Skoltech

Course Syllabus

Course Title

Course Title (in Russian)

Lead Instructor

Around the Ising Model in 20 Hours

Вокруг модели Изинга за 20 часов

Shlosman, Semen

1. Annotation

Course Description

This is a course on rigorous results in statistical mechanics, random fields and percolation theory. Some of it will be dedicated to the theory of phase transitions, uniqueness or non-uniqueness of the lattice Gibbs fields. We will also study the models at the criticality, where one hopes to find (in dimension 2) the onset of conformal invariance. We will see that it is indeed the case for the percolation (and the Ising model, if time permits).

The topics will include:

Crossing probabilities as a characteristic of sub-, super- and at- criticality.

Critical percolation and its power-law behavior.

The Russo-Seymour-Welsh theory of crossing probabilities - a cornerstone of critical percolation Cardy's formula for crossing probabilities

Parafermionic observables and S. Smirnov theory

Conformal invariance of two-dimensional percolation a la Khristoforov.

Ising model in 1D, 2D and 3D.

Ising model on Cayley trees.

Conformal invariance of two-dimensional Ising model

O(N)-symmetric models

Continuous symmetry in 2D systems: The Mermin–Wagner Theorem and the absence of Goldstone bosons.

The Berezinskii–Kosterlitz–Thouless transition

Reflection Positivity and the chessboard estimates in statistical mechanics

Infrared bounds and breaking of continuous symmetry in 3D

Course Description (in Russian)

Мой курс посвящён строгим результатам статистической механики и теории просачивания. Я расскажу о некоторых элементах теории фазовых переходов в решётчатых моделях (типа модели Изинга). Значительная часть курса будет посвящена конформной инвариантности двумерной теории просачивания в критической точке и аналогичного утверждения для модели Изинга (если позволит время).

Я расскажу о поведении вероятностей наличия связи между противоположными сторонами прямоугольников (crossing probabilities) в зависимости от значения вероятности просачивания. Это поведение различает три режима: критический, надкритический и подкритический.

Центральной частью курса является изучение двумерных моделей в критическом режиме. Я расскажу очень красивое доказательство теоремы Смирнова о конформной инвариантности двумерного просачивания, найденное М. Христофоровым.

Слушатель курса научится читать и понимать статьи о конформной инвариантности в статистической физике. Он овладеет методами строгого изучения явления фазового перехода.

2. Basic Information

Course Academic Level	MS	Sc
Number of ECTS credits	6	

Course Prerequisites / Recommendations

It is desirable that the students are familiar with the probability theory, measure theory, elements of functional analysis, and complex analysis. Of course, calculus knowledge is assumed. Some familiarity with percolation theory and the Ising model will not harm, of course.

Type of Assessment	Graded	
Mapping from grades to percentage:		
A:	85	
B:	75	
C:	60	
D:	50	
E:	40	

Students of Which Programs do You Recommend to Consider this Course as an Elective?

BSc Programs	Masters Programs	PhD Programs
	Mathematical and Theoretical Physics	Mathematics and Mechanics

Multi-term 3-4

Maximum Number of Students

Term

	Maximum Number of Students
Overall:	20
Per Group (for seminars and labs):	20
Course Stream	Science, Technology and Engineering (STE)

Science, Technology and Engineering (STE)

3. Course Content

Торіс	Summary of Topic	Contact Hours: Lec tures	Contact Hours: S eminars	Contact Hours: Labs	Non-contact Hours: Stude nt's Independent Study
Basic notions of percolation theory. Crossing probabilities.	The behavior of the probabilities of having a left-right crossing in the rectangle box. Subcritical, supercritical and critical case.	2	2	2	10
The critical value of the percolation parameter. Kesten theorem: $p_c=1/2$.	The value of the critical probability. Sharpness of the criticality. Power-law decay of connectivities.	2	2	2	10
The main technique of the critical percolation: the Russo- Seymour- Welsh theory	Crossing probabilities for rectangles with arbitrary aspect ratio: recent versions and proofs.	2	2	2	10
Cardy's formula	The exact formula for crossing probabilities, as correctly predicted by physicists on the basis of conformal invariance conjecture.	2	2	2	10
Parafermioni c observables	The exact meaning of conformal invarinace. The key ingredients of the proof of conformal inariance.	2	2	2	10
Conformal invariance of two- dimensional percolation	The proof of the Theorem of Stanislav Smirnov the Khristoforov version.	2	2	2	10
Ising model on 1D, 2D and 3D lattices. Ising model on trees	Phase transitions on various lattices. Spin-glass phases.	2	2	2	10
O(N)- symmetric models	Systems with continuous symmetry in 2D and 3D. Open problems. Continuous symmetry breaking.	2	2	2	10

