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The CM system with elliptic potential

The interaction potential of the trigonometric CM system admits a further deformation,
for which it becomes a double-periodic (elliptic) function in the complex plane with second
order poles. We will call such systems elliptic. In the limit when the second period tends
to in�nity, the elliptic system becomes trigonometric. Most of the properties of rational
and trigonometric systems, including integrability, have their analogs for elliptic systems,
although the formulations and proofs may be more involved.

Elliptic functions. Not assuming that the reader is familiar with elliptic functions, we
give a short introduction to the theory, recalling the basic facts and �xing the notation.
More details can be found in the books [6, 7, 8].

By elliptic functions we mean meromorphic functions of a vcomplex variable with two
linearly independent periods (over R). Such functions are also called double-periodic. If
one of the periods tends to in�nity, the elliptic functions degenerate to trigonometric
(or hyperbolic). According to the Liouville theorem, meromorphic functions that are
bounded in the whole complex plane are constants, so any non-constant elliptic function
must have singularities. Moreover, only one simple pole in the parallelogramm of periods
(the fundamental domain) is impossible since the sum of residues must be zero. So, the
simplest elliptic functions have either two simple poles with opposite residues in the
fundamental domain, or one second order pole with zero residue.

We will use the Weierstrass functions: the ℘-function, the ζ-function and the σ-
function. Among them, only the ℘-function is double-periodic, while the other two, closely
related to it, have simple monodromy properties under shifts by periods. Let ω1, ω2 be
complex numbers such that Im(ω2/ω1) > 0. For instance, we can assume that ω1 is real
positive while ω2 is purely imaginary with positive imaginary part, but from the algebraic
point of view this is not necessary. The points s = 2ω1n1+2ω2n2, n1, n2 ∈ Z form a lattice
Λ in the complex plane. The factor space of the complex plane over this lattice, E = C/Λ,
is a torus (an elliptic curve) realized as a parallelogramm with identi�ed opposite sides.

*e-mail: zabrodin@itep.ru

1



The Weierstrass function ℘(z) is de�ned by the convergent series

℘(z) =
1

z2
+

∑
s ̸=0

( 1

(z − s)2
− 1

s2

)
, s = 2ω1n1 + 2ω2n2, n1, n2 ∈ Z.

It is an even double-periodic function with periods 2ω1, 2ω2: ℘(z+2ωα) = ℘(z), α = 1, 2.
At all points of the lattice it has second order poles, with no other singularities. In a
small neighborhood of 0 it can be expanded as

℘(z) =
1

z2
+O(z2), z → 0

(note the absence of the constant term of the expansion).

The function ζ(z) is a promitive of the ℘-function (with the sign minus): ζ ′(z) =
−℘(z), i.e.,

ζ(z) =
1

z
−

∫ z

0

(
℘(x)− 1

x2

)
dx.

It is de�ned by the series

ζ(z) =
1

z
+

∑
s ̸=0

( 1

z − s
+

1

s
+

z

s2

)
, s = 2ω1n1 + 2ω2n2, n1, n2 ∈ Z.

It is an odd function which is already not double-periodic, but it transforms in a very
simple way under shifts by periods:

ζ(z + 2ωα) = ζ(z) + 2ηα, α = 1, 2,

where ηα are some constants depending on ω1, ω2, and ηα = ζ(ωα), as it can be easily
seen by putting z = −ωα in this formula. It is not di�cult to prove the following relation
between them:

2η1ω2 − 2η2ω1 = πi.

The function ζ(z) has simple poles with residue 1 at all points of the lattice, and no other
singularities. As z → 0, the expansion is

ζ(z) =
1

z
+O(z3).

The function σ(z) can be introduced by the relation σ′(z)/σ(z) = ζ(z), hence

log(σ(z)/z) =
∫ z

0

(
ζ(x)− 1

x

)
dx.

It is de�ned by the following in�nite product over the lattice:

σ(z) = z
∏
s ̸=0

(
1− z

s

)
e

z
s
+ z2

2s2 , s = 2ω1n1 + 2ω2n2, n1, n2 ∈ Z.

Its monodromy properties under shifts by periods are:

σ(z + 2ωα) = −e2ηα(z+ωα)σ(z).
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The σ-function is an odd entire function with �rst order zeros at all points of the lattice.
As z → 0, the expansion is:

σ(z) = z +O(z5).

