

Skolkovo Institute of Science and Technology

1st International Conference of Young Scientists "TOPICAL PROBLEMS OF MODERN ELECTROCHEMISTRY AND ELECTROCHEMICAL MATERIALS SCIENCE"

September 18th, 2017

"Solid State batteries are coming back on the scene: is it for good?

J.M. Tarascon

Contents

Introduction

- Why all solid state batteries (ASSB) are back ?
- Recall on ionic conductors: basic principles and their use

All solid state lithium batteries

- Their evolution and the challenges
- Family of materials considered (oxides vs sulfides)

Assembling of all solid state batteries

- Solving the interfaces problems
 - Cell configuration/performances

Conclusions

What to expect ?

Nov 22, 2010 19:06

Why such a regain interest in solid state Li-based batteries ?

Battery research is mainly driven by business

Toyota Announces 4-layer All-solid-state Battery

progress on a new kind of battery technology, which uses a solid (fthe conventional semi-liquid version used in today's lithium-ion

Toyota is a company that is operating its business with a focus on vehicle production and sales. Toyota completed its A1 prototype passenger car and G1

Toyota's new solid-state battery could make its way to cars by 2020

2017

All solid state Li-based batteries: Toyota's view of the future ?

From MRS bulletin, Dec 2014: Solid State Batteries enter EV fray

Toyota roadmap suggests all solid state batteries are an important step in the evolution of batteries for electric vehicles , but are not the ultimate solution

Advantages of all-solid state batteries

Liquid electrolytes

Safety concerns

Voltage limited

Solid state electrolyte: a nearly two centuries story

1834

'I formerly described a substance, sulfuret of silver, whose conducting power was increased by heat; and I have since then met with another as strongly affected in the same way: this is fluoride of lead. When a piece of that substance, which had been fused and cooled, was introduced into the circuit of a voltaic battery, it stopped the current. Being heated, it acquired conducting powers before it was visibly red hot in daylight; and even sparks could be taken against it whilst still solid'.

Michael Faraday

Ionic conduction: Observations/remarks

Ionic conduction: Difference between Liquid and Solid

How to improve ionic conductivity in solids?

Solid electrolytes: Numerous ions and numerous materials

Cationic

- Ag⁺ based ionic conductors
 - Agl & RbAg₄I₅
- Na⁺ based ionic conductors
 - Sodium β -Alumina (i.e. NaAl₁₁O₁₇, Na₂Al₁₆O₂₅)
 - NASICON (Na₃Zr₂PSi₂O₁₂)
- Li⁺ based ionic conductors
 - $Li_{10}GePS_{12}$, $Li_{3x}La_{2/3-x}\Box_{1/3-2x}TiO_3$, Li_6PS_5X

Some fundamentals remarks on lonic conductivity

Ionic conductors: ionic species are (H⁺, Li⁺, Na⁺ O⁻⁻, F⁻)

Defects Substitution → Addition of cations/anions creates defects Zr_{1-x}Ca_x□ x O_{2-x}

SIntrinsic disorder Défau

→ Disorder created by phase transitions (β/α Agl) or Na β -Alumina, or by amorphisation (e.g, glasses)

Space charges

→ Modification of charges at the interfaces to balance opposite charge planes: formation of a depletion zone which improves conduction

Types of defects in some inorganic systems

Crystal	Crystal structure	Types of defects
Alkali halides (NaCl, LiF, KCl)	Rock salt (NaCl)	Schottky
Alkaline Earth Oxides (MgO)	Rock salt	Schottky ~
AgCl, AgBr	Rock salt	Frenkel (cation)
BeO	Wurtzite (Hexag)	Schottky
Alkaline earth fluorides CeO ₂ , ThO ₂	CaF ₂	Frenkel (anion)

Some examples

Schottky (1886-1976)

lons with opposite charges leave the lattice, so as to maintain electroneutrality

One atom leaves the lattice, thus creating a vacancy and occupying an interstitial site

Frenkel

Some fundamentals remarks on lonic conductivity

Fundamentals on ionic conduction in solids: extrinsic defects

Ionic conducting membranes: A large scope of applications

Li-based batteries ionic conduction/transport

Lithium-ion batteries: Importance of ion transport

Liquid electrolytes: Transport of solvated species

From liquid to plastic and finally inorganic electrolytes

All solid state batteries

All-solid-state batteries: a long story that resurfaces???