Торіс	Summary of Topic	Contact Hours: Le ctures	Contact Hours: Seminar s	Contac t Hours: Labs	Non-contact Hours: Stude nt's Independent Study
The Mermin– Wagner Theorem	2D models with continuous symmetry. No Goldstone bosons in 2D. Is continuous symmetry breaking in 2D possible?	2	2	2	5
The Berezinskii– Kosterlitz– Thouless transition	Vortices and the Coulomb gase in 2D. Dipoles. Debye screening.	2	2	2	5
Reflection Positivity and the chessboard estimates. Infrared bounds	Methods of the field theory in statistical mechanics. Continuous symmetry breaking in 3D.	2	2	2	5

4. Learning Outcomes

Skoltech Learning Outcomes are indicated as per Skoltech Learning Outcomes Framework.

1. FUNDAMENTAL KNOWLEDGE

1.1. KNOWLEDGE OF MATHEMATICS AND NATURAL SCIENCES

2.1. COGNITION AND MODES OF REASONING

2.1.1. Analytical reasoning and problem solving 2.1.3

2.1.3. Creative thinking

2.1.5. Critical thinking and meta-cognition

2.2. ATTITUDES AND LEARNING PROCESS

2.2.5. Self-awareness and a commitment to self-improvement, lifelong learning and educating

2.3. ETHICS, EQUITY AND OTHER RESPONSIBILITIES

2.3.1. Ethical action, integrity and courage

3.1. COMMUNICATIONS IN INTERNATIONAL ENVIRONMENTS

3.1.4. Inquiry, listening and dialogue

5. Assignments and Grading

Physical Attendance Requirement80(% of classes)80

Assignment Type	Assignment Summary	% of Final Course Grade
Final Exam	Explaining the proof of a theorem from the course. General discussion of the subject covered.	40
Class participation	Asking and answering questions.	30
Homework Assignments	Solving the exersise problems and explaining the solutions in the class	30

6. Assessment Criteria

Assignment 1 Type

Final Exam

Sample of Assignment 1

Explaining the proof of a theorem from the course. General discussion of the subject covered.

Assessment Criteria for Assignment 1

Full score for the complete and correct proof. Partial credit for an incomplete proof, depending on the understanding of the subject shown.

Assignment 2 Type

Class participation

Sample of Assignment 2

1. I ask a question: can one define the conformal invariance in 3D?

2. The student asks a question: is percolation continuous in 3D?

Assessment Criteria for Assignment 2

A - for a meaningful discussion of the topic. No assessment otherwise.
A - for a meaningful discussion of the topic. Fields medal for a complete solution.

Assignment 3 Type

Homework Assignments

Sample of Assignment 3

Please give a proof of the absence of breaking of the continuous symmetry in 2D systems.

Assessment Criteria for Assignment 3

A - for the correct proof. For wrong or incomplete proof - depending on the sketch.

Assignment 4 Type

Homework Assignments

Sample of Assignment 4

Describe the ground state configurations of the Ising model on Cayley tree.

Assessment Criteria for Assignment 4

A - for continuum family of ground state configurations.

For smaller families -- depending on their cardinality.

7. Textbooks and Internet Resources

You can request at most two required textbooks. Additionaly, you can suggest up to nine recommended textbooks.

Required Textbooks	ISBN-13 (or ISBN-10)
Theory of Phase Transitions: Rigorous Results by Ya. G. Sinai	9780080264691
G. Grimmett. Percolation. Springer-Verlag, Berlin, 1999.	978-3-642-08442-3

Recommended Textbooks	ISBN-13 (or ISBN-10)
Statistical Physics L D Landau E.M. Lifshitz	9780080570464

Papers	DOI or URL
Dmitry Chelkak and Stanislav Smirnov. Universality in the 2D Ising model and conformal invariance of fermionic observables. Invent. Math., 189(3):515– 580, 2012.	

Web-resources (links)	Description
http://www.unige.ch/math/folks/veleni k/smbook/index.html	Statistical Mechanics of Lattice Systems: a Concrete Mathematical Introduction
https://www.ihes.fr/~duminil/publi/201 7percolation.pdf	Lectures on percolation theory.

8. Facilities

9. Additional Notes

Comments

I prefer students to ask as many questions as possible. I do not mind taking turns and deviate from the initial plan of my lectures.

The proposed course 1) has explicit academic content and requirements for receiving credits, 2) is in alignment with the program's learning outcomes, 3) adheres to policies and Skoltech regulations.

Lead Instructor confirms