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The CM and RS systems in discrete time

As we argued in the previous sections, one can derive the dynamics of poles of elliptic
solutions to nonlinear integrable equations from the auxiliary linear problems for these
equations. For this, the wave function (the solution to the linear problem) should be
parametrized by residues at the poles xi, which obey a system of linear equations. An
alternative approach is to parametrize the wave function by its zeros yi, rather than by
the residues, and try to derive equations of motion for these zeros. For example, in the
rational case instead of the function ψ in the form

ψ = ekx
(
1 +

∑
i

ci
x− xi

)
one can consider the function

ψ = ekx
∏
i

x− yi
x− xi

and substitute it into the linear equation in this form. As we shall see, this yields a
system of equations connecting the zeros with the poles, and this system is symmetric
under the exchange xi ↔ yi. Hence the zeros obey the same equations of motion as the
poles do, i.e., the equations of motion of the CM or RS system. This fact allows us to
regard the transformation xi → yi (from poles to zeros) as a B�acklund transformation of
the CM or RS systems. In its turn, such transformation can be interpreted as a shift of
the discrete time n ∈ Z by one step. More precisely, denote xi = xni , yi = xn+1

i , then the
B�acklund transformation means evolution in the discrete time xni → xn+1

i . This is the
idea of constructing the integrable time discretization of the CM and RS systems. The
equations of motion in discrete time connect xni , x

n+1
i and xn−1

i , and their properly taken
continuous limit yields the CM or RS equations of motion. This construction is discussed
in the works [27, 28, 29].

The CM system in discrete time

We begin with the CM system in its most general elliptic version.

*e-mail: zabrodin@itep.ru
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The B�acklund transformation. Consider the linear equation

∂tψ = ∂2xψ + 2∂2x log τ ψ

for the wave function ψ, where t = t2. Let us represent the wave function as the ratio
ψ = τ̃ /τ , then the linear equation acquires the form

∂t log
τ̃

τ
= ∂2x log(τ τ̃) +

(
∂x log

τ̃

τ

)2
.

For elliptic solutions the tau-function is

τ = eQ(x,t)
∏
i

σ(x− xi(t)),

where Q(x, t) is some quadratic form in x, t. Its explicit form is not important for us here.
Since ψ should be a double-Bloch function, the general form of τ̃ is

τ̃ = CeQ(x,t)+αx+βt
∏
i

σ(x− yi(t)),

with some constants C, α, β, so

τ̃

τ
= Ceαx+βt

∏
i

σ(x− yi)

σ(x− xi)
.

Substituting this into our equation, we have:∑
i

(
ẋiζ(x− xi)− ẏiζ(x− yi)

)
= −

∑
i

(
℘(x− xi) + ℘(x− yi)

)

+

(∑
i

(
ζ(x− xi)− ζ(x− yi)

))2

+ 2α
∑
i

(
ζ(x− xi)− ζ(x− yi)

)
+ const .

Equating coe�cients at the poles at the points x = xi and x = yi, we get the following
system of �rst order di�erential equations:

ẋi = 2
∑
j ̸=i

ζ(xi − xj)− 2
∑
j

ζ(xi − yj) + 2α,

ẏi = −2
∑
j ̸=i

ζ(yi − yj) + 2
∑
j

ζ(yi − xj) + 2α.

Rede�ning xi → xi+2αt, yi → yi+2αt, one can put α = 0 without any loss of generality.
xi ↔ yi (with the simultaneous inversion of time t→ −t). Note that in the trigonometric
and rational cases the number of the xi's can be not necessarily equal to the number of
yi's because some of them may go to in�nity.

Let us show that these equations imply the equations of motion for the CM system
for the xi's and for the yi's, too. Indeed, taking the time derivative of the �rst equation,
we have:

ẍi = −2
∑
j ̸=i

(ẋi − ẋj)℘(xi − xj) + 2
∑
j

(ẋi − ẏj)℘(xi − yj)

= −4
∑
j ̸=i

(∑
k ̸=i

ζ(xi − xk)−
∑
k

ζ(xi − yk)−
∑
k ̸=j

ζ(xj − xk)+
∑
k

ζ(xj − yk)
)
℘(xi − xj)

+4
∑
j

(∑
k ̸=i

ζ(xi − xk)−
∑
k

ζ(xi − yk)+
∑
k ̸=j

ζ(yj − yk)−
∑
k

ζ(yj − xk)
)
℘(xi − yj).
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It will be shown below that the right-hand side is equal to 4
∑
j ̸=i

℘′(xi − xj), i.e., xi's

satisfy the CM equations of motion. By virtue of the symmetry, the same holds for yi's.
Therefore, the transformation xi → yi is a B�acklund transformation for the CM system.
It sends any solution to another solution of the same system of equations.

