Problems for the course "Integrable systems of particles and nonlinear equations" - 2024

1. Let the matrices of Lax pair be of the form

$$
\begin{aligned}
& L_{i j}=-\delta_{i j} p_{i}-\frac{g\left(1-\delta_{i j}\right)}{x_{i}-x_{j}}, \\
& M_{i j}=-2 g \delta_{i j} \sum_{k \neq i} \frac{1}{\left(x_{i}-x_{k}\right)^{2}}+\frac{2 g\left(1-\delta_{i j}\right)}{\left(x_{i}-x_{j}\right)^{2}} .
\end{aligned}
$$

Prove that the Lax equation $\dot{L}+[L, M]=0$ is equivalent to the equations of motion of the rational Calogero-Moser (CM) system.
2. Put $L^{ \pm}=L \pm i \omega X$, where $X=\operatorname{diag}\left(x_{1}, \ldots, x_{N}\right)$. Show that matrix equations

$$
\dot{L}^{ \pm}+\left[L^{ \pm}, M\right] \pm 2 i \omega L^{ \pm}=0
$$

where L, M are matrices from problem 1, are equivalent to the equations of motion of the rational CM system in an external quadratic potential.
3. Let $L(\lambda)=-\delta_{i j} p_{i}-g\left(1-\delta_{i j}\right) \Phi\left(x_{i}-x_{j}, \lambda\right)(\Phi(x, \lambda)$ is the Lamé-Hermite function) be the Lax matrix of the elliptic CM system.
a) Find $\operatorname{tr} L^{3}(\lambda)$,
b) Find trigonometric degeneration of this Lax matrix at $\omega_{2}=\infty$.
4. Let

$$
H_{ \pm}=\sum_{i=1}^{N} e^{ \pm \eta p_{i}} \prod_{j \neq i} \frac{\left(x_{i}-x_{j}+\eta\right)^{1 / 2}\left(x_{i}-x_{j}-\eta\right)^{1 / 2}}{x_{i}-x_{j}}
$$

be the Hamiltonians of the rational Ruijsenaars-Schneider (RS) system, where x_{i}, p_{i} are canonical variables. Prove that $\left\{H_{+}, H_{-}\right\}=0$.
5. The Lax pair for rational RS system has the form

$$
\begin{aligned}
L_{i j} & =\frac{\dot{x}_{i}}{x_{i}-x_{j}-\eta} \\
M_{i j} & =\delta_{i j}\left(\sum_{k \neq i} \frac{\dot{x}_{k}}{x_{i}-x_{k}}-\sum_{k} \frac{\dot{x}_{k}}{x_{i}-x_{k}+\eta}\right)+\frac{\left(1-\delta_{i j}\right) \dot{x}_{i}}{x_{i}-x_{j}} .
\end{aligned}
$$

Obtain equations of motion which follow from the Lax equation $\dot{L}+[L, M]=0$.
6. The Hamiltonian of the elliptic RS system has the form

$$
H=\sum_{i} e^{\sigma(\eta) p_{i}} \prod_{j \neq i} \frac{\sigma\left(x_{i}-x_{j}+\eta\right)}{\sigma\left(x_{i}-x_{j}\right)} .
$$

Obtain Newton equations of motion.
7. The Lax pair for elliptic spin CM system has the form

$$
\begin{aligned}
& L_{i j}(\lambda)=-p_{i} \delta_{i j}-g\left(1-\delta_{i j}\right) b_{i}^{\nu} a_{j}^{\nu} \Phi\left(x_{i}-x_{j}, \lambda\right), \\
& M_{i j}(\lambda)=-2 g\left(1-\delta_{i j}\right) b_{i}^{\nu} a_{j}^{\nu} \Phi^{\prime}\left(x_{i}-x_{j}, \lambda\right),
\end{aligned}
$$

where $\Phi^{\prime}(x, \lambda)=\partial_{x} \Phi(x, \lambda)$. Obtain equations of motion which follow from the Lax equation $\dot{L}+[L, M]=0$.
8. Prove that the substitution $u=2 \partial_{x}^{2} \log \tau$ converts the KP equation

$$
3 u_{y y}=\left(4 u_{t}-6 u u_{x}-u_{x x x}\right)_{x}
$$

to a bilinear equation of the function τ.

