

VHASSELT

Chemical solution based methods for nanoparticle and core-shell synthesis Inorganic and Physical Chemistry An Hardy, Thomas Vranken, Fulya Ulu, Dries Desloovere, Maarten Verheijen, Bjorn Joos, Marlies K. Van Bael

The IMO-IPC lab Hasselt University and IMO-IMOMEC

The IMO-IPC lab Inorganic & Physical Chemistry

Examples of LIB electrode materials

LiFePO₄, LiMnPO₄, LiFe_{0.3}Mn_{0.7}PO₄

- Aqueous solution-gel (+ ball milling), precipitation and thermal decomposition synthesis methods
- LiMn₂O₄
 - Solution-gel synthesis

• TiO₂ coated LiNi_{0.5}Mn_{1.5}O₄

- Heterogeneous nucleation on LNMO
- (Doped) Li₄Ti₅O₁₂
 - Combustion synthesis
- LiNi_{0.5}Mn_{0.3-y}X_yCo_{0.2}O₂
 - Aqueous solution-gel synthesis

IMO-IMOMEC

່ເກາຍເ

And of course Solid inorganic electrolytes

Goal of the lecture

To provide a catalog of sol(ution) based synthesis methods

To illustrate some of the basic chemistry behind

By showing a few examples for battery materials

To see the common points and the differences

To question what further research is needed still

Synthesis

Metaloxides / polyanion compounds

KNOWLEDGE IN ACTION

Synthesis

Synthesis

Top down approach

Simple High yield High throughput Low control over size, shape and surface 'dry' powder needs to be dispersed 'dry' powder safety issues

Synthesis

Solid state

Pyrolysis of vaporized liquid or gas

 Formation More complex High control over size, shape, surface SOLU lower yield and throughout dispersion often included One might need to change solvent or surface depending on application Bottom up approach

300 200

Chemical solution based synthesis

(Aqueous) sol(ution)-gel

Solution with complexated metal ions
Thermal treatment: decomposition of complexing agents and crystallization

Thermal decomposition

- •Precursor decomposes in high boiling apolar solvent
- •In presence of surfactants

Hydro/solvothermal

Hydrolysis and condensationElevated *T* and *p*

Controlled precipitation

 •Precipitation induced by e.g. change of pH •Low T

Micelle nanoreactors

•Micelles of surfactants or blockcopolymers •Loaded with precursors

Combustion

- •Dried solution of high energetic starting products + complexing agents
- Autocombustion at low T

Wet chemical synthesis

(Aqueous) sol(ution)-gel routes

KNOWLEDGE IN ACTION

What is sol-gel ?

Classic alkoxide sol-gel: Chemical reactions

The Three Primary Reactions in Silica Gel Formation via the Alkoxide Technique

Other metal ions?	
- More electropositive (stronger	
lewis acid) than Si => more	
🔺 susceptible to nucleophilic attack 🔽 😽	
- TM has preferred CN higher than Once silon	ol
valence groups for	m,
Condensation => Less degrees of freedom for condense	
long range arrangement of through tw	0
polyhedra => often reactions to	o form
Alcohol semi/microcrystalline materials connective	
Condensation silicon-oxy silicon brid	/gen-

Sol:

stable suspension of colloidal particles in a liquid

Gel:

porous 3D continuous solid network surrounding and supporting a continuous liquid phase; often formed by covalent bonds between sol particles. In case hydrogen bonds or VdW forces: gel formation is reversible

http://www.aerogei.org/?p=r6
 http://www.uk-finishing.org.uk/N-COAT70/sol_gel.htm
 <u>https://doi.org/10.1016/j.jascer.2013.04.002</u>

What is sol-gel ? Thermodynamics & kinetics

For example: first step = hydrolysis TEOS $Q_0^j + H_2 O \rightleftharpoons_{\kappa_n} Q_0^{j+1} + EtOH$

 $H \to 0^{\delta^{-}} + M^{\delta^{+}} \to 0^{\delta^{-}} - R \iff H \to -M^{-} 0^{\delta^{-}} - R$ $H \to H \to -M^{-} 0^{\delta^{-}} + H \to H \to -M^{+} R \to H^{0} + R \to H^{0}$

Almost no influence of pH (acid addition)

ເກາຍc

basic conditions .⊆ Hydrolysis more favoured

Kinetics control & complexation

- Silica: needs catalysis of hydrolysis (and condensation)
 - Other metal oxides: Very high reactivity
 - precipitate immediately upon addition of water
 - reactivity must be reduced e.g. by complexation with carboxylates
 - → terminology: hybrid sol-gel

Ligands also enhance gel formation / prevent precipitation

Ligands affect microstructure and texture of the gels

IMO-IMOMEC

►► UHASSELT

J. Sefcik, Catalysis Today 35 (1997) 205-223

What can be done with sol-gel?

