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The KP hierarchy

The KP equation is the �rst member of a whole in�nite hierarchy of so-called higher KP
equations that are compatible with it. One of the ways to introduce the hierarchy is the
technique of pseudo-di�erential operators.

Pseudo-di�erential operators. A pseudo-di�erential operator is a series of the form
∞∑
k=0

vk∂
N−k
x , where vk are functions, and the operator ∂x has the standard commutation

relation with any function: ∂xf = f ′ + f∂x. Multiplying both sides of this equality from
the right and from the left by ∂−1x , one can understand it as a rule of moving the operator
∂−1x through a function: ∂−1x f = f∂−1x − ∂xf

′∂−1x . Repeating this procedure, we arrive at
the commutation rule

∂−1x f = f∂−1x − f ′∂−2x + f ′′∂−3x + . . . .

Pseudo-di�erential operators are multiplied as Laurent series, taking into account that
the symbol ∂x does not commute with the coe�cient functions. For brevity we right
∂xf , meaning the composition of the operator of multiplication by the function f and
the di�erential operator ∂x. We hope that this will not lead to a misunderstanding. In
the more detailed notation the composition is written as ∂x ◦ f , but, in our opinion, a
systematic use of this notation makes it more di�cult to read formulas.

Problem. For any functions f, g prove the following identities in the algebra of pseudo-
di�erential operators:

a) (∂x − g)−1f =
∞∑
n=0

(−1)nf (n)(∂x − g)−n−1,

b) e−f∂−1x ef = (∂x + f ′)−1,

c) ∂nxf =
n∑

k=0

(
n
k

)
f (k)∂n−kx , n ≥ 0,
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d) ∂−nx f =
∑
k≥0

(−1)k
(
k+n−1

k

)
f (k)∂−n−kx , n > 0.

Here

(
n
k

)
=

n!

k!(n− k)!
is the binomial coe�cient. Note that identities c) and d) can

be uni�ed in one identity by extending the de�nition of binomial coe�cients to arbitrary
complex numbers n with the help of the formula(

n
k

)
=
n(n− 1)(n− 2) . . . (n− k + 1)

1 · 2 · 3 · . . . · k
,

then at n < 0

(
n
k

)
= (−1)k

(
k−n−1

k

)
. To prove identities c) and d), one can use

induction in n.

Given a pseudo-di�erential operator P =
∞∑
k=0

vk∂
N−k
x , we call the number N the order

of the operator. Let P+ be its di�erential part (i.e. sum of the terms with non-negative

powers of ∂x: P+ =
N∑
k=0

vk∂
N−k
x ), then P− = P − P+ is sum of the terms with negative

powers. The operation of conjugation de�ned as ∂†x = −∂x, f † = f , (AB)† = B†A† can
be extended to the algebra of pseudo-di�erential operators:( ∞∑

k=0

vk∂
N−k
x

)†
=
∞∑
k=0

(−∂x)N−kvk.

The KP hierarchy: Lax equations and zero curvature representation. Consider
a pseudo-di�erential operator L of the form

L = ∂x + u1∂
−1
x + u2∂

−2
x + . . . ,

in which the coe�cients ui are functions of x. It is called the Lax operator of the KP
hierarchy. Introduce evolution in the space of functions of x by the Lax equations

∂tmL = [(Lm)+, L] , m = 1, 2, 3, . . . .

Here tm are evolution parameters (�times�). Each of these equations de�ne an in�nite
system of evolution equations for the in�nite set of functions ui of the form ∂tjui =
Pij({ul}), where Pij({ul}) are some di�erential polynomials of ul. The generators of the
tm-�ows,

Am = (Lm)+,

are di�erential operators of order m. For example, A1 = ∂x, A2 = ∂2x + 2u1, A3 =
∂3x + 3u1∂x + u2.