The Weierstrass functions satisfy a lot of nice non-trivial identities. Here we note the
following:

℘(u)− ℘(v) = − σ(u− v)σ(u+ v)

σ2(u)σ2(v)
,

℘′(u)

℘(u)− ℘(v)
= ζ(u− v) + ζ(u+ v)− 2ζ(u),

σ(a+ b)σ(a− b)σ(u+ c)σ(u− c) + σ(b+ c)σ(b− c)σ(u+ a)σ(u− a)

+ σ(c+ a)σ(c− a)σ(u+ b)σ(u− b) = 0.

The general method of proving such identities is as follows. One should bring everything
to one side or divide one side by the other and consider the expression obtained in this
way as a function of one argument (for example, u). After that one should check that
this function is double-periodic and regular; therefore, by the Liouville theorem it is a
constant. The constant can be found by putting u equal to a particular value such that
the value of the function can be easily calculated.

At ω1 = ∞, ω2 = πi/γ the Weierstrass functions degenerate to hyperbolic ones:

℘(x) =
γ2

sinh2(γx)
+

γ2

3
,

ζ(x) = γ coth(γx)− γ2

3
x,

σ(x) = γ−1e−
1
6
γ2x2

sinh(γx).

If both periods tend to in�nity, the Weierstrass functions become rational:

℘(x) =
1

x2
, ζ(x) =

1

x
, σ(x) = x.

We will also need the function

Φ(x, λ) =
σ(x+ λ)

σ(x)σ(λ)
e−ζ(λ)x,

which is called the Lam�e-Hermite fucntion. It is double-periodic in λ and quasi-periodic
in x:

Φ(x+ 2ωα, λ) = e2(ηαλ−ζ(λ)ωα)Φ(x, λ).

The expansion as x → 0 has the form

Φ(x, λ) =
1

x
− 1

2
℘(λ)x+O(x2).

We note the following identities:

∂xΦ(x, λ) = Φ(x, λ)
(
ζ(x+ λ)− ζ(x)− ζ(λ)

)
,
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Φ(x, λ)Φ(y, λ) = Φ(x+ y, λ)
(
ζ(x) + ζ(y)− ζ(x+ y + λ) + ζ(λ)

)
,

∂xΦ(x, λ)Φ(y, λ)− ∂yΦ(y, λ)Φ(x, λ) = Φ(x+ y, λ)
(
℘(y)− ℘(x)

)
,

which are used in what follows.

The Hamiltonian and equations of motion. The Hamiltonian of the elliptic CM
system has the form

H =
∑
i

p2i − g2
∑
i ̸=j

℘(xi − xj).

The scaling of the coordinates and periods xi → gxi, ωα → gωα allows one to put g = 1
without loss of generality. The equations of motion are:

ẋi = 2pi,

ṗi = −2g2
∑
j ̸=i

℘′(xi − xj),

or, in the Newtonian form,
ẍi = 4g2

∑
j ̸=i

℘′(xi − xj).

The Lax representation. In the elliptic case a whole family of Lax pairs can be
constructed in a natural way. They depend on a complex parameter λ which is called the
spectral parameter. Such families exist in the degenerate cases (rational and trigonometric)
as well; the previously discussed Lax pairs are obtained at λ = ∞. In the elliptic case
there is no distinguished point on the torus like ∞, that is why it is natural to consider
the whole family.

So, the matrices L = L(λ), M = M(λ) now depend on a parameter λ. Their matrix
elements are expressed in terms of the Lam�-Hermite function

Φ(x, λ) =
σ(x+ λ)

σ(x)σ(λ)
e−ζ(λ)x

and its derivative ∂xΦ(x, λ) = Φ′(x, λ) in the following way:

Lij(λ) = −δijpi − g(1− δij)Φ(xi − xj, λ),

Mij(λ) = −2gδij
∑
k ̸=i

℘(xi − xk)− 2g(1− δij)Φ
′(xi − xj, λ).

Problem. Find the trigonometric and rational degenerations of this Lax pair.

Problem. Prove that the Lax equation

L̇(λ) + [L(λ),M(λ)] = 0

is equivalent to the equations of motion.
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As before, the Lax equation implies that the time evolution of the Lax matrix is an
isospectral transformation, and we can conclude that the spectral invariants trLk(λ) are
integrals of motion.

Problem. Find trL2(λ) and trL3(λ) in explicit form.

