Skoltech

Skolkovo Institute of Science and Technology

Center of Energy Science and Technology

CEST

Center of Energy Science and Technology

Artem Abakumov Director, professor *h-index 44*

Research interests: materials for energy conversion and storage, scalable synthesis technologies, electron microscopy, crystallography, inorganic solis state chemistry.

Keith Stevenson, professor, h-index 60

- Materials Science and inorganic Chemistry
- Electrocatalysis, flow batteries

Evgeny Antipov, professor, *h-index* 42

- Materials Science and inorganic Chemistry
- Electrochemistry

Sergey Levchenko, professor, h-index 24

Computational Materials Science

Stanislav Fedotov, assistant professor, *h-index* 13

- Materials Science and inorganic Chemistry
- Metal ion batteries

Victoria Nikitina, assistant professor, h-index 14

- Electrochemistry
- Materials Science and inorganic Chemistry

Dmitry Aksenov, assistant professor, *h-index* 11

- Computational Materials Science
- Computational methods for predicting the properties of materials

Alexey Buchachenko, professor, h-index 25

- Computational Materials Science
- Electronic structure of materials

Electrochemical Energy Storage

Center for Energy Science and Technology

Aim: creation of technological basis for the development of next generation materials for electrochemical energy storage and conversion solutions

Aim: creation of technological bases of production and commercialization of development results

Startup company "Rustor" Ltd*

The main areas of work are cathode materials based on phosphates with the structure of olivine (LiFePO₄, LiFe_{1-x}Mn_xPO₄, also known as LFP and LFMP) and layered oxides (LiNi_{1-x-y}Mn_xCo_yO₂, also known as NMC).

Startup company "K-plus" Ltd*

The goal of the project is a commercialization of promising electrochemical systems based on K-ion batteries. Develop technologies for cathode materials based on $K_x M[B(CN)_6]$ (where M, B are Fe, Co, Cr, Mn) cyanide transition metal complexes, and high-capacity carbon-based anode materials.

Cathodes for lithium ion batteries Metal-ion batteries (potassium and sodium ion)

Electrochemical energy conversion systems

Redox flow battery

*Resident of SKOLKOVO

Electrochemical energy storage

Current Lab Space State

Center for Energy Science and Technology

Glove box line I

Glove box line II

Cell assembling/ Structure characterization

Cell assembling

Electrochemistry Analytical lab

Installed equipment for synthesis, including:

- 100ml, 600ml Hydrothermal reactors Parr
- Automated wet chemistry reactor Syrris •
- Microwave hydrothermal reactor •
- High energy ball mill SPEX, planetary ball mill Retzsch •
- Chamber, tubular and rotary furnaces Nabertherm •

Installed analytical equipment, including:

- High resolution Guinier diffractometer Huber
- X-ray powder diffractometer Bruker •
- TG-DSC with QMS Netzsch
- Atomic force microscope Cypher •
- HPLC Shimadzu •
- Particle size analyzer Fritsch •
- Potentiostats Autolab/Bio-Logic/Elins •

Installed Device Fabrication Equipment

- Two glove box lines MBraun
- Battery assembling equipment (pouch and coin cells) •
- Battery testing stand Neware •

Automatic Prototyping line10 MWh/year

Oxide cathode materials

Center for Energy Science and Technology

Material	Capacity, mAh/g, 0.1C	Voltage range, B	Storage capacity, 100 cycles	Bulk density, g/cm3	Availability
NMC 111	160	2.7-4.3	99%	1.9	in production, RUSTOR(up to 2000 kg/year)
NMC 622	180	2.7-4.3	>95%	2.4	in production, RUSTOR(up to 2000 kg/year)
NMC 811	>210	2.7-4.3	>90%	2.1	in production, Skoltech (up 100 kg/year)
Monocrystalline NMC622	160	2.7-4.3	98%	>3.0	in production, Skoltech (10 kg/year)
Monocrystalline NMC811	180	2.7-4.3	95%	>3.0	in production, Skoltech (10 kg/year)
Monocrystalline NMC952525	215	2.7-4.3	95%	2.3	in production, Skoltech (1 - 2 kg/year)
Li-rich NMC	260	2.2-4.8	99%	1.7	in production, RUSTOR(up 1000 kg/year)

Technological stages of the NMC project implementation

Center for Energy Science and Technology

Skoltech

Semi-automatic Cell Prototyping Line

Center for Energy Science and Technology

Battery Cell Prototyping Line:

- capacity: 50 kWh per year
- form factor: prismatic cells in a soft housing ranging in size from 50 mm x 50 mm to 100 mm x 100 mm

Prototypes of lithium-ion battery cells

Center for Energy Science and Technology

Characteristics of battery cell prototypes:

- Capacity: 3-5 Ah and 12-15 Ah.
- number of electrode pairs: up to 21
- Specific energy: 200 Wh/kg and above
- proprietary cathode materials NMC111, NMC622, NMC811, NMC952525

New Generation of Batteries

Center for Energy Science and Technology

Aim: creation of alternative systems for energy storage with significant cost advantages compare to existing Li-ion solutions.