The Lax eqiation for m = 1 states that ∂t1L = [∂x,L], or ∂t1ui = ∂xui, which allows
one to identify t1 with x. More precisely, the evolution in t1 simply shifts the argument
x of all functions: ui(x) → ui(x+ t1). The evolution in higher times can not be expressed
in such a simple form.
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There is another representation of the KP hierarchy which is equivalent to the one
given above. In this alternative representation the Lax operator does not participate in
an explicit form, only the di�erential operators Am take part. We will show that the Lax
equations imply the equations

∂tmAn − ∂tnAm − [Am, An] = 0

for all m,n ≥ 1, which are called the Zakharov-Shabat equations, or zero curvature
equations. For the proof we note that by virtue of the Lax equations it holds ∂tmLn =
[Am,Ln] for all n, and then

∂tm(Ln)+ − ∂tn(Lm)+ − [Am, An]

=
(
∂tmLn − ∂tnLm − [Am, An]

)
+

=
(
[Am,Ln]− [An,Lm]− [Am, An]

)
+

=
(
[Am, Ln−An]− [An,Lm]

)
+

=
(
[(Lm)+, (Ln)−]− [(Ln)+,Lm]

)
+

=
(
[Lm, (Ln)−] + [Lm, (Ln)+]

)
+

=
(
[Lm,Ln]

)
+

= 0.

The inverse statement is also true: the full collection of the Zakharov-Shabat equations
imply the Lax equations. Clearly, the Zakharov-Shabat equations are equivalent to the
commutation relation [∂tm − Am, ∂tn − An] = 0.

Each of the Zakharov-Shabat equations provides a closed system of a �nite number of
di�erential equations for a �nite number of unknown functions. However, this system in
general can not be represented in an evolution form; it contains derivatives with respect
to three times x = t1, tm, tn. For n > m, the system contains n − 1 equations for the
functions u1, u2, . . . , un−1. These systems are usually referred to as equations of the KP
hierarchy. The simplest non-trivial case is m = 2, n = 3. Denoting t1 = x, t2 = y, t3 = t,
u = 2u1, w = u2, we arrive at a system of two equations for u and w, from which w can
be excluded. The resulting equation for u is the KP equation. In general case the system
can not be reduced to a single equation.

Linear problems and tau-function. The Zakharov-Shabat equations are compatibility
conditions for a system of linear problems for a wave function ψ:

∂tmψ = Amψ.

Compatibility means existence of a large set of common solutions. They can be found as
a series in a spectral parameter z. The spectral parameter plays a very important role,
although it does not enter the linear equations explicitly. Let t denote the set of times
tm, t = {t1, t2, t3, . . .}. The following standard notation is useful:

ξ(t, z) =
∑
k≥1

tkz
k.
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The wave function can be found in the form

ψ(x, t; z) = exz+ξ(t,z)
(
1 + ξ1(x, t)z

−1 + ξ2(x, t)z
−2 + . . .

)
.

Introduce also the conjugated (dual) wave function ψ∗ (hereafter the star does not mean
the complex congugation). It satis�es the conjugate linear equations

−∂tmψ∗ = A†mψ
∗

and can be represented as a series of the form

ψ∗(x, t; z) = e−xz−ξ(t,z)
(
1 + ξ∗1(x, t)z

−1 + ξ∗2(x, t)z
−2 + . . .

)
.

It can be shown that the set of all linear problems is equivalent to the following
integral relation: ∮

C∞
ψ(x, t; z)ψ∗(x, t′; z)dz = 0,

which holds for all t, t′, and where the contour C∞ is a big circle around ∞ of radius
R → ∞. In other words, the coe�cient at 1/z in the expansion of the expression under
the integral in a Laurent series is equal to 0. In its turn, this integral relation implies
existence of a function τ(x, t) such that

ψ(x, t; z) = exz+ξ(t,z) τ(x, t− [z−1])

τ(x, t)
,

ψ∗(x, t; z) = e−xz−ξ(t,z)
τ(x, t+ [z−1])

τ(x, t)
,

where we use the notation

t± [z−1] =
{
t1 ± z−1, t2 ± 1

2
z−2, t3 ± 1

3
z−3, . . .