This statement is based on the identity

−
∑
j ̸=i

(∑
k ̸=i

ζ(xi − xk)−
∑
k

ζ(xi − yk)−
∑
k ̸=j

ζ(xj − xk)+
∑
k

ζ(xj − yk)
)
℘(xi − xj)

+
∑
j

(∑
k ̸=i

ζ(xi − xk)−
∑
k

ζ(xi − yk)+
∑
k ̸=j

ζ(yj − yk)−
∑
k

ζ(yj − xk)
)
℘(xi − yj)

−
∑
j ̸=i

℘′(xi − xj) = 0,

where x1, . . . , xN , y1, . . . , yN are arbitrary variables.

Proof of the identity. Let us prove this identity.

The �rst nontrivial case is N = 2. Put i = 1 and consider the left-hand side as a
function of x1. It is easy to see that it is an elliptic function of x1. Its possible poles may
be at x1 = x2, x1 = y1, x1 = y2. Setting x1 = x2 + ε and expanding the expression as
ε→ 0, one can check that the left-hand side is actually regular at x1 = x2 and, moreover,
is of order O(ε), so at x1 = x2 it vanishes. In a similar way, we can prove that the
left-hand side is regular at x1 = y1, x1 = y2. Therefore, it is identically equal to 0.

Passing to the general case, we denote the left-hand side by

F
(i)
N = F

(i)
N (x1, . . . , xN , y1, . . . , yN),

and consider it as a function of xi. It is easy to see that it is an elliptic function of xi.
Its possible poles may be at xi = xi0 (i0 = 1, . . . , N , i0 ̸= i) and xi = yi0 (i0 = 1, . . . , N).

Setting xi = xi0 + ε, xi = yi0 + ε and expanding it as ε → 0, one can check that F
(i)
N

is regular, i.e., the singular terms cancel and F
(i)
N = O(1) as ε → 0. Therefore, F

(i)
N is a

function that does not depend on xi. To �nd it, expand F
(i)
N near xi0 up to terms of order

ε0:
F

(i)
N = F

(i0)
N−1(x1, . . . , x̂i, . . . , xN , y1, . . . , ŷi, . . . , yN) +G

(i0)
N−1 +O(ε),

where x̂i, ŷi means that the arguments xi, yi are omitted, and

G
(i0)
N−1 = G

(i0)
N−1(x1, . . . , x̂i, . . . , xN , y1, . . . , yN)

is given by

G
(i0)
N−1 =

1

2

∑
k

℘′(xi0 − yk)−
1

2

∑
k ̸=i,i0

℘′(xi0 − xk) + ζ(xi0 − yi)℘(xi0 − yi)

−
∑

j ̸=i,i0

(
ζ(xi0 − xj)− ζ(xi0 − yi) + ζ(xj − yi)

)
℘(xi0 − xj)
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+
∑
j ̸=i

(
ζ(xi0 − yj)− ζ(xi0 − yi) + ζ(yj − yi)

)
℘(xi0 − yj)

+
( ∑
k ̸=i,i0

ζ(xi0 − xk)−
∑
k ̸=i

ζ(xi0 − yk) +
∑
k ̸=i

ζ(yi − yk)−
∑

k ̸=i,i0

ζ(yi − xk)
)
℘(xi0 − yi).

In the second and the third line we can use the identity

ζ(x)− ζ(y)− ζ(x− y) = −1

2

℘′(x) + ℘′(y)

℘(x)− ℘(y)
,

which allows us to transform sum of the expressions in these lines to the form∑
j ̸=i,i0

(
1

2
℘′(xi0 − xj)−

1

2
℘′(xi0 − yj)

+
(
ζ(xi0 − yj) + ζ(yj − yi)− ζ(xi0 − xj)− ζ(xj − yi)

)
℘(xi0 − yi)

)
+
(
ζ(xi0 − yi0)− ζ(xi0 − yi) + ζ(yi0 − yi)

)
℘(xi0 − yi0).

Substituting this back into the expression for G
(i0)
N−1, we obtain, after some cancellations:

G
(i0)
N−1 =

1

2
℘′(xi0 − yi) +

1

2
℘′(xi0 − yi0)

+
(
ζ(xi0 − yi0)− ζ(xi0 − yi) + ζ(yi0 − yi)

)(
℘(xi0 − yi0)− ℘(xi0 − yi)

)
.

Using the identity connecting the ζ- and℘-functions again, we see that G
(i0)
N−1 = 0.

To �nish the proof, we use the induction: suppose that F
(i)
N−1 = 0 (as we know, this

holds for N = 3), then F
(i)
N = O(ε) as ε→ 0 and, therefore, F

(i)
N = 0.