Concept and design of All solid state batteries

-) Specifications of the solid electrolyte

- High ionic conductivity (at least 10⁻³S/cm à RT)
- Negligible electronic conductivity to prevent short-circuits
- Compatibility interfaces electrodes (avoid delamination)
- Chemical and electrochemical stability to avoid redox reactions
- Mechanically stable, low dilatation with temperature
- High defect concentration

Materials discovery: Solid state electrolytes

Ionic Conducting Ceramics Based on Li⁺ - perovskite Type

Ionic Conducting Ceramics Based on Li⁺ - Garnet Structure

Garnets: $Li_5La_3M_2O_{12}$ (M = Nb, Ta, Sb)

- La and M in 8- and 6- fold coordinated sites Li in highly distorted octahedral sites: Li(I)O₆ MO₆ octahedra surrounded by 6 Li and 2 Li vacancies
- Li(II)O₆ ► Substitute with alkaline earth: Li₅La₃ A M₂O₁₂ (A = Mg, Ca, Sr, Ba) Reaches conductivity of 4 x 10⁻⁵ S/cm
 - New composition: Li₇La₃Zr₂O₁₂ (LLZO) Higher Li concentration, larger lattice constant (cubic) Reach conductivity of 3 x 10⁻⁴ S/cm
 - Various substitutions (Ta, Al, Ga) have enabled Systems to reach 1 x 10⁻³ S/cm

Stable, safe and low cost

Another family of ionic Conductors: NASICON Structure

 $Na_{1+x}Zr_2P_{3-x}Si_xO_{12} (0 \le x \le 3)$

• Na⁺ occupy trigonal prismatic or octahedral sites, 1/4 of the Na⁺ are empty

AM'(XO_4)₃ In this structure, 3 (Si,P) O₄ tetrahedra are connected to 2 ZrO₆ octahedra in a "lantern" group

Very good ionic conductor with little electronic conduction because of delocalization; octahedra are isolated by tetrahedra of XO₄

$$x=2 \rightarrow Na_3 Zr_2 PSi_2O_{12}$$

$$E_A ≈ 0.3 eV$$

σ = 1.2 x 10⁻⁴ Scm⁻¹

Ionic Conducting Ceramics based on Li⁺ - NASICON Structure

Li⁺ conductors derived from the NASICON structure: NaA₂(PO₄)₃

AO₆ octahedra and PO₄ tetrahedra form 3D interconnected channels with two types of interstitial spaces for Li⁺

Starting with $LiGe_2(PO_4)_3$, substitute trivalent (Al, Cr, Ga,) and increase Li content. $Li_{1.3}Ti_{1.3}Al_{0.3}(PO_4)_3$ (LATP) has $\sigma = 3x10^{-3}$ S/cm (Ohara glass)

Li-based ionic conducting ceramics among sulfides

Li₁₀GeP₂S₁₂ - A higher conductivity than liquid systems

Framework: $(Ge_{0.5}P_{0.5})S_4$ tetrahedra and LiS₆ oct. share common edge and form 1-D chain along *c*-axis; 1-D chains connected through PS₄ tetrahedra

- 1-D lithium conduction along *c-axis*
- Li⁺ in LiS₄ tetraedral sites give conduction;
- Site occupancy is 0.7 and 0.65
- $Li_{10}GeP_2S_{12}$: 1 x 10⁻² S cm⁻¹ at room temp.

PS₄

Conductivity

Many chemical substitutions on Li₁₀GeP₂S₁₂

LGPS family of solid electrolytes have high ionic conductivity comparable to traditional liquid organic electrolytes

Kanno et al., Nature Energy 1 (2016): 16030

Z. Liu, J. Am. Chem. Soc. 2013

S. Sedlmaier, et al. Chem Mater (2017)

Others interesting phases among the Li₂S-P₂S₅ system

Crystal structure of superionic triclinic $Li_7P_3S_{11}$, consisting of PS_4^{3-} tetrahedra (blue) and $P_2S_7^{4-}$ ditetrahedra (green) aligned along the *b*-axis.

