1%) (1%) (-18%) (0%) (-12%) (-10%)	Pure LLZO MD $(0 \text{ K})^c$, Klenk ^e 211 95 76 134 68 175 Pure LLZO MD $(0 \text{ K})^c$, Klenk ^e (13%) (22%) (4%) (18%) (5%) (7%) Pure LLZO MD $(0 \text{ K})^c$, Jalem ⁴ 184 79 60 114 57 146 (1%) (1%) (-18%) (0%) (-12%) (-10%) f [9], b: ref [31], c: present study, d: ref [28], e: ref [29], f: ref [30] (-10%) (-10%) (-10%)	Pure LLZO	MD (0 K) ^c , Adams ^d	190 (2%)	115 (47%)	29 (-60 %)	140 (23 %)	32 (-51 %)	90 (-45 %)
Pure LLZO MD (0 K) ^c , Jalem ⁴ 184 79 60 114 57 146 (-1.9) (-1.9) (-1.9) (-1.8%) (0%) (-1.2%) (-10%)	Pure LLZO MD (0 K) ^c , Jalem ^f 184 79 60 114 57 146 [9], b: ref[31], c: present study, d: ref[28], e: ref[29], f: ref [30] (1%) (-18%) (0%) (-12%) (-10%)	Pure LLZO	MD (0 K) ^c , Klenk ^e	211 (13 %)	95 (22 %)	76 (4%)	134 (18%)	68 (5%)	175 (7%)
f[9] h: raf[31] c: present study d: raf[28] e: raf[29] f: raf[30]	f [9], b: ref[31], c: present study, d: ref [28], e: ref [29], f: ref [30]	Pure LLZO	MD (0 K) ^c , Jalem ^f	184 (-1 %)	79 (1%)	60 (-18 %)	114 (0%)	57 (-12 %)	146 (-10 %)
[2], b. rel[5], e. present study, u. rel [25], e. rel [25]		f [9], b: ref[31], c: prese	ent study, d: ref [28], e: ref [29], f: ref [30]					

M	GBs in l	L LZO a	ire So	fter tl	han th	ne Bu	lk
	GB elastic const	ants are	e up to	~50% sn	naller tł	nan bul	lk values
	Elastic	Σ	C5 Tilt G	В	Σ	5 Twist (GB
	constant	Bulk	GB	Δ(%)	Bulk	GB	Δ(%)
	C_{33} , uniaxial	157	115	-27	150	95	-36
	C_{44} , shear	39	21	-46	50	34	-32
• .	Accounting for the violate the Monroe G _{LI-bulk} [100] G _{LLZO} (GB)	anisotrop e/Newman = 10 Gpa = 21 Gpa	by of Li m n criteric (stiffest di (softest G	ietal, G _{Li} [1 in at GBs: rection) B)	100] is ne	arly larg	e enough
•	Note: interfacial po sites for dendrite in	prosity (G nitiation	~ 0 GPa)	or micro	cracks co	uld also	serve as
•	Next steps: quantif	fy the effe	cts of do	pants an	d 2 nd pha	ses (Li ₂ C	CO ₃) at GB
	Yu and Siegel, Grain Boundar	y Softening: A Pote ACS Applied M	ential Mechanisi aterials & Interf	n for Lithium Meta aces, 10 , 38151–3	al Penetration Th 8158 (2018)	rough Stiff Solic	l Electrolytes