B�acklund transformations as dynamics in discrete time. The B�acklund trans-
formation xi → yi can be regarded as a shift in the discrete time n ∈ Z by one step.
Having this in mind, denote xi = xni , yi = xn+1

i , then the equations that de�ne the
B�acklund transformation acquire the form

ẋni = 2
∑
j ̸=i

ζ(xni − xnj )− 2
∑
j

ζ(xni − xn+1
j ),

ẋn+1
i = −2

∑
j ̸=i

ζ(xn+1
i − xn+1

j ) + 2
∑
j

ζ(xn+1
i − xnj ).

Shifting n → n − 1 in the second equation and subtracting them after that, we obtain
equations of motion for the CM system in discrete time which connects xni , x

n+1
i and

xn−1
i : ∑

j

ζ(xni − xn+1
j ) +

∑
j

ζ(xni − xn−1
j )− 2

∑
j ̸=i

ζ(xni − xnj ) = 0. (0.1)

Remarkably, these equations coincide with the system of nested Bethe ansatz equations
for the elliptic quantum Gaudin model associated with the root system Am. In this case
the discrete time n may take only values 0, 1, . . . ,m+1. At present it is not clear whether
this coincidence is caused by some profound reasons.

The Hamiltonian approach to time discretization of integrable many-body systems is
discussed in the book [5].
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Continuum limit. The equations just obtained admit di�erent continuum limits to
continuous time. As is easy to see, the simplest naive limit gives trivial equations of
motion ẍi = 0. In order to obtain something less trivial, one should take the limit in a
more clever way. To wit, put t = nδ, xni → xi(t) + εn, so that

xn±1
i → xi ± ε± δẋi +

1
2
δ2ẍi + . . .

as ε, δ → 0, with δ = O(ε2). Separating the terms with j = i in the sums entering the
equations of motion and those with j ̸= i, and expanding them separately, we obtain in
the �rst non-vanishing order:

1

ε+ δẋi − 1
2
δ2ẍi

− 1

ε+ δẋi +
1
2
δ2ẍi

− ε2
∑
j ̸=i

℘′(xi − xj) = 0,

or, after cancellation of singular terms,

ẍi = 4g2
∑
j ̸=i

℘′(xi − xj), g =
ε2

2δ
.

These are familiar equations of motion of the elliptic CM system in continuous time.

The RS system in discrete time

In this case the main idea is the same as for the CM system with the only di�erence that
instead of the linear problem for the KP equation one should consider the one for the 2D
Toda chain.

The B�acklund transformation. Consider the �rst linear problem for the 2D Toda
chain:

∂tψ(x) = ψ(x+ η) + ∂t log
τ(x+ η)

τ(x)
ψ(x),

where t = t1. Let us represent the wave function in the form ψ = τ̃ /τ and substitute it
into the linear equation:

∂t log
τ̃(x)

τ(x+ η)
=
τ̃(x+ η)τ(x)

τ(x+ η)τ̃(x)
.

For elliptic solutions
τ = eQ(x,t)

∏
i

σ(x− xi(t)),

where Q(x, t) is some quadratic form in x, t, which is not important for us here. Since ψ
should be a double-Bloch function, the general form of τ̃ is

τ̃ = AeQ(x,t)+αx+βt
∏
i

σ(x− yi(t)),

with some constants A,α, β, so that

τ̃

τ
= Aeαx+βt

∏
i

σ(x− yi)

σ(x− xi)
.
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Substituting this into the equation, we have:

∑
i

(
ẋiζ(x− xi + η)− ẏiζ(x− yi)

)
= eαη

∏
i

σ(x− xi)σ(x− yi + η)

σ(x− yi)σ(x− xi + η)
+ const.

Equating residues at the poles at x = xi − η and x = yi, we get the system of equations
of the following form:

ẋi = C
∏
k ̸=i

σ(xi − xk − η)

σ(xi − xk)

∏
j

σ(xi − yj)

σ(xi − yj − η)
,

ẏi = C
∏
k ̸=i

σ(yi − yk + η)

σ(yi − yk)

∏
j

σ(yi − xj)

σ(yi − xj + η)

with some constant C, which can be put equal to 1 without loss of generality (this can
be achieved by a rescaling of time). These equations are symmetric with respect to the
simultaneous exchange xi ↔ yi and η → −η. As before, in the trigonometric and rational
cases the number of xi's may be not necessarily equal to the number of yi's.

The equations just obtained imply that the both sets of variables, xi's and yi's,
satisfy the RS equations of motion, i.e., the transformation xi → yi is indeed a B�acklund
transformation. To prove this, we need some special technique. Introduce the function

ϕ(x, y) =
σ(x+ y)

σ(x)σ(y)
,

which di�ers from the Lam�-Hermite function only by an exponential multiplier. After a
proper rescaling of time, the system obtained above can be written in the form

ẋi =
∏
k ̸=i

ϕ(xi − xk,−η)
∏
j

ϕ(xi − yj − η, η),

ẏi = −
∏
k ̸=i

ϕ(yi − yk, η)
∏
j

ϕ(yi − xj + η,−η),

while the RS equations of motion acquire the form

ẍi
ẋi

=
∑
k ̸=i

ẋk

(
ϕ′(xk − xi,−η)
ϕ(xk − xi,−η)