Possibilities of further evolvement

VHASSELT

Michel Prassas google + sol-gel science and technology community

What is strictly not sol-gel? Related routes

unec

UHASSELT

R.W. Schwartz, https://doi.org/10.1016/j.crci.2004.01.007

Focus: Aqueous citrate based solution and gel chemistry

Focus: Water based solution-gel chemistry

Focus: Water based solution-gel chemistry

Aqueous Solution-Based Synthesis of Nanostructured Metal Oxides, H. Van den Rul, M.K. Van Bael et al Chapter in Handbook of Nanoceramics and Their Based Nanodevices, Ed. T-Y Tseng and H. S. Nalwa (2009)

Advantages and disadvantages of sol(ution)-gel

Advantages

- Molecular scale mixing
- High homogeneity
- Relatively low T (200-600°C and up), short time
- High crystallinity
- Nanopowders possible
- Versatility in metal ion composition
- Wide range of routes available from literature
 - Mainly oxides (phosphates) Aqueous routes
 - Limited risks (environment and safety)
 - Inexpensive solvent (water) and starting
 products
- Synthesis and storage in ambient conditions

Challenges

- Alkoxides can be expensive
- Large volume changes during gelation and drying / calcination
- Porosity control
- Particle size distribution can be broad
- Agglomeration
- Mainly aimed at oxides

Sol-gel synthesis of LIB materials in literature

- Numerous examples
- Better electrochemical performance compared to powders from traditional solid state reactions
 - reversible capacity,
 - cycling behavior and
 - rate capability
- Precursors
 - Li sources: LiNO₃, LiOAc, Li₂CO₃, LiOH
 - Sources for metals: oxides, salts (nitrate, acetate,..., bpen squares) (from [9])
 - Ligands:
 - succinic acid,
 - oxalic acid,
 - malic acid,
 - tartaric acid,
 - acrylic acid,
 - citric acid,
 - humic acid and
 - polymers like poly(acrylic acid) (PAA) and poly(vinylpyrrolidone) (PVP)

₩UHASSELT **INIEC** H. Liu doi:10.1007/s10008-004-0521-1

Fig. 1 Comparison of the cycling behavior of LiCoO₂ prepared by sol-gel methods (*open circles*) and traditional solid-phase methods "*(open sayares*) (from [9])

Sol-gel synthesis of LIB materials in literature

- Shake / bake / measure versus understanding the synthesis
 - Everybody can carry out a "sol-gel" recipe,
 - Understanding the mechanisms can be hard
 - Yet sometimes imperative to fully control the final properties

Example: precursor chemistry – phase formation LMO from aq CSD

- Mn^{3+} precursor $\rightarrow Mn^{3,5+}$ in LMO
 - − Citrate in precursor → partial Mn oxidation
 - O₂ ambient → full Mn oxidation + disproportionation → phase segregation
- Electrochemical properties!

What tools can we use to learn more?

UHASSELT

umec

R.W. Schwartz, https://doi.org/10.1016/j.crci.2004.01.007

Index of interesting reviews / books

- The sol-gel handbook, D. Levy & M. Zayat ed., 2015, Wiley VCH
- Sol-gel Science: The Physics and Chemistry of Sol-gel Processing, G,W. Scherer, C.J. Brinker ed., 1990, Academic press
- The Chemistry of Aqua Ions: Synthesis, Structure and Reactivity: A Tour Through the Periodic Table of the Elements, D.T. Richens, 1997, Wiley
- Cathode materials for lithium ion batteries prepared by sol-gel methods, H. Liu et al, J Solid State Electrochem (2004) 8: 450. doi:10.1007/s10008-004-0521-1
- Electrode materials for lithium secondary batteries prepared by solgel methods, L.J. Fu et al., Progr. in mater. sci. (2005) 50: 881 (repeats some)

 Useful search terms: sol-gel, Pechini, polymerizable complex, solution-gel, metalorganic decomposition

Wet chemical synthesis

Controlled precipitation

KNOWLEDGE IN ACTION

What is a (co)precipitation reaction?