}
.

The function τ(x, t) is the tau-function of the KP hierarchy. The integral relation for the
wave functions is then rewritten as the following bilinear integral functional relation for
the tau-function: ∮

C∞
eξ(t−t

′,z)τ(x, t− [z−1])τ(x, t′ + [z−1])dz = 0.

It serves as a generating relation for all equations of the KP hierarchy. Di�erential
equations of the hierarchy are obtained by expansion of the integral bilinear relation
in powers of t − t′. The coe�cient functions ui in the Lax operator are expressed as
combinations of derivatives of the tau-function with respect to the times. For example,

u1 = ∂2x log τ, u2 =
3

2
(∂3x log τ + ∂t2∂x log τ).

(Recall that ∂x = ∂t1 . )

Later we will need a corollary of the integral bilinear relation, which is obtained from
it by di�erentiating with respect to tm and setting t′ = t after that. As a result, we
obtain the relation

1

2πi

∮
C∞

zmψ(x, t; z)ψ∗(x, t; z)dz = ∂tm∂x log τ(x, t).
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Correspondence with the CM system on the level of hierarchies

We have seen that the dynamics of poles of rational with respect to x = t1 solutions of
the KP equation in the time t2 coincides with the Hamiltonian �ow of the rational CM
system with the Hamiltonian H2 = trL2. It turns out that this correspondence can be
extended to the whole hierarchy: the dynamics of poles of rational with respect to x = t1
solutions in any of the higher times tm coincides with the Hamiltonian �ow of the rational
CM system with the Hamiltonian Hm = trLm. This result was obtained by Shiota [13]
in 1994. Here we present the proof in a modi�ed form.

The tau-function for rational solutions with poles at xj is a polynomial with the roots
xj:

τ(x, t) =
N∏
j=1

(x− xj(t)),

so

u1 = −
N∑
j=1

1

(x− xj(t))2
.

The wave functions ψ, ψ∗ have simple poles at xj. They can be represented in the form

ψ = exz+ξ(t,z)
(
1 +

N∑
j=1

cj
x− xj(t)

)
,

ψ∗ = e−xz−ξ(t,z)
(
1 +

N∑
j=1

c∗j
x− xj(t)

)
.

Plugging them in the relation

1

2πi

∮
C∞

zmψ(x, t; z)ψ∗(x, t; z)dz = ∂tm∂x log τ(x, t),

obtained above, we get:

1

2πi

∮
C∞

dz zm
(
1 +

∑
j

c∗j
x− xj)

)(
1 +

∑
j

cj
x− xj)

)
=
∑
j

∂tmxj
(x− xj)2

.

Equating the coe�cients at the highest poles, we obtain:

∂tmxj =
1

2πi

∮
C∞

zmc∗jcjdz.

The coe�cients ci, c
∗
i can be regarded as components of the vectors

c = (c1, . . . , cN)
T, c∗ = (c∗1, . . . , c

∗
N).

From the analysis of the pole dynamics in y = t2 with other times �xed, we have:

c = −(zI − L)−1e, c∗ = eT(zI − L)−1,

where L is the Lax matrix of the rational CM system (with g = 1). Then

∂tmxj = res
∞

∑
k,k′

zm
( 1

zI − L

)
kj

( 1

zI − L

)
jk′
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= res
∞

tr
(
zmE

1

zI − L
Ej

1

zI − L

)
,

where E is the matrix whose all entries are equal to 1, and Ej is the diagonal matrix
with 1 at the place jj and zeros otherwise. Recall that Ej = −∂L/∂pj, as well as the
commutation relation [L,X] = E − I, from which we have

E = LX −XL+ I.