− ϕ′(xi − xk,−η)
ϕ(xi − xk,−η)

)
,

where ϕ′(x, y) = ∂xϕ(x, y). Note that the rescaling of time does not make any e�ect since
the equations are homogeneous in time. Taking the time derivative of the �rst equation,
we have:

ẍi
ẋi

=
∑
k ̸=i

(ẋi − ẋk)
ϕ′(xi − xk,−η)
ϕ(xi − xk,−η)

+
∑
k

(ẋi − ẏk)
ϕ′(xi − yk − η, η)

ϕ(xi − yk − η, η)

=
∑
k ̸=i

ẋk

(
ϕ′(xk − xi,−η)
ϕ(xk − xi,−η)

− ϕ′(xi − xk,−η)
ϕ(xi − xk,−η)

)

−
∑
k ̸=i

ẋk
ϕ′(xk − xi,−η)
ϕ(xk − xi,−η)

+
∑
k ̸=i

ẋi
ϕ′(xi − xk,−η)
ϕ(xi − xk,−η)

+
∑
k

(ẋi − ẏk)
ϕ′(xi − yk − η, η)

ϕ(xi − yk − η, η)
.
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Comparing with the RS equations of motion, we see that it is necessary to prove that
the sum in the third line is actually zero. This follows from the identity∑

i

ẋi =
∑
i

ẏi

or

∑
i

∏
k ̸=i

ϕ(xi−xk,−η)
∏
j

ϕ(xi−yj−η, η) +
∏
k ̸=i

ϕ(yi−yk, η)
∏
j

ϕ(yi−xj+η,−η)

 = 0,

which is proved below. Indeed, taking the derivative of this identity with respect to xi
and using the equations of the system, we just see that the sum in the third line is zero.
Our identity is a particular case of a more general one, which has the form

n∏
i=1

ϕ(wi, zi) =
n∑

i=1

ϕ
(
wi,

n∑
k=1

zk
) n∏
j ̸=i

ϕ(wj − wi, zj).

It will be proved below. The initial identity can be obtained from this more general one
by putting n = 2N − 1. It is then convenient to take the sum over i = 2, . . . , 2N . Let us
choose the variables in the following way:

z2 = . . . = zN = −η, zN+1 = . . . = z2N = η, so that
2N∑
k=2

zk = η,

w2 = x1 − x2, . . . , wN = x1 − xN , wN+1 = x1 − y1 − η, . . . , w2N = x1 − yN − η.

Then the identity yields:
N∑
i=1

ẋi =
N∑
i=1

ẏi â ôîðìå ẋ1 = −
N∑
i=2

ẋi +
N∑
i=1

ẏi.

The fact that the yi's satisfy the same RS equations of motion follow from the
symmetry xi ↔ yi.

Proof of the identity. We begin with the simplest case n = 2.

Problem. Prove the identity

ϕ(w1, z1)ϕ(w2, z2) = ϕ(w1, z1 + z2)ϕ(w2 − w1, z2) + ϕ(w2, z1 + z2)ϕ(w1 − w2, z1).

In the general case the proof can be done by induction. Suppose that the identity holds
at some n and prove that this implies that it holds also for n→ n+ 1:

n+1∏
i=1

ϕ(wi, zi) =
n+1∑
i=1

ϕ
(
wi,

n+1∑
k=1

zk
) n+1∏

j ̸=i

ϕ(wj − wi, zj).

By the induction assumption, we can transform the left-hand side:

n+1∏
i=1

ϕ(wi, zi) =
n∑

i=1

ϕ(wn+1, zn+1)ϕ
(
wi,

n∑
k=1

zk
) n∏
j ̸=i

ϕ(wj − wi, zj)

=
n∑

i=1

ϕ(wn+1 − wi, zn+1)ϕ
(
wi,

n+1∑
k=1

zk
) n∏
j ̸=i

ϕ(wj − wi, zj)
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+
n∑

i=1

ϕ
(
wi − wn+1,

n∑
k=1

zk
)
ϕ
(
wn+1,

n+1∑
k=1

zk
) n∏
j ̸=i

ϕ(wj − wi, zj),

where we have used the identity from the problem above. Consider the right-hand side
of the identity and write the �rst n terms of the sum separately:

n+1∑
i=1

ϕ
(
wi,

n+1∑
k=1

zk
) n+1∏

j ̸=i

ϕ(wj − wi, zj)

=
n∑

i=1

ϕ
(
wi,

n+1∑
k=1

zk
) n+1∏

j ̸=i

ϕ(wj − wi, zj) + ϕ
(
wn+1,

n+1∑
k=1

zk
) n∏
j=1

ϕ(wj − wn+1, zj).

