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The Kadomtsev-Petviashvili equation and its singular

solutions

Starting from this section, we will deal with integrable nonlinear equations and will
show that their �nite-dimensional reductions give systems of the CM and RS type. More
precisely, let us consider solutions of a nonlinear integrable equation such that they have
poles in one of the variables (usually, the space variable). Then the dynamics of the poles
in another (time) variable turns out to be given by equations of motion of a system of
the CM or RS type, i.e., the poles move in time as particles of an integrable many-body
system. The proof of this statement suggested by Krichever simultaneously provides one
with a systematic method of �nding the Lax pairs for many-body systems. We will start
with the Kadomtsev-Petviashvili (KP) equation introduced in 1970. It is related to the
CM system.

The KP equation

The KP equation for a function u = u(x, y, t) of 3 variables has the form

3uyy =
(
4ut − 6uux − uxxx

)
x
.

In Physics, this equation is called KP2; the equation KP1 is obtained from it by making
the variable y purely imaginary: y → iy. Properties of solutions and their physical
applications in these two cases are very di�erent, but we will not discuss them because
we are mainly interested in alrebraic matters. Solutions of the KP equation that do not
depend on y satisfy the well known Korteveg-de-Vries (KdV) equation 4ut = 6uux+uxxx.

The KP equation has a commutation representation as the condition of commutativity
of certain di�erential operators. Consider the di�erential operators

A2 = ∂2x + u, A3 = ∂3x +
3
2
u∂x + w.
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Problem. Show that the KP equation is equivalent to the condition [∂y−A2, ∂t−A3] = 0,
or

∂tA2 − ∂yA3 + [A2, A3] = 0.

This condition is called the Zakharov-Shabat equation, or the zero curvature representa-
tion.

The Zakharov-Shabat equation is the compatibility condition for the overdetermined
system of two linear problems

∂yψ = A2ψ, ∂tψ = A3ψ

for a function ψ, which is called the wave function, since the �rst equation has the form
of the non-stationary Schredinger equation in imaginary time with the potential u. The
function ψ plays a very important role in constructing exact solutions to the KP equation:
the method is to solve the linear problems �rst. It is very important for what follows that
the compatibility of the linear problems implies existence of a whole family of solutions
ψ = ψ(z) depending on a complex parameter z, which does not enter the equations. It is
called the spectral parameter. For example, if u = w = 0, then the solution for the wave
function depending on the spectral parameter is of the form ψ = exz+yz2+tz3 .

The KP equation can be represented in the bilinear form.

Problem. Show that the substitution u = 2∂2x log τ brings the KP equation to a bilinear
equation for the function τ .

The function τ is called the tau-function. It plays a very important role in the theory of
the KP and other integrable equations.

The KP equation has a lot of exact solutions of a very di�erent nature. Among them,
mostly well known are soliton solutions which can be found explicitly in a closed form.
For example, the one-soliton solution has the form

u(x, y, t) =
(p− q)2

2 cosh2(1
2
(p− q)x+ 1

2
(p2 − q2)y + 1

2
(p3 − q3)t)

,

where p, q are parameters. Note that this solution, extended to the complex plane, has an
imaginary period and one second order pole in x in the fundamental domain. Position of
the pole depends on y è t. There exist also solutions with a rational dependence on x, as
well as periodic solutions with one or two periods having N poles xi in the fundamental
domain. We will show that the poles xi as functions of y move as particles of the CM
system (rational, trigonometric or elliptic).

Rational solutions of the KP equation and dynamics of their poles

We begin with rational solutions. It is easy to see that if a solution of the KP equation
has a pole in x at some point xi, then this pole has to be of the second order with zero
residue and with the coe�cient −2 in front of it, so any rational solution decreasing to
zero at in�nity can be represented in the form

u(x, y, t) = −2
N∑
j=1

1

(x− xj(y, t))2
.

2



The tau-function is then a polynomial in x:

τ(x, y, t) =
N∏
j=1

(x− xj(y, t)).

The roots (which are poles of u) depend on y, t. We will assume that all of them are
distinct, i.e., all zeros of the tau-function are of the �rst order.