Now we �nd:

tr
(
E

1

zI − L
Ej

1

zI − L

)
= −tr

(
(LX −XL+ I)

1

zI − L

∂L

∂pj

1

zI − L

)

= −tr
(
X

1

zI − L

∂L

∂pj

L

zI − L

)
+ tr

(
X

L

zI − L

∂L

∂pj

1

zI − L

)
− tr

(
1

zI − L

∂L

∂pj

L

zI − L

)

= tr

(
X

1

zI − L

∂L

∂pj

)
− tr

(
X
∂L

∂pj

1

zI − L

)
+

∂

∂pj
tr

1

zI − L
.

Since X and ∂L/∂pj are diagonal matrices, the �rst two terms cancel each other due to
the cyclic property of the trace, and we are left with

∂tmxj = − ∂

∂pj
res
∞

(
zmtr

1

zI − L

)
=

∂

∂pj
trLm =

∂Hm

∂pj
.

We have obtained the �rst half of the Hamiltonian equations for the tm-�ow.

To derive the other half, we di�erentiate the relation

∂tmxj = − res
∞

(
zmc∗jcj

)
with respect to t2:

∂tm ẋj = − res
∞

(
zm(c∗j ċj + ċ∗jcj)

)
(the t2-derivative is denoted by the dot).

From the analysis of the pole dynamics in t2 it follows that ċ = Mc, ċ∗ = −c∗M ,
whereM is theM -matrix of the Lax pair fot the rational CM system (with g = 1). Hence

∂tmpj =
1

2
∂tm ẋj = −1

2

∑
k

res
∞

(
zm(c∗iMjkck − c∗kMkjcj)

)

=
1

2
res
∞

[
zmtr

(
E

1

zI − L
[Ej,M ]

1

zI − L

)]

= res
∞

[
zmtr

(
LX −XL+ I)

1

zI − L

∂L

∂xj

1

zI − L

)]
.

Note that the matrix [Ej,M ] = 2∂L/∂xj has matrix elements

[Ej,M ]ik = 2
δij − δjk
(xi − xk)2

.
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This expression has the same form as the one for ∂tmxi, but instead of derivative with
respect to pj we now have the derivative with respect to xj. Repeating the chain of
equalities given above, we �nally obtain:

∂tmpj = − ∂

∂xj
trLm = −∂Hm

∂xj
.

This is the second half of the Hamiltonian equations. Therefore, we have shown that
the tm-�ows of the KP hierarchy correspond to the higher Hamiltonian �ows of the CM
system generated by the Hamiltonians Hm = trLm.

The correspondence between the KP �ows and Hamiltonian �ows of the CM system
can be extended to the trigonometric and elliptic cases. However, in these cases its form
is not so simple, and the proofs become technically more di�cult. In the trigonometric
case, the tm-�ows of the KP hierarchy correspond to CM �ows with the Hamiltonians

Hm =
1

2(m+ 1)γ
tr
(
(L+ γI)m+1 − (L− γI)m+1

)
,

which are linear combinations of Hm = trLm. The detailed proof can be found in [14].
The elliptic case was addressed in [15]. The result is as follows. Introduce the function
λ(z) which is de�ned from the equation of the spectral curve

det
(
(z + ζ(λ))I − L(λ)

)
= 0

with the Lax matrix of the elliptic CM system L(λ) depending on the spectral parameter
λ. As z → ∞, this function has the expansion

λ(z) = −Nz−1 +
∑
m≥1

Hmz
−m−1.

It is the generating function of the Hamiltonians

Hm = − res
∞
(zmλ(z))

of the elliptic CM system, which generate the dynamics of poles of elliptic solutions in
the times tm.

Matrix KP hierarchy and elliptic solutions of the matrix KP equ-

ation

The KP equation (and the whole hierarchy) has a matrix generalization, when the
coe�cient functions in the pseudo-di�erential Lax operator are matrices of size n×n. We
will show that elliptic solutions of the matrix KP equation lead to the spin CM system
as the dynamics of the poles and matrix coe�cients in front of the poles.