Precipitation

- Reverse of a dissolution reaction
- Exceedance of the solubility (K_{sp})
 = supersaturation (thermodynamics)

$$MgF_{2}(s) \rightleftharpoons Mg^{2+}(aq) + 2 F^{-}(aq)$$
$$K_{sp} = [Mg^{2+}][F^{-}]^{2}$$

- Coprecipitation
 - Carrying down a substance, during formation of a precipitate, of a substance which is normally soluble under these conditions
 - Inclusion: Impurity occupies a lattice site
 - Adsorption: Impurity weakly adsorbed to the precipate surface
 - Occlusion: Impurity physically trapped in the growing precipitate

Stages of (co)precipitation

- Two main stages
 - Nucleation (kinetics)
 - Heterogeneous: at nucleation sites on surfaces
 - Homogeneous: away from a surface, in solution
 - Growth
 - Growth of the crystallites

Afterwards: aging of the precipitate

- Ostwald ripening
 - Dissolution of small crystals or sol particles and the redeposition of the dissolved species on the surfaces of larger crystals or sol particles
 - Larger particles energetically favoured in comparison to small particles (lowering specific surface area)
- Digestive ripening
 - Small particles grow at the expense of larger particles → monodisperse
 - Not well understood

Controlling growth of particles

D. Fan, S.P. Chen, L.Q. Chen, P.W. Voorhees, Phase-field simulation of 2-D Ostwald ripening in the high volume fraction regime, Acta Mater. 50 (2002) 1895–1907. doi:10.1016/S1359-6454(01)00393-7.

t=10000

t=40000

t=80000

t=100000

Q. Zhang, J. Xie, Y. Yu, J.Y. Lee, Monodispersity control in the synthesis of monometallic and bimetallic quasispherical gold and silver nanoparticles., Nanoscale. 2 (2010) 1962–1975. doi:10.1039/c0nr00155d.

Advantages and disadvantages of precipitation

Advantages

- Low temperatures
 - Metastable products
 - Reduced particle growth → NPs
- Reactive and/or high surface area materials
- Oxides, phosphates, carbonates,...

Disadvantages

- appropriate precursor needed
- Inadequate co-precipitation of different ions leads to inhomogeneity
- Metastable products are often unstable in applications where high temperatures are used or single crystals are needed

PCS particle sizes d_{10} : 77 nm d_{50} : 145 nm d_{90} : 270 nm

Precipitation synthesis of LIB materials in literature

Oxalate coprecipitation and

topotactic conversion to the oxide

Scheme 1. Illustration of ethanol mediated co-precipitation coupled with subsequent calcination for the formation of $0.5 \text{ Li}_2 \text{MnO}_3 \cdot 0.5 \text{ LiNi}_{1/3} \text{Co}_{1/3} \text{Mn}_{1/3} \text{O}_2$ 1D porous micro- and nanostructured bars.

Angew. Chem. Int. Ed. 2016, 55, 3667 -3671

Precipitation synthesis of LIB materials in literature

 One-Step Low-Temperature Route for the Preparation of Electrochemically Active LiMnPO₄ Powders

C. Delacourt, P. Poizot, M. Morcrette, J.-M. Tarascon, C. Masquelier, One-Step Low-Temperature Route for the Preparation of Electrochemically Active LiMnPO4 Powders, Chem. Mater. 16 (2004) 93–99. doi:10.1021/cm030347b.

Index of interesting reviews / books

- Useful search terms:
 - chimie douce, soft chemistry (included electrochemical reaction synthesis),
 - co-precipitation,
 - chemical bath deposition
- For example
 - 10.1039/JM9960601149 Preparation by a 'chimie douce' route and characterization of (LiNizMn1 -zO2)(0.5≤z≤1) cathode materials; Daniel Caurant, Noël Baffler, Valérie Bianchi, Gilles Grégoire and Stéphane Bach, J. Mater. Chem. 1996 6 1149
 - 10.1021/cm030347b Delacourt et al.