Substituting the function u in this form into the KP equation, one arrives at rather
complicated expressions from which it is di�cult to see that the variables y, t actually
separate. The problem of the pole dynamics of rational solutions to the KP equation was
solved by Krichever in 1978. His method consists in the substitution of the pole ansats
for u not into the nonlinear equation but into the corresponding linear equation for the
wave function. This allows one to separate the variables from the very beginning and to
obtain the Lax representation for the CM system. Of course, applying this method, one
should somehow derive or assume the corresponding pole ansats for the ψ-function. It is
easy to see that for the rational solutions of the type discussed above the wave function
has to have simple poles at the points xi.

Let us present some details of the derivation of the equations of motion for xj's.
Consider their dependence on y. This variable will play the role of time, and derivatives
with respect to it will be denoted by dot. The linear equation for ψ has the form

ψ̇ = ∂2xψ + uψ,

where u is the sum of terms with second order poles. The function ψ will be found in the
form

ψ = exz+yz2
(
c0(z) +

N∑
i=1

ci(z, y)

x− xi(y)

)
,

where z is the spectral parameter and ci are some x-independent coe�cients. Plugging
this in the linear problem, we get:

e−xz−tz2(∂t − ∂2x)

[
exz+tz2

(
c0 +

N∑
i=1

ci
x− xi

)]
+ 2

( N∑
i=1

1

(x− xi)2

)(
c0 +

N∑
i=1

ci
x− xi

)
= 0.

The left-hand side is a rational function of x with poles of the �rst and second orders at
x = xi (possible poles of the third order cancel identically) such that it is equal to 0 at
in�nity. Therefore, it is enough to choose the coe�cients ci so that all the poles cancel.
Equating the coe�cients in front of each pole to 0, we obtain the following system of 2N
linear equations for the coe�cients c1, . . . , cN :

(ẋi + 2z)ci + 2
∑
k ̸=i

ck
xi − xk

= −2c0 (ñîêðàùåíèå ïîëþñîâ 2-ãî ïîðÿäêà),

ċi + 2ci
∑
k ̸=i

1

(xi − xk)2
− 2

∑
k ̸=i

ck
(xi − xk)2

= 0 (ñîêðàùåíèå ïîëþñîâ 1-ãî ïîðÿäêà).

The coe�cient c0 can be put equal to 1 because it only changes the common multiplier
of the ψ-function. These equations van be compactly written in the matrix form:

(L− zI)c = c0e,

ċ =Mc,
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where I is the unity matrix, c = (c1, . . . , cN)
T, e = (1, . . . , 1)T are N -component column

vectors, and N×N matrices L, M are of the form

Lik = −1

2
ẋiδik −

1− δik
xi − xk

,

Mik = −δik
∑
j ̸=i

2

(xi − xj)2
+

2(1− δik)

(xi − xk)2
.

We recognize the Lax pair for the rational CM system with g = 1. Compatibility of the
overdetermined system for ci's implies the Lax equation

L̇+ [L,M ] = 0,

which is equivalent to the equations of motion, as we saw before. The function ψ is then
found as

ψ = exz+yz2
(
1− eT(xI −X(y))−1(zI − L(y))−1e

)
,

where X = diag(x1, . . . , xN).

Elliptic solutions to the KP equation

Let us now consider elliptic (i.e., double-periodic) in x solutions to the KP equation. Such
solutions must have poles. As was already argued, these poles must be of the second order
with zero residue, with the coe�cient −2 in front of each pole. Consider a solution with
N such poles in the fundamental domain. The general form of a double-periodic function
u satisfying these conditions is

u(x, y, t) = −2
N∑
i=1

℘(x− xi(y, t)) + c,

where c is a constant. The corresponding tau-function has the form

τ = eQ(x,y,t)
N∏
i=1

σ(x− xi(y, t)),

where Q(x, y, t) is a quadratic form in the variables x, y, t.