Multi-component KP hierarchy. We begin with a more general multi-component
KP hierarchy; the matrix hierarchy is its subhierarchy. The independent variables are n
in�nite sets of continuous times

t = {t1, t2, . . . , tn}, tα = {tα,1, tα,2, tα,3, . . . }, α = 1, . . . , n.
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In addition, it is convenient to introduce a variable x such that

∂x =
n∑

α=1

∂tα,1 .

The hierarchy is an in�nite set of compatible evolution equations in the times t for matrix
functions of the variable x.

In the Lax-Sato formalism, the main object is the pseudo-di�erential operator with
matrix coe�cients of the form

L = ∂x + u1∂
−1
x + u2∂

−2
x + . . . ,

where the coe�cients ui = ui(x, t) are n×n matrices. They depend on x and on all the
times:

uk(x, t) = uk(x+ t1,1, x+ t2,1, . . . , x+ tn,1; t1,2, . . . , tn,2; . . .).

One should also introduce n matrix pseudo-di�erential operators ìàòðè÷íûõ ïñåâäî-
äèôôåðåíöèàëüíûõ îïåðàòîðîâ R1, . . . ,Rn of the form

Rα = Eα + uα,1∂
−1
x + uα,2∂

−2
x + . . . ,

where Eα is the diagonal n×n matrix in which the element (α, α) is equal to 1, and all
other elements are 0. The operators L, R1, . . . ,Rn are constrained by the conditions

LRα = RαL, RαRβ = δαβRα,
n∑

α=1

Rα = I.

The Lax equations are as follows:

∂tα,k
L = [Aα,k, L], ∂tα,k

Rβ = [Aα,k, Rβ], Aα,k =
(
LkRα

)
+
, k = 1, 2, 3, . . . .

It is instructive to introduce the matrix pseudo-di�erential �wave operator� (or dressing
operator) W with matrix elements

Wαβ = δαβ +
∑
k≥1

ξk,αβ(x, t)∂
−k
x ,

where ξk,αβ(x, t) are some matrix functions. The operators L and Rα are obtained from
the �bare� operators I∂x and Eα by the �dressing� with the help of the wave operator:

L = W∂xW−1, Rα = WEαW−1.

It is clear that there is a freedom in the de�nition of the wave operator: it can be multiplied
from the right by an arbitrary pseudo-di�erential operator with constant coe�cients, i.e.,
by a series in inverse powers of ∂x starting from I such that it commutes with Eα for all
α.

An important role in the theory is played by the wave function Ψ and its dual Ψ∗. The
wave function is de�ned as the result of action of the wave operator to the exponential
function:

Ψ(x, t; z) = W exp
(
xzI +

n∑
α=1

Eαξ(tα, z)
)
.
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By de�nition, the operators ∂−kx act as ∂−kx exz = z−kexz. Clearly, the expansion of the
wave function as z → ∞ has the following form:

Ψαβ(x, t; z) = exz+ξ(tβ ,z)
(
δαβ + ξ1,αβz

−1 + ξ2,αβz
−2 + . . .

)
.

The dual function is introduced by the formula

Ψ∗(x, t; z) = exp
(
−xzI −

n∑
α=1

Eαξ(tα, z)
)
W−1.

Here we adopt the convention that the operators ∂x that are contained in W−1 act not

to the right but to the left. The left action is de�ned as f
←
∂x≡ −∂xf .

It can be proved that the wave function satisfy the linear equations

∂tα,mΨ(x, t; z) = Aα,mΨ(x, t; z),

where Aα,m is the di�erential operator îïåðàòîð Aα,m =
(
WEα∂

m
x W−1

)
+
, and the dual

function satisfy the conjugated equation

−∂tα,mΨ
∗(x, t; z) = Ψ∗(x, t; z)Aα,m.

Here the operator Aα,m acts to the left.