Na-ion

Cheap solution of ultra high power system based on $Na_3V_2(PO_4)_3$ or $Na_3V_2(PO_4)_2F_{3-x}O_x$ and carbon-based anode materials. Technology can be easily deployed on existing production capacity of Li-ion industry.

• K-ion

Extra cheap solution based on $K_x M[B(CN)_6]$ (where M, B are Fe, Co, Cr, Mn) cyanide transition metal complexes as a cathode, and high-capacity carbon-based anode materials for potential stationary battery application.

		Na-ion	K-ion
Cathode material	LCO, LFP, NMC	Na ₃ V ₂ (PO ₄) ₃	K ₂ Mn[Fe(CN) ₆]
Capacity, mAh/g	140 - 170	~110	Up to 130
Average voltage (V)	3.5 – 3.9	3.3-3,9	3.9 – 4.0
Average energy density (Wh/kg)	490 – 660	350-430	480
Current collector	Cu	AI	AI
Cathode materials	Expensive (Li, Co, synthesis and processing)	Cheap	Extra cheap (low cost raw materials, easy synthesis)
Competitive advantages vs Li-Ion		~10% cheaper, due to the cheaper cathode materials, higher voltage	~20-40% cheaper, due to the cheaper cathode, anode and current collector materials
Competitors	Panasonic, SDI, LGChem, etc	HiNa battery, Faradion, Tiamt	Sharp Corp

Na-ion batteries

Center for Energy Science and Technology

Cathode materials Sodium Vanadates

Anode materials Hard carbon (HC)

Full cell prismatic in a soft case

- Synthesis development and upscaling

-Synthesis development and upscaling

- Assembling cell prototypes

Developed materials: $Na_3V_2(PO_4)_3$: capacity 115 mAh/g, 99% retention of capacity after 100 cycles, fast cycling $Na_3V_2(PO_4)_2O_2F$: capacity 110 mAh/g, 90% retention of capacity after 100 cycles

<u>On development stage :</u> NaVPO₄F, working potential 4 V, capacity up to 130 mAh/g NaVP₂O₇, working potential 3,8 V, capacity up to 108 mAh/g Hard carbon: capacity >250 mAh/g

Stable prototypes of 150-450 mAh cells are assembled

Know-how in upscaling of electrode materials production technologies **Know-how** in anode pretreatment technologies

Know-how in the preparation of electrode mixtures, electrode deposition and cell assembly

Na-ion batteries

Center for Energy Science and Technology

Russian T-90 1:18, factory power supply: Li-ion, 7.4V, 1.8Ah

K-ion batteries

Center for Energy Science and Technology

Cathode materials $K_2Mn[Fe(CN)_6]$ (KMF) $K_2Fe[Fe(CN)_6]$ (KFF)

Anode materials Hard carbon (HC)

-Synthesis development and upscaling - Synthesis development and upscaling

KMF: capacity 120 mAh/g, 90% retention of capacity after 100 cycles, fast cycling *KFF*: capacity 110 mAh/g, 90% retention of capacity after 100 cycles

Hard carbon: capacity >250 mAh/g

Full cell prismatic in a soft case

- Assembling cell prototypes.

In order to demonstrate the efficiency of the system, a prototype of a two-pair cell with a capacity of 30 mAh was assembled

Electrochemical energy conversion systems

Center for Energy Science and Technology

Electrocatalysts for alkaline electrolyzers

- Catalysts based on transition metal oxides
- Stability in alkaline solutions
- Low oxygen release overvoltage
- Perovskites, layered nickel-iron oxyhydroxides

Photo electrocatalysts for hydrogen production

- Photo electrocatalysts based on semiconductors - transition metal oxides
- Electrolysis under the influence of visible light
- Electrodeposition of catalysts with control of film morphology

Supercapacitors based on transition metal oxides

- Synthesis of materials with a high specific surface area and pseudo-intensive contribution
- Porosity and morphology control
- Stability in aqueous solutions
- Oxides of manganese, titanium, tungsten

Tit<mark>an</mark> Themis Z

Advanced Imaging Core Facility

Helios G4 PFIB UXe

Skoltech

Skolkovo Institute of Science and Technology
Quattro S ESEM