Wet chemical synthesis

Hydro/solvo/ionothermal synthesis

KNOWLEDGE IN ACTION

What is hydro/solvo/ionothermal synthesis?

- Precipitation reactions (following hydrolysis and condensation of metal ions), under elevated pressure and temperature in a pressure vessel
 - Dissolving → reactants more soluble under hydrothermal conditions (>RT, >1 atm)
 - Recrystallization (recovery) → direct crystallization from solutions when supersaturation reached

Several variants

- hydrothermal → water as the solvent
- solvothermal → organic solvent
- Ionothermal → ionic liquid solvent
- Several keywords
 - Mineralizers / solvents
 - Surfactants

Mineralizers / solvents

- "inorganic or organic additives with high concentrations (e.g., 10 M) to control the pH of solution." [1] e.g. HNO₃, NaOH, KOH, HCOOH, etc.
- Aqueous or non-aqueous solvents can act as mineralizers as well
- Water can also act as:
 - P, T transfer medium
 - Adsorbate/adsorbent
 - Solvent
 - Reagent/reactant

Surfactants

IMO-IMOMEC

unec

▶▶ UHASSELT

- Organics or inorganics in relatively low concentrations
- Alters hydrophobic/hydrophilic behavior of surfaces
- Controls the nucleation \rightarrow size, shape, phase homogeneity and dispersibility of formed particles

2. Adsorbate/Adsorbent

High-temperature-high-pressure solution/vapor

(mechanical energy transfer medium)

1. P. T medium

H₂O

HIP

(reaction accelerator, catalyzer)

[1] Jianlin Li et al. Synthesis of Nanoparticles via Solvothermal and Hydrothermal Methods, in Handbook of Nanoparticles. 2015 [2] K. Byrappa, M.Yoshimura, Handbook of hydrothermal technology. 2013
3. Thermodynamics

- Determining the exact reaction equilibria in real systems is difficult due to presence of many different species
- Several thermodynamic models proposed to calculate solubility of species
- Revised Helgeson-Kirkham-Flowers (HKF) model provides equilibrium constant (K) calculations for:
 - Aqueous hydrothermal systems
 - Hundreds of inorganic compounds
 - Wide ranges of conditions (25-1000°C, 0.1-500 MPa)

Revised Helgeson-Kirkham-Flowers (HKF) model

- K: equilibrium constant
- 'r' refers to the reference state (25°C, 0.5 MPa)
- α : 6.385 x 10⁻⁵ K⁻¹
- ε : dielectric constant of water
- ω : parameter defined by reaction system
- β : reaction-dependent constant
- $\Delta C_{P,T_r,\rho_r}^o$: heat capacity
- $\lambda_1 = 97.66 \text{ K}$
- $\lambda_2 = 2 \times 10^{-4} \text{ K}^{-1}$
- $\lambda_3 = -3.317 \times 10^2 \text{ J/mol}$

 $\rho^* = \frac{\text{density of water in actual cond.}}{\text{density of water in reference cond.}}$

Solubility of species and growth depend on solvent properties such as:

- Viscosity
- Density
- Dielectric constant

IMO-IMOMEC

UHASSELT

Supercritical conditions

http://www.chemguide.co.uk/physical/phaseeqia/phasediags.html

- Critical condition for water: 218 atm, 374°C
- Critical condition for ethanol: 60 atm, 241°C

- Dielectric constant of water is 78 at RT, 1 atm
- Dielectric constant of water reduces to 2-10 in the critical region
- Reduced dielectric constant of water reduces the solubility of polar solute species in the supercritical water → high supersaturation → easy nucleation and growth
- Reduced dielectric constant and reduced polarity of water allows solubility of organic solute species in the supercritical water → additives controlling the crystal nucleation and growth

4. Kinetics

- Hydro/solvothermal synthesis is a crystallization process involving:
 - Reaching supersaturation $\left(\frac{actual \ concentration}{saturation \ concentration}\right)$ of species in the solution and crystal nucleation
 - Precipitation
 - Subsequent growth
- Particle size/morphology is controlled by
 - Supersaturation and
 - nucleation and growth rate; which can be controlled by:
 - Precursors
 - Reactant concentration
 - Additives
 - Filling of the vessel
 - Temperature
 - Time
 - pН
 - etc.