Tatsumisago et al. EES 2014

M. Busche, L.Nazar J. Janek et al. Chem. Mater. 2016

Rationalization of the good ionic conduction in sulfides: Design principles

→ Ionic diffusion relies in the migration of a cation between stable sites through a higher energy environnment

 \rightarrow Topology of these sites in good ionic conductors.

Design principles of sulfur-based solid state electrolytes

Design principles of sulfur-based solid state electrolytes: continuation

>Activation barrier for Li-ion migration versus lattice volume

bcc-like S anion frameworks are superior for Li-ion diffusion with lower activation barrier than other close packed frameworks.

Design principles of sulfur-based solid state electrolytes: continuation

Screening of structures containing Li and S to a bcc anionic framework

Generalization

- \rightarrow LiOCI and LiOBr have the anti-perovskite structure with bcc packed anions (E_a = 0.17 eV)
- \rightarrow Ag⁺ and Cu⁺ ionic conductors (α -Agl) have bcc anion sublattices
- \rightarrow Argyrodite-type Li₇PS₆ or Na₃PS₄ (σ = 1 mS cm⁻¹) do not match bcc lattices
- \rightarrow Na+, Mg²⁺, O

The ionic conductors and their chemica/electrochemical stability towards Li

The interfaces

Fabrication and performance of Solid state batteries

Li_{9.54}Si_{1.74}P_{1.44}S_{11.7}Cl_{0.3} is the best ionic conductor but not stable to low potential

Kanno et al., Nature Energy 1 (2016): 16030

The interface problem with metallic lithium

→Most solid electrolyte materials are not thermodynamically stable vs. Li

→Their stability if any results from sluggish kinetics of decomposition reactions at Interfaces

→ The passivation of the interface is at the origin of the electrolyte stability

LiCoO₂/LiNbO₃/Li₁₀GeP₂S₁₂

Interface engineering is ESSENTIAL for enhancing electrolyte stability

Y. Zhu et al. ACS Appl. Mater. Interf (2015)

Fighting the Li / solid state electrolyte interface

Transition from Super-lithiophobicity to Super-lithiophilicity leads to a much smaller interfacial resistance

F. Lauo , J. Am. Chem. Soc. 2016, 138, 12258-12262

Assembling all solid state batteries

Thin film and bulk all Solid State batteries:

State of the art All Solid State Batteries: performances

State of the art All Solid State Batteries: performances

Encouraging results: Although technological issues still need to be addressed ASBBs stand as promising candidates for energy storage devices

Kanno et al., Nature Energy 1 (2016): 16030

New approach for assembly of all solid-state batteries

Spark Plasma (SPS) synthesis

Aboulaich A, Bouchet R, Tarascon J-M, Viallet V, Dollé M. "Advanced Energy Materials, 1, 179-183, 2011

Fabrication of an ASSB: From Li to Na

Assembly by Spark Plasma Sintering (SPS)

A new strategy for all solid state batteries

M.H. Braga, Energy & environment science, 2016, DOI: 10.1039/c6ee02888h

Use of Li-ionic conducting membranes as messenger to fabricate aqueous rechargeable Zn-Cu battery

Theoretically 68.3 Wh/kg could be expected: Practically 34 Wh/kg could be feasible

X. Dong, Scientific Reports DOI: 10.1038/srep06916

Use of Li-ionic conducting membranes as messenger to fabricate a queous rechargeable Zn-Cu battery

An ion-block type separator membrane made of PVDF/PMMA-LiClO4/PVDF

Anode: $Zn \rightarrow Zn^{2+}(aq) + 2e^{-} (-0.7618 \text{ V})$

Cathode: $Cu^{2+}(aq) + 2e^- \rightarrow Cu \quad (+0.340 \text{ V})$

$$\operatorname{Zn} + \operatorname{Cu}^{2+}(\operatorname{aq}) \rightarrow \operatorname{Zn}^{2+}(\operatorname{aq}) + \operatorname{Cu} \quad (+1.1018 \text{ V})$$

Concentration changes of Cu²⁺ and Li⁺ in cathode during a typical charge-discharge at 6mA/cm²

Crossover of Cu2+ upon cycling °

The solid electrolytes for Li-ion: Conclusions

State of the art of « All Solid State Batteries »: The Ragone plot

Acknowledgments

http://www.college-de-france.fr/site/en-college/index.htm