Matrix KP hierarchy. The matrix KP hierarchy is a subhierarchy of the multi-
component KP which is obtained by the following restriction of the independent variables:

tα,m = tm for all α and m, so that the vector �eld ∂tm coincides with
n∑

α=1

∂tα,m . The wave

function of the matrix KP hierarchy has the expansion

Ψαβ(x, t; z) = exz+ξ(t,z)
(
δαβ + ξ1,αβ(t)z

−1 +O(z−2)
)
,

where ξ(t, z) =
∑
k≥1

tkz
k. The wave function and its dual satisfy the linear equations

∂tmΨ(t; z) = AmΨ(t; z), −∂tmΨ†(t; z) = Ψ†(t; z)Bm, m ≥ 1,

where Am is the di�erential operator Am =
(
W∂mx W−1

)
+
. Atm = 1 we have ∂t1Ψ = ∂xΨ,

so we can identify ∂x = ∂t1 =
N∑

α=1

∂tα,1 . This means that the evolution in t1 is simply a

shift of x: ξk(x, t1, t2, . . .) = ξk(x+ t1, t2, . . .). At m = 2 we have the linear equations

∂t2Ψ = ∂2xΨ+ 2V (x, t)Ψ,

−∂t2Ψ∗ = ∂2xΨ
∗ + 2Ψ∗V (x, t)

(note that Ψ, Ψ∗ and V are matrices, and the order is important), which have the form
of matrix non-stationary Schrodinger equations with the potential

V (x, t) = −∂xξ1(x, t).
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Elliptic solutions. Consider solutions that are elliptic functions of x, and �nd their
evolution in the time t2. Unlike in the scalar case, where the coe�cient in front of each
pole was equal to a �xed constant, in the matrix case these coe�cients are dynamical
variables, and their dynamics should be found together with the dynamics of poles. This
problem was solved in the paper [17], where it was shown that this dynamics coincides
with that of the spin CM system.

Like in the scalar case, we address the linear problems. Suppose that the wave
functions Ψ, Ψ∗ (and the coe�cient ξ1), as functions of x, have simple poles at N points
xi, i = 1, . . . , N . One can show (here we omit the arguments) that the residues at the
poles are matrices of rank 1. Then it is natural to parametrize them by column vectors
ai = (a1i , a

2
i , . . . , a

n
i )

T, bi = (b1i , b
2
i , . . . , b

n
i )

T:

ξ1,αβ = Sαβ −
∑
i

aαi b
β
i ζ(x− xi),

where Sαβ does not depend on x. Therefore,

Vαβ(x, t) = −
∑
i

aαi b
β
i ℘(x− xi).

Components of the vectors ai, bi are going to be the spin variables in the spin CM system.

Like in the scalar case, the wave functions can be represented as linear combinations
of the elementary double-Bloch functions:

Ψαβ = ezx+ξ(t,z)
∑
i

aαi c
β
i Φ(x− xi, λ),

Ψ∗αβ = e−zx−ξ(t,z)
∑
i

c∗αi b
β
i Φ(x− xi,−λ),

where cαi , c
∗α
i are components of some x-independent vectors ci = (c1i , . . . , c

n
i )

T, c∗i =
(c∗1i , . . . , c

∗n
i )T.

Consider �rst the linear equation for Ψ. Substituting the explicit form of Ψ and V ,
we see that the both sides have poles at x = xi up to the third order. Equating the
coe�cients in front of the poles of di�erent orders, we arrive at the conditions

� at 1
(x−xi)3

: bνi a
ν
i = 1;

� at 1
(x−xi)2

: −1

2
ẋic

β
i −

∑
j ̸=i

bνi a
ν
j c

β
jΦ(xi−xj, λ) = zcβi ;

� at 1
x−xi

: ∂t2(a
α
i c

β
i ) = ℘(λ)aαi c

β
i

− 2
∑
j ̸=i

aαi b
ν
i a

ν
j c

β
jΦ
′(xi − xj, λ)− 2cβi

∑
j ̸=i

aνi b
ν
ja

α
j ℘(xi − xj),

where dot means the t2-derivative. Here and below summation over repeated Greek
indices is assumed. In a similar way, cancellation of poles in the linear problem for the
dual wave function Ψ∗ leads to the conditions