IMO-IMOMEC unec

UHASSELT

[1]

5. Intelligent engineering of materials

- Researchers giving up the Edisonian trial and errors approach for designing hydrothermal experiments, which is highly time consuming and very expensive
- Thermodynamic models are constructed instead
 - e.g. HKF model

O-IMOMEC

nnec

UHASSEL1

- The main objective of the models is to calculate the optimum synthesis conditions for the formation of phase-pure materials with controlled size and shape to some extent
 - Stability and yield diagrams are used

K. Byrappa, M.Yoshimura, Handbook of hydrothermal technology. 2013.

Advantages and disadvantages of hydro/solvo/ionothermal synthesis

Advantages

IMO-IMOMEC

unec

UHASSELT

- Highly dispersed nanopowders
- Variety of particle morphologies (nanosheets, rods, etc.)
- Strong control over particle • size distribution,
- Simultaneous synthesis and crystallization at low temperatures (few 100°C)
- Many different chemistries (oxides, phosphates, polyanions, carbonates,...)
- Epitaxial shell growth possible

Challenges

- Upscaling
- Complex compositions as in multimetal oxides difficult to control \rightarrow wrong phase formation
- Often still a black box

2 um

- Tools/ characterization techngiues that allow deeper insight into hydro/solvo/ionothermal mechanisms: in-situ UV/Vis

 - in-situ FTIR/Raman
 - HR-SEM/TEM
 - Synchrotron X-ray absorption (EXAFS) spectroscopic measurements

Hydrothermal synthesis of LIB materials in literature

- Hydrothermal synthesis of single phase, nanocrystalline LiFePO₄:
 - (NH₄)₂Fe(SO₄)₂.6H₂O, H₃PO₄, LiOH.H₂O
 - 140-220°C, 0.5-24 h, 600-800°C subsequent sintering
- Crystallite size is controlled by controlling:
 - Precursor concentration
 - Lower (NH₄)₂Fe(SO₄)₂.6H₂O conc.: 1-5 micron sized platelets (figure a)
 - Higher (NH₄)₂Fe(SO₄)₂.6H₂O conc.: more nucleation sites, smaller particles (250 nm) (figure c)
 - Reaction temperature
 - Lower temperatures produces smaller particles (figure b)
 - Fe disorder at lower temperatures \rightarrow detrimental for electrochemical perf.
 - A balance between temperature and concentration must be selected

Ellis, B., et al. J. Mater. Chem., 2007. **17**(30): p. 3248. Verónica Palomares and Teófilo Rojo (2012), Lithium Ion Batteries - New Developments, Dr. Ilias Belharouak (Ed.)

0.25 M (Fe), 140°C

0.75 M (Fe), 190°C

Solvothermal synthesis of LIB materials in literature

- Solvothermal, 2-step, pH controlled spinel Li₄Ti₅O₁₂ (LTO) nanocrystal synthesis in water-ethanol mixture, at 200°C
- Li₂TiO₃ impurity phase avoided by pH control
- LTO formation through delithiation and dehydration from the precursor:

 $2\text{LiOH} + \text{TiO}_2 \rightarrow \text{Li}_2\text{TiO}_3 + \text{H}_2\text{O} (> \text{pH 11})$

 $Li_2TiO_3 + xH^+ \rightarrow (Li_{2-x}H_x)TiO_3 + xLi^+$ (delithiation)

(2) 2st step solvothermal synth.(pH=9-10)

(1) 1st step solvothermal synth.

 $(\text{Li}_{2-x}\text{H}_x)\text{TiO}_3 \rightarrow \text{Li}_{2-x}\text{TiO}_{3-x/2} + x/2\text{H}_2\text{O} \text{ (dehydration)} (3) Drying$

Ionothermal synthesis of LIB materials in literature

- Metal fluorosulfate systems, i.e. LiMSO₄F (M=Fe, Co, Ni, Mn)
 - e.g. LiFeSO₄F → good conductivity and low cost without nanosizing and carbon coating, while necessary for LiFePO₄ with lower conductivity
- Synthesis can be difficult due to high temperature decomposition and hygroscopic nature of sulfates→ high T solid state synthesis and aq. hydro/solvothermal synthesis ruled out
- LiFeSO₄F by ionothermal synthesis:
 - 1. Dehydration of FeSO₄.7H₂O to FeSO₄.H₂O at 200°C, under vacuum
 - 2. Reaction of FeSO₄.H₂O and LiF in EMI-TFSI (1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl imide) ionic liquid, in a PTFE liner bomb, at 300°C, for 5 h
 - EMI-TFSI provides high chemical/thermal stability, adequate solvating properties and negligible volatility