Comparing with the left-hand side, we see that the �rst terms in these expressions
coincide. Therefore, we should prove that

n∑
i=1

ϕ
(
wi − wn+1,

n∑
k=1

zk
)
ϕ
(
wn+1,

n+1∑
k=1

zk
) n∏
j ̸=i

ϕ(wj − wi, zj)

= ϕ
(
wn+1,

n+1∑
k=1

zk
) n∏
j=1

ϕ(wj − wn+1, zj).

After cancellation of the common multiplier ϕ
(
wn+1,

n+1∑
k=1

zk
)
we see that the equality

follows from the induction assumption after the change wi → wi − wn+1.

The B�acklund transformation as a dynamics in discrete time. As in the case
of the CM system, the B�acklund transformation xi → yi can be regarded as a shift of
the discrete time n ∈ Z by one step. Denote xi = xni , yi = xn+1

i , then the equations that
determine the B�acklund transformation acquire the form

ẋni =
∏
k ̸=i

σ(xni − xnk − η)

σ(xni − xnk)

∏
j

σ(xni − xn+1
j )

σ(xni − xn+1
j − η)

,

ẋn+1
i =

∏
k ̸=i

σ(xn+1
i − xn+1

k + η)

σ(xn+1
i − xn+1

k )

∏
j

σ(xn+1
i − xnj )

σ(xn+1
i − xnj + η)

.

Shifting n→ n−1 in the second equation (then the left-hand side become identical) and
equating the right-hand sides after that, we obtain the equations of motion for the RS
system in discrete time:

N∏
k=1

σ(xni − xn−1
k )

σ(xni − xn−1
k + η)

σ(xni − xnk + η)

σ(xni − xnk − η)

σ(xni − xn+1
k − η)

σ(xni − xn+1
k )

= −1.

It is easy to see that in the limit η → 0 they turn into the CM equations of motion in
discrete time.

Remarkably, the obtained equations coincide with the nested Bethe ansatz equations
for a generalized quantun spin chain with elliptic R-matrix (�rst found by Belavin)
associated with the root systemAm. In this case the discrete time n take values 0, 1, . . . ,m+
1, while xni are Bethe roots at nth level of Bethe ansatz.

Problem. Perform the continuum limit of these equations and show that they turn into
the RS equations of motion.
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Discrete Lax representation. The equations of motion for the RS system in discrete
time has a commutation representation of the Lax type, which is a discrete time version of
the di�erential one, and has the same meaning: the Lax matrix undergoes an isospectral
transformation under the time evolution. The existence of a Lax-type representation
means integrability of the RS system in discrete time (as well as the CM system in
discrete time as its limiting case). The discrete Lax representation can be obtained from
analysis of elliptic solutions to the 2D Toda chain with discrete time.

The tau-function of the 2D Toda chain in discrete time can be de�ned be means of
the rule

τn(x) = τ(x, t− n[λ−1], t̄),

where λ−1 plays the role of inverse lattice spacing. Values of the contonuous times t, t̄
are assumed to be �xed. In the case of two discrete times n, m we set

τn,m(x) = τ(x, t− n[λ−1]−m[µ−1], t̄).

Then the bilinear equation for the tau-function of the 2D Toda chain

λτ(x+ η, t)τ(x, t+ [λ−1]− [µ−1])− µτ(x+ η, t+ [λ−1]− [µ−1])τ(x, t)

= (λ− µ)τ(x+ η, t+ [λ−1])τ(x, t− [µ−1]),

where we have omitted the times t̄ for brevity, can be rewritten as the following equation
in the discrete times:

λτn+1,m(x+ η)τn,m+1(x)− µτn,m+1(x+ η)τn+1,m(x) = (λ− µ)τn,m(x+ η)τn+1,m+1(x).

The wave function depending on the spectral parameter z is introduced by the formula

ψn(x) = zx/η
(
1− z

λ

)n
eξ(t,z)

τ(x, t− n[λ−1]− [z−1])

τ(x, t)
.

It is easy to verify that the bilinear functional relation for the tau-function is equivalent
to the following linear equation for the wave function:

ψn+1(x) = −λ−1ψn(x+ η) + V n(x)ψn(x), V n(x) =
τn(x)τn+1(x+ η)

τn+1(x)τn(x+ η)
.

For elliptic solutions in x we have

τn(x) =
N∏
j=1

σ(x− xnj ),

and

V n(x) =
∏
j

σ(x− xnj )σ(x− xn+1
j + η)

σ(x− xn+1
j )σ(x− xnj + η)

is an elliptic function of x. Solutions for ψn(x) should be found among double-Bloch
functions

ψn(x) = zx/η
∑
i

cni Φ(x− xni , u),

9



where the second spectral paramemter is denoted by u here. The substitution into the
linear equation gives:∑

i

cn+1
i Φ(x− xn+1

i , u) + zλ−1
∑
i

cni Φ(x− xni + η, u)

−
∏
k

σ(x− xni )σ(x− xn+1
i + η)

σ(x− xn+1
i )σ(x− xni + η)

∑
i

cni Φ(x− xni , u) = 0.