� at 1
(x−xi)3

: bνi a
ν
i = 1 (as above);
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� at 1
(x−xi)2

: −1

2
ẋic
∗α
i −

∑
j ̸=i

c∗αj b
ν
ja

ν
iΦ(xj−xi, λ) = zc∗αi ;

� at 1
x−xi

: ∂t2(c
∗α
i b

β
i ) = −℘(λ)c∗αi b

β
i

+ 2
∑
j ̸=i

c∗αj b
ν
ja

ν
i b

β
i Φ
′(xj − xi, λ) + 2c∗αi

∑
j ̸=i

bνi a
ν
j b

β
j ℘(xi − xj).

We have used the obvious property Φ(x,−λ) = −Φ(−x, λ). The conditions coming from
cancellation of the third order poles are constraints on the vectors ai, bi. The other
conditions in matrix form can be written as follows:

(zI − L(λ))cβ = 0,

ċβ =M(λ)cβ,


c∗α(zI − L(λ)) = 0,

ċ∗α = c∗αM∗(λ),

where cβ = (cβ1 , . . . , c
β
N)

T, c∗α = (c∗α1 , . . . , c
∗α
N ) are N -component vectors, and L(λ),M(λ),

M∗(λ) are N×N matrices

Lij(λ) = −1

2
ẋiδij − (1− δij)b

ν
i a

ν
jΦ(xi − xj, λ),

Mij(λ) = (℘(λ)− Λi)δij − 2(1− δij)b
ν
i a

ν
jΦ
′(xi − xj, λ),

M∗
ij(λ) = −(℘(λ)− Λ∗i )δij + 2(1− δij)b

ν
i a

ν
jΦ
′(xi − xj, λ).

Here

Λi =
ȧαi
aαi

+ 2
∑
j ̸=i

aαj b
ν
ja

ν
i

aαi
℘(xi − xj), −Λ∗i =

ḃαi
bαi

− 2
∑
j ̸=i

bνi a
ν
j b

α
j

bαi
℘(xi − xj)

does not depend on the index α (in these formulas there is summation over ν but no
summation over α). In fact Λi = Λ∗i , so M∗(λ) = −M(λ). Indeed, multiplying the
formulas for Λi, Λ

∗
i by aαi b

α
i (no summation!), summing over α and then summing the

two equations, we get Λi − Λ∗i = ∂t2(a
α
i b

α
i ) = 0 by virtue of the constraint aαi b

α
i = 1.

The condition of compatibility of the linear system states that

(L̇+ [L,M ])cβ = 0.

Write the equations for Λi, Λ
∗
i in the form

ȧαi = Λia
α
i − 2

∑
j ̸=i

aαj b
ν
ja

ν
i ℘(xi − xj),

ḃαi = −Λib
α
i + 2

∑
j ̸=i

bνi a
ν
j b

α
j ℘(xi − xj)

(in this form they look like equations of motion for the spin variables). They guarantee
vanishing of the o�-diagonal matrix elements of the matrix L̇+ [L,M ]. Vanishing of the
diagonal elements provides equations of motion for the poles xi:

ẍi = 4
∑
j ̸=i

bµi a
µ
j b

ν
ja

ν
i ℘
′(xi − xj).
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The gauge transformation aαi → aαi qi, b
α
i → bαi q

−1
i with qi = exp

(∫ t2
Λidt

)
gets rid of Λi,

so we can put Λi = 0. This gives the equations of motion:

ȧαi = −2
∑
j ̸=i

aαj b
ν
ja

ν
i ℘(xi − xj), ḃαi = 2

∑
j ̸=i

bνi a
ν
j b

α
j ℘(xi − xj)

obtained from the Lax equation before.
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