The characteristic polynomial of the Lax matrix

R(z, λ) = det(zI − L(λ))

is also an integral of motion. The equation R(z, λ) = 0 de�nes a complex curve which is
called the spectral curve. It is an integral of motion.

Problem. Prove that all these integrals of motion are in involution (it is enough to prove
this for eigenvalues of the Lax matrix).

Properties of the spectral curve. Let us investigate the spectral curve de�ned by
the equation

R(z, λ) = det
(
zI − L(λ)

)
= 0

in some detail. The matrix L = L(λ), which has essential singularity at λ = 0, can be
represented in the form L = GL̃G−1, where matrix elements of L̃ do not have essential
singularities and G is the diagonal matrix Gij = δije

−ζ(λ)xi . Therefore,

R(z, λ) =
N∑
k=0

Rk(λ)z
k,

where the coe�cients Rk(λ) are elliptic functions of λ with poles at λ = 0. The functions
Rk(λ) can be represented as linear combinations of the ℘-function and its derivatives.
Coe�cients of this expansion are integrals of motion. Fixing values of these integrals, we
obtain via the equation R(z, λ) = 0 the algebraic curve Γ which is an N -sheet covering
of the initial elliptic curve E realized as a factor of the complex plane with respect to the
lattice generated by 2ω1, 2ω2.

Example (N = 2):

R(z, λ) = det
2×2

(
zI − L(λ)

)
= z2 +

1

2
z(ẋ1 + ẋ2) +

1

4
ẋ1ẋ2 + ℘(x1 − x2)− ℘(λ) = 0.

Problem. Write the equation of the spectral curve at N = 3.

In a small neighborhood of the point λ = 0 the matrix L̃ can be written as

L̃ = −λ−1(E − I) +O(1),

where E is the rank 1 matrix with matrix elements Eij = 1 for all i, j = 1, . . . , N . The
matrix E has eigenvalue 0 with multiplicity N − 1 and another eigenvalue equal to N .
Therefore, we can write R(z, λ) in the form

R(z, λ) = det
(
z + λ−1(E − I) +O(1)

)

=
(
z + (N−1)λ−1 − fN(λ)

)N−1∏
i=1

(z − λ−1 − fi(λ)),
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where fi are regular functions of λ at λ = 0: fi(λ) = O(1) as λ → 0. This means that
the function z has simple poles on all sheets at the points Pj (j = 1, . . . , N) of the curve
Γ located above λ = 0. So we have the following expansions of the function z near the
�points at in�nity� Pj:

z = λ−1 + fj(λ) near Pj, j = 1, . . . , N − 1,

z = −(N−1)λ−1 + fN(λ) near PN .

From these formulas we see that the N -th sheet is distinguished. We call it the upper
sheet.

In order to �nd genus g of the spectral curve Γ, we recall the Riemann-Hurwitz
formula. For a rami�ed covering X → Y of degree n with m rami�cation points Rj,
where X,Y are two Riemann surfaces (algebraic curves), let ej be the rami�cation index
at the point Rj, then the Riemann-Hurwitz formula states that

2g(X)− 2 = n(2g(Y )− 2) +
m∑
j=1

(ej − 1).

Let us apply it to the covering Γ → E . In this case g(E) = 1, so the �rst term in the
right-hand side vanishes, and in general position we have simple rami�cation, i.e., ej = 2
for all j. Therefore, in our case we have 2g−2 = m, wherem is the number of rami�cation
points. The rami�cation points are zeros on Γ of the function ∂R/∂z. Di�erentiating the
equation

R(z, λ) =
(
z + (N−1)λ−1 − fN(λ)

)N−1∏
i=1

(z − λ−1 − fi(λ))

with respect to z, we can conclude that the function ∂R/∂z has simple poles at the
points P1, . . . , PN−1 on all sheets except the upper one, where it has a pole of order
N − 1. The number of poles of any meromorphic function is equal to the number of its
zeros. Therefore, m = 2(N − 1) and so g = N .

We note that the spectral curve Γ is not smooth because in the case of general position
genus g of the curve which is an N -sheet covering of an elliptic curve is g = 1

2
N(N−1)+1.

The spectral curve can be de�ned for the trigonometric and rational CM systems as
well, if one uses the degenerations of the Lax matrix depending on the spectral parameter.
In these cases the elliptic functions degenerate to trigonometric and rational ones, and
the spectral curve becomes a curve of genus 0 with singularities (for example, double
points and cusps).
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