Possible poles of the left-hand side are at x = xni − η and x = xn+1
i . Their cancellation

leads to the following over-determined system of linear equations for components of the
vector cn = (cn1 , . . . , c

n
N)

T: 
Lncn = zλ−1cn,

cn+1 =Mncn.

Matrix elements of the matrices Ln, Mn are:

Ln
ij = fn

i Φ(x
n
i − xnj − η, u),

Mn
ij = gni Φ(x

n+1
i − xnj , u),

where

fn
i =

∏
j
σ(xni − xnj − η)σ(xni − xn+1

j )∏
j
σ(xni − xn+1

j − η)
∏
l ̸=i
σ(xni − xnl )

,

gni =

∏
j
σ(xn+1

i − xnj )σ(x
n+1
i − xn+1

j + η)∏
j
σ(xn+1

i − xnj + η)
∏
l ̸=i
σ(xn+1

i − xn+1
l )

.

The compatibility condition has the form

Ln+1Mn =MnLn.

This is the discrete Lax equation, which means that the shift by one step of the discrete
time is an isospectral transformation, and so the spectrum of the Lax matrix is conserved.

Let us show that the discrete Lax equation is equivalent to the RS equations of motion
in discrete time obtained above. First of all we notice that∑

i

fn
i +

∑
i

gni = 0,

because in the left-hand side there is sum of residues of the elliptic function V n(x). Denote
Rn = Ln+1Mn −MnLn, then

Rn
ij = fn+1

i

∑
k

gnkΦ(x
n+1
i − xn+1

k − η, u)Φ(xn+1
k − xn+1

j , u)

−gni
∑
k

fn
k Φ(x

n+1
i − xnk , u)Φ(x

n
k − xnj − η, u).

10



The equality Rn
ij = 0 (the discrete Lax equation) in the limit u→ 0 implies the equality

fn+1
i

∑
k

gnk − gni
∑
k

fn
k = 0,

or, if we recall that
∑
k

fn
k +

∑
k

gnk = 0,

fn+1
i = −gni .

These are just the equations of motion in discrete time obtained above:

N∏
k=1

σ(xni − xn−1
k )

σ(xni − xn−1
k + η)

σ(xni − xnk + η)

σ(xni − xnk − η)

σ(xni − xn+1
k − η)

σ(xni − xn+1
k )

= −1.

Problem. Show that these equations are equivalent to the equality Rn
ij = 0 for all u.

The deformed RS system in discrete time

The B�acklund transformation. Let us apply the same method to the case of the
Toda lattice of type B. The �rst linear problem has the form

∂tψ(x) = v(x)
(
ψ(x+ η)− ψ(x− η)

)
,

where v(x) is expressed through the tau-function τ(x):

v(x) =
τ(x+ η)τ(x− η)

τ 2(x)
.

For elliptic solutions

τ(x) = C
N∏
i=1

σ(x− xi),

where it is assumed that all its zeros xj are distinct, so v(x) is an elliptic function with
periods 2ω1, 2ω2. As usual in such a case, we search for solutions among double-Bloch
functions. Poles of ψ are zeros of the tau-function, so we can represent the solutions in
the form

ψ(x) = µx/ηe(µ−µ−1)t τ̂(x)

τ(x)
,

where

τ̂(x) =
N∏
i=1

σ(x− yi)

with some yi's. Then the ψ-function is indeed double-Bloch with Bloch multipliers

B1 = µ2ω1/η exp
(
2ζ(ω1)

N∑
j=1

(xj − yj)
)
, B2 = µ2ω2/η exp

(
2ζ(ω2)

N∑
j=1

(xj − yj)
)
.

It is possible to show that
N∑
j=1

(ẋj − ẏj) = 0,
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so the Bloch multipliers do not depend on time. Earlier we saw that poles of the wave
function satisfy the equations of motion for the deformed RS system for arbitrary µ.

Substituting the wave function into the linear equation, we have:

∂tτ̂(x)

τ̂(x)
− ∂tτ(x)

τ(x)
+ µ− µ−1 = µ

τ̂(x+ η)τ(x− η)

τ̂(x) τ(x)
− µ−1 τ(x+ η)τ̂(x− η)

τ(x) τ̂(x)
.