IMO-IMOMEC

Verónica Palomares and Teófilo Rojo (2012), Lithium Ion Batteries - New Developments, Dr. Ilias Belharouak (Ed.) Recham, N., et al. Nat Mater, 2010. **9**(1): p. 68-74.

Figure 4 | Electrochemical characterizations of LiFeSO₄F powders.

a,**b**, Charge/discharge galvanostatic curves for Li/LiFeSO₄ F/ cells cycled between 2.5 and 4.2 V at C/10 (1 Li in 10 h) (**a**) and C/2 (1 Li in 2 h) (**b**), highlighting the sustained reversible capacity of the electrode and the near 100% cycling capacity efficiency. Electrodes were made by ball-milling for 15 min and 30 min LiFeSO₄ F (85%)/carbon (15%) mixtures for the cells in **a** and **b**, respectively. The capacity retention of such cells (red for charge and blue for discharge) together with their power rate (discharge capacity is plotted as a function of the rate *n*C) are shown as insets in **a** and **b**, respectively. The power rate was defined through the collection of signature curves²⁸ using a discharge cutoff potential of 2.5 V. Within such measurements, currents of 1.2 mA cm⁻² were used for the 1 C rate.

Index of interesting reviews / books

- K. Byrappa and M. Yoshimura, Handbook of hydrothermal technology. 2013.
- Jianlin Li and Ji Wu. Synthesis of Nanoparticles via Solvothermal and Hydrothermal Methods, in Handbook of Nanoparticles. 2015
- Verónica Palomares and Teófilo Rojo (2012), Synthesis Processes for Li-Ion Battery Electrodes – From Solid State Reaction to Solvothermal Self-Assembly Methods, Lithium Ion Batteries - New Developments, Dr. Ilias Belharouak (Ed.)
- Hiromichi Hayashi and Yukiya Hakuta. Hydrothermal Synthesis of Metal Oxide Nanoparticles in Supercritical Water. Materials, 2010. 3(7): p. 3794-3817.
- Byrappa, K. and T. Adschiri, *Hydrothermal technology for nanotechnology*. Progress in Crystal Growth and Characterization of Materials, 2007. 53(2): p. 117-166.
- Keywords: mineralizer, solvent, solubility, crystallization, supercritical, autoclave, liner, viscosity, dielectric constant, density, high temperature-pressure, ...

Wet chemical synthesis

Thermal decomposition

KNOWLEDGE IN ACTION

Thermal decomposition synthesis – often QDs

Thermal decomposition

of precursor in high boiling apolar solvent and in the presence of surfactant molecules

IOWLEDGE IN ACTION

Thermal Decomposition

- Non-aqueous sol gel chemistry
- Chemical transformation
 - Of precursors dissolved in organic solvent
 - Into metal oxide network
 - Under exclusion of water
 - Surfactant assisted
- Advantage over conventional sol-gel chemistries
 - Greater control over physical dimensions of produced product

Thermal Decomposition

- Creation of hydrophilic MO_x particles in hydrophobic environment
 - Use of precursors soluble in organic solvents
 - Yet yielding MO_x particles are not organic compatible
 - Addition of surfactants
 - Surfactants cap growing particles resulting in control of particle dimensions
 - Allowing low incidence of agglomeration

Thermal Decomposition

- Requires high boiling solvent to create crystalline MO_x
- Oxygen moiety
- Reaction to release O and form MO_x
- Examples
 - Benzyl alcohol
 - Tert-butyl alcohol
 - Propyl Ethers
 - Acetophenone
 - Carboxylic acids
 - Benzylamine

Chemical reactions

Initiation: 3 types of reaction

- 1. metal halides and alcohols
- 2. alkoxide + alcohol
- 3. aldol condensation

Chemical reactions

After initial reaction

- Oxo bridges under aprotic conditions
 - 1. alkyl halide elimination
 - 2. ester elimination
 - 3. ether elimination

Thermal decomposition synthesis – overall mechanism

Figure 3. Schematic outlining the mechanism of NC nucleation and growth. First, precursors (P) disassociate into monomers (M), followed by the formation of nuclei (N). The nascent nuclei grow as monomer diffuses to the particle–solution interface and then reacts, becoming incorporated into the crystal lattice.