As before, we consider the dynamics of the poles in y which in this context plays the
role of time. We apply the same method, addressing the linear problems. In the linear
equation for ψ,

ψ̇ = ∂2xψ + uψ,

the coe�cient function u is double-periodic, so it is natural to look for solutions among
double-Bloch functions, i.e., the functions that satisfy the conditions ψ(x+2ωα) = Bαψ(x)
with some Bloch multipliers Bα. The simplest non-constant double-Bloch function is the
exponential function eax with arbitrary constant a; all other double-Bloch functions must
have poles. The transformation ψ(x) 7→ ψ̃(x) = ψ(x)eax does not change position of the
poles of any function and preserves the double-Bloch property. Let Bα be the Bloch
multipliers for ψ, then the ones for ψ̃ are B̃α = Bαe

2aωα . We call two pairs of Bloch
multipliers equivalent if they are connected by such a transformation with some a. Note
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that for all pairs of equivalent Bloch multipliers the quantity Bω2
1 B−ω1

2 is the same and
depends on the equivalence class only.

The simplest double-Bloch function that is not equivalent to the exponential function
is the Lam�e-Hermite function

Φ(x, λ) =
σ(x+ λ)

σ(λ)σ(x)
e−ζ(λ)x.

As a function of x, it has a single simple pole in the fundamental domain (at x = 0), and
the Bloch multipliers are e2(ζ(ωα)λ−ζ(λ)ωα). A double-Bloch solution to the linear problem
can be found as a linear combination of the Lam�e-Hermite functions with poles at the
points xi multiplied by an exponential function:

ψ = exz+yz2
N∑
i=1

ciΦ(x− xi, λ).

The coe�cients ci may depend on y and z but not on x. The Bloch multipliers for this
function are

Bα = e2(ωαz+ζ(ωα)λ−ζ(λ)ωα).

This representation is analogous to the representation of a rational function in the form
of a sum of pole terms.

The function ψ̃ = −∂yψ + ∂2xψ + uψ is a double-Bloch function, too, with the same
Bloch multipliers. If one chooses the coe�cients ci in such a way that it has no poles, then
it can be only equal to an exponential function of the form Ceax, which, however, has a
pair of Bloch multipliers not equivalent to B1, B2. Therefore, C = 0 and the function ψ̃
is identically zero. Plugging u and ψ in the linear problem in the form written above, we
have:

−
∑
i

ċiΦ(x− xi) +
∑
i

ciẋiΦ
′(x− xi) + 2z

∑
i

ciΦ
′(x− xi) +

∑
i

ciΦ
′′(x− xi)

− 2

(∑
i

℘(x− xi)

)(∑
k

ckΦ(x− xk)

)
+ c

∑
i

ciΦ(x− xi) = 0,

where we have omitted the second argument of the function Φ for brevity. Di�erent terms
of this expression have poles at x = xi. It easy to see that poles of the third order cancel
identically. The condition of cancellation of the second and �rst order poles have the form

ciẋi = −2zci − 2
∑
j ̸=i

cjΦ(xi − xj),

ċi = (c+ ℘(λ))ci − 2
∑
j ̸=i

cjΦ
′(xi − xj)− 2ci

∑
j ̸=i

℘(xi − xj).

Introducing N×N matrices

Lij(λ) = −1
2
ẋiδij − 2(1− δij)Φ(xi − xj, λ),

Mij(λ) = δij(℘(λ) + c)− 2δij
∑
k ̸=i

℘(xi − xk)− 2(1− δij)Φ
′(xi − xj, λ),
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we can rewrite these conditions in the matrix form as a system of linear equations for
the vector c = (c1, . . . , cN)

T: 
L(λ)c = zc,

ċ =M(λ)c.

We have obtained the Lax pair for the elliptic CM system (the extra term in the matrix
M proportional to the unity matrix is irrelevant because it cancels in the Lax equation).
Therefore, we conclude that the dynamics of poles of elliptic solutions to the KP equation
is isomorphic to the CM dynamics with the elliptic potential and the Hamiltonian

H2 =
∑
i

p2i −
∑
i ̸=j

℘(xi − xj).

The coupling constant g (equal to 1 here) can be easily restored by a rescaling of the
variables and periods.

Problem. Consider the dynamics of poles in the variable t and show that it is isomorphic
to the CM Hamiltonian �ow with the Hamiltonian

H3 = −
∑
i

p3i + 3
∑
i ̸=j

pi℘(xi − xj).
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