This equation is invariant under the simultaneous exchange τ ↔ τ̂ , µ ↔ µ−1, hence yj's
satisfy the same equations as xj's. Both sides of the equation have simple poles at x = xj
and x = yj. Equating the residues, we come to equations connecting zeros yi's and poles
xi's of the wave function:

ẋi = µσ(−η)
∏
j ̸=i

σ(xi−xj−η)
σ(xi−xj)

∏
k

σ(xi−yk+η)
σ(xi−yk)

+ µ−1σ(−η)
∏
j ̸=i

σ(xi−xj+η)
σ(xi−xj)

∏
k

σ(xi−yk−η)
σ(xi−yk)

,

ẏi = µσ(−η)
∏
j ̸=i

σ(yi−yj+η)
σ(yi−yj)

∏
k

σ(yi−xk−η)
σ(yi−xk)

+ µ−1σ(−η)
∏
j ̸=i

σ(yi−yj−η)
σ(yi−yj)

∏
k

σ(yi−xk+η)
σ(yi−xk)

.

They are symmetric with respect to the exchange xj ↔ yj, µ ↔ µ−1. The map xj → yj
can be regarded as a B�acklund transformation of the deformed RS system.

It should be noted that the equations for the xj's and yj's in principle can be derived
from the equations obtained. For this, one should apply to them the time derivative and
use them again, substituting the expressions for ẋj's, ẏj's through xj's, yj's. They will
turn out to be equivalent to a nontrivial identity for elliptic functions of many variables.
This identity seems to be too complicated to prove it directly. However, we do not need
the direct proof since the equations for xj's follow from the previous results while those
for yj's follow from the symmetry xj ↔ yj. Note that the B�acklund transformation for
the RS system di�ers from its analog for the deformed RS system by absence of the
second terms in the right-hand sides. In this sense it is formally contained in the latter
as a limiting case (µ→ ∞ or µ→ 0).

The dynamics in discrete time. Denote the discrete time variable by n ∈ Z and put
xi = xni , yi = xn+1

i . Shifting n→ n− 1 in the second equation, we see that the left-hand

12



sides become the same. Equating the right-hand sides, we arrive at the equations

µ
N∏
k=1

σ(xni − xn+1
k )σ(xni − xnk + η)σ(xni − xn−1

k − η)

+ µ
N∏
k=1

σ(xni − xn+1
k + η)σ(xni − xnk − η)σ(xni − xn−1

k )

= µ−1
N∏
k=1

σ(xni − xn+1
k − η)σ(xni − xnk + η)σ(xni − xn−1

k )

+ µ−1
N∏
k=1

σ(xni − xn+1
k )σ(xni − xnk − η)σ(xni − xn−1

k + η),

or

N∏
j=1

σ(xni − xn+1
j )σ(xni − xnj + η)σ(xni − xn−1

j − η)

σ(xni − xn+1
j + η)σ(xni − xnj − η)σ(xni − xn−1

j )

= −1 + µ−2
N∏
j=1

σ(xni −xn+1
j )σ(xni −xn−1

j +η)

σ(xni −xn+1
j +η)σ(xni −xn−1

j )
+ µ−2

N∏
j=1

σ(xni −xn+1
j −η)σ(xni −xnj +η)

σ(xni −xn+1
j +η)σ(xni −xnj −η)

.

Continuum limit. The equations just obtained admit di�erent continuum limits. One
possibility is to introduce new variables

Xn
j = xnj − nη

and suppose that they behave smoothly as the time changes, i.e., Xn+1
j = Xn

j + O(ε)
as ε → 0, where we have introduced the lattice spacing ε in the time lattice, so the
continuous time variable is t = nε. In terms of the Xn

j 's the equations are rewritten as

N∏
j=1

σ(Xn
i −Xn+1

j − η)σ(Xn
i −Xn

j + η)σ(Xn
i −Xn−1

j )

σ(Xn
i −Xn+1

j )σ(Xn
i −Xn

j − η)σ(Xn
i −Xn−1

j + η)

= −1 + µ−2
N∏
j=1

σ(Xn
i −Xn+1

j −η)σ(Xn
i −Xn−1

j +2η)

σ(Xn
i −Xn+1

j )σ(Xn
i −Xn−1

j +η)

+ µ−2
N∏
j=1

σ(Xn
i −Xn+1

j −2η)σ(Xn
i −Xn

j +η)

σ(Xn
i −Xn+1

j )σ(Xn
i −Xn

j −η)
.

We should expand them in powers of ε, taking into account that

Xn±1
j = Xj ± εẊj +

1

2
ε2Ẍj +O(ε3)

as ε → 0. It is enough to expand up to order ε. For consistency of the procedure we
should require that µ−1 be of order ε.
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Problem. Show that at µ−1 = ε the leading order gives the equations of motion of the
deformed RS system for the Xj's.

Another possibility is to assume the smooth behavior for the original variables:

xn±1
j = xj ± εẋj +

1

2
ε2ẍj +O(ε3).

It is easy to see that in the case of general position, if µ−2 − 1 = O(1) as ε → 0, the
lea�ng order is ε, and the expansion gives the equations of motion of the RS system
(non-deformed). However, if µ−2 − 1 = O(ε), say, µ−2 = 1 + αε + O(ε2), then the �rst
order yields the identity 0 = 0, and one has to expand further, up to the second order in
ε. This leads to the equations derived in [32] for dynamics of poles of elliptic solutions
to the semi-discrete BKP equation. These equations are not resolved with respect to
the second order derivatives ẍi. We do not present them here because of their rather
complicated form.