UHASSE

WLEDGE IN ACTIK

J. van Embden et al., Chem. Mater., 2015, 27, 2246

Figure 4.3: Synthesis mechanism of the heating-up thermal decomposition mechanism of ZnO:Al nanoparticles.

UHASSELT
 UHASSELT

[1] Damm, H., et al. RSC Advances, 2013. 3(45): p. 23745
 [2] Peng, S., J. Xie, and S. Sun. J Solid State Chem, 2008. 181(7): p. 1560-1564.

Advantages and disadvantages of thermal decomposition synthesis

Advantages

- Excellent control over particle dimensions
- Allows for building of complex structures
- Possible due to prevention of agglomeration
- Low temperature

Disadvantages

- Excessive use of solvent
- Large quantity of initiator reagents
- Limited yield per batch
- Toxicity of reactions compared to aqueous routes

Examples of LIB materials thermal decomposition synthesis from literature

[1] S. Jiang et al. / Electrochimica Acta 191 (2016) 364–374
[2] D. Wei et al. / Journal of Alloys and Compounds 714 (2017) 13-19

[3] J. Zhang et al. Colloids and Surfaces A 529 (2017) 677–685
[4] Y. Zhang et al. / Journal of Power Sources 292 (2015) 58-65
[5] Y. Xuanye et al. / Solid State Ionics 289 (2016) 159–167

Review on heating up synthesis J. van Embden, Chem. Mater., 2015, 27, 2246

Wet chemical synthesis

(auto)combustion synthesis

KNOWLEDGE IN ACTION

Comparison to sol-gel and related routes

(Auto)combustion synthesis

Reaction coordinate

High activation energy \rightarrow Need $E_a \downarrow \& \Delta_r H \uparrow$ \rightarrow Use starting products with higher H

Autocombustion reactions:

- Self generation of heat, available for crystallization of the oxide
- Lower external temperature required

Kim, Nature, 2011

Hennek JACS 2012

Kim JACS 2012

(Auto)combustion synthesis: in practice

Self-sustainable reaction leading to internal heating \rightarrow oxide formation

Requirements:

D-IMOMEC

imec

UHASSELT

- Heat to initiate the reaction
- Fuel with high ΔH_c
- Oxidizer: O₂ or added NO₃⁻
- Optimal oxidizer/fuel ratio !

 $\phi_e = \frac{\sum (\text{Coefficient of oxidizing elements in specific formula})(\text{Valency})}{(-1)\sum (\text{Coefficient of reducing elements in specific formula})(\text{Valency})}$

Patil, K.C. et al., Chemistry of nanocrystalline oxide materials, 2008, world scientific, Singapore

Advantages and disadvantages of (auto)combustion synthesis

Advantages

- Low external temperature supplied, self ignition forms oxides
- Very short reaction times
- Cost effective
- Homogeneous products

Challenges

- Empirical optimization of optimal fuel/oxidizer ratio
- Explosive mixture
- Complex mechanism
- Product properties depend on processing conditions
 - Gas flow rate
 - Atmosphere

Patil, K.C., Hegde, M.S., Rattan, T., Aruna, S.T. Chemistry of Nanocrystalline Oxide Materials: Combustion Synthesis, Properties and Applications. World Scientific Publishing Co. Pte. Ltd., Singapore (2008).

Combustion synthesis of $Li_4Ti_5O_{12}$: ex. 2

NO₃⁻ as oxidizer Glycine as fuel

Combustion temperature of 800 °C, seconds

Figure 5. Structure of (a) spinel Li₄Ti₅O₁₂ and (b) ordered rocksalt-phase Li₇Ti₅O₁₂; (c) voltage-composition curves showing the electrochemical transformation of Li4Ti5O12-Li7Ti5O12 during galvanostatic chargedischarge cycles at C/2 rate at 30 °C.

IMO-IMOMEC

UHASSELT

>95% capacity retention

Figure 7. Capacity versus cycle number plot for nanocrystalline Li₄-Ti₅O₁₂ synthesized by the combustion method at different discharge rates. Inset shows capacity versus cycle number for bulk Li₄Ti₅O₁₂.

LINEC A. S. Prakash, P. Manikandan, K. Ramesha, M. Sathiya, J.M. Tarascon and A.K; Shukla, Chem. Mater., 2010, 22, 2857-2863,

Combustion synthesis of $Li_4Ti_5O_{12}$: ex. 3

UHASSELT

NO₃⁻ as oxidizer Lactic acid as fuel

Combustion temperature of 300 °C, no higher

Lithium rich and poor impurities

Capacity of 164 mAh/g (175 mAh/g theoretically) and retention of 94.9% after 100 cycles

D. De Sloovere, W. Marchal, F. Ulu, T. Vranken, M. Verheijen, M.K. Van Bael and A. Hardy, RSC Adv., 2017, 7, 18745-17854.

Combustion synthesis of $Li_4Ti_5O_{12}$: ex. 3 Dual role of NH_4NO_3

Proposed mechanism

IMO-IMOMEC

UHASSELT

unec

- Melting/evaporating/endothermic degradation of NH₄NO₃ absorbs heat Prevents heat build up
 - \rightarrow prevents autocombustion until excess NH₄NO₃ is degraded
- O₂ from atmosphere around the sample, takes part in the reaction

Core-shell nanoparticles

Using chemical solution based routes

KNOWLEDGE IN ACTION

Why use core-shell materials in LIBs?

- To prevent electrode reactions with the electrolyte and dissolution of active substances. e.g. Mn in L(N)MO
- To act as HF scavenger and react with the released HF from the electrolyte prior to the active core. e.g. Al₂O₃, ZrO₂, etc.
- To bring new physical/chemical properties. e.g. increased electronic/ionic conductivity
- Increased rate performance, reversible capacity & cycling stability

unec

IMO-IMOMEC

▶ UHASSELT

Su, L. et al. Nanoscale, 2011. 3(10): p. 3967-83

Solution-based core-shell synthesis methods

- 1. Heterogeneous nucleation of the solid shell phase
- 2. Hydro/solvothermal synthesis
- 3. Assembly by electrostatic interactions (heterocoagulation)
- 4. Thermal decomposition synthesis
- 5. Spraycoating

Hierarchically structured nanoparticles

Using chemical solution based routes

KNOWLEDGE IN ACTION

IMO-IMOMEC

▶ UHASSELT

ເກາຍc

Clément Sanchez https://doi.org/10.1016/j.crci.2009.06.001

Chemical solution based synthesis basic principles

- Aqueous solution-gel and (auto)combustion synthesis:
 - Intimate mixing of metal ions in a precursor phase (solution)
 - Burning the precursor components
 - Raction of metal ions with oxygen (/phosphate) to form oxide
- (co-)precipitation, hydro/solvo/ionothermal, micellar reactions
 - Based on precipitation reactions
 - Hydroxide oxide / phosphates are formed from ions in solution
 - Solubility = key
- (non-)aqueous sol-gel, thermal decomposition, solvolysis reaction
 - Reaction involving solvent leads to formation of oxide
 - In theory, no external oxygen supply required
 - ! Generalization => exceptions

Future

Do we still need research on **synthesis**?

- Inorganic materials link structure with a specific function (metal oxides for batteries, perovskites for solar cells, metal clusters for catalysis,...)
- Correlation of materials properties with composition, atomic structure, crystallinity and defects → databases
- Recently:
 - particle size and morphology are taken into account as well
 - E.g hierarchical materials
 - Also: in silico strategies for materials design take over from quests of materials discovery

Pinchpoint: when attempting to synthesize these rapidly designed targets

• Understanding how and when ion correlations develop is missing

➔ mechanistic framework is needed for synthesis of inorganic extended solids

- → requires to codify synthesis of inorganic extended solids
 - Understanding Of principal reaction types
 - Cataloging
 - Covering pre-nucleation nucleation mesoscale assembly
 - ➔ synthesis-by-design

Soderholm and Mitchell APL MATERIALS 4, 053212 (2016)

Thank you for this invitation

Thank you for your attention

an.hardy@uhasselt.be