The spin CM system in discrete time

According to our approach, the spin CM system in discrete time can be obtained as
dynamics of poles of singular solutions of the semi-discrete matrix KP equation. For
simplicity, we will be restricted by rational solutions. To this end, we need some preparations
�rst. To wit, we should represent the matrix KP hierarchy in the framework of the bilinear
formalism.

The semi-discrete matrix KP hierarchy. As was already mentioned, the matrix
KP heirarchy is a subhierarchy of the multi-component KP. The independent variables
in the latter are n in�nite sets of continuous times

t = {t1, t2, . . . , tn}, tα = {tα,1, tα,2, tα,3, . . . }, α = 1, . . . , n.

It is convenient to introduce also the variable x such that

∂x =
n∑

α=1

∂tα,1 .

In the matrix hierarchy, the variables t are restricted as tα,m = tm for all α,m, and, in
particular, x = t1, but in order to write the bilinear relation, we will have to shift the
times tα,m separately.

The tau-function of the matrix KP hierarchy is the matrix ταβ(x, t), in which all
diagonal elements are the same: ταα(x, t) = τ(x, t). The integral bilinear equation for the
tau-function has the form

n∑
γ=1

ϵαγϵβγ

∮
C∞

dz zδαγ+δβγ−2eξ(tγ−t′γ , z)ταγ
(
t− [z−1]γ

)
τγβ

(
t′ + [z−1]γ

)
= 0,

where ϵαγ = 1 åñëè α ≤ γ, ϵαγ = −1 åñëè α > γ, and

ξ(tγ, z) =
∑
k≥1

tγ,kz
k,

(
t± [z−1]γ

)
αk

= tα,k ± δαγ
z−k

k
.
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Problem. Prove the following functional relations as corollaries of the integral bilinear
equation:

à)

ταβ(t−[µ−1]β)∂tγ,1τ(t)− τ(t)∂tγ,1ταβ(t−[µ−1]β) +
ϵαγϵγβ
ϵαβ

ταγ(t)τγβ(t−[µ−1]β) = 0

(no summation over repeated Greek indices!),

á)
∂tβ,1ταβ(t− [ν−1]β)τ(t− [µ−1]α)− ∂tβ,1τ(t− [µ−1]α)ταβ(t− [ν−1]β)

+νταβ(t− [ν−1]β)τ(t− [µ−1]α)− νταβ(t)τ(t− [µ−1]α − [ν−1]β) = 0,

â)

ϵβαµτ(t)ταβ
(
t+ [µ−1]− [ν−1]β

)
+ ϵβα∂tα,1τ(t)ταβ

(
t+ [µ−1]− [ν−1]β

)
−ϵβατ(t)∂tα,1ταβ

(
t+ [µ−1]− [ν−1]β

)
+ϵαβ(µ− ν)ταβ

(
t− [ν−1]β

)
τ
(
t+ [µ−1]

)
+ ϵαβνταβ(t)τ

(
t+ [µ−1]− [ν−1]β

)
−

∑
γ ̸=α,β

ϵαγϵβγταγ(t)τγβ
(
t+ [µ−1]− [ν−1]β

)
= 0,

where we have omitted the argument x for brevity.

The wave functions are given by the formulas

Ψαβ(x, t; z) = ϵαβ
ταβ(x, t− [z−1]β)

τ(x, t)
zδαβ−1eξ(tβ ,z),

Ψ∗
αβ(x, t; z) = ϵβα

ταβ(x, t+ [z−1]α)

τ(x, t)
zδαβ−1e−ξ(tα,z).

The function Ψαβ in the matrix hierarchy has the expansion

Ψαβ(x, t; z) =
(
δαβ + w

(1)
αβ (x, t)z

−1 +O(z−2)
)
exz+ξ(t,z),

where ξ(t, z) =
∑
k≥1

tkz
k. The coe�cient w

(1)
αβ (x, t) plays an important role. It is expressed

through the tau-function in the following way:

w
(1)
αβ (x, t) =


ϵαβ

ταβ(x, t)

τ(x, t)
åñëè α ̸= β,

−
∂tα,1τ(x, t)

τ(x, t)
åñëè α = β.

Evolution in the discrete time p ∈ Z is de�ned as shifting the continuous times
according to the rule [33]

τ p = τ

(
t− p

N∑
α=1

[µ−1]α

)
, Ψp = Ψ

(
t− p

N∑
α=1

[µ−1]α; z

)
,
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where we again omit the variable x identifying it with t1. Here µ is a continuous parameter
which plays the role of inverse lattice spacing. Each value of µ de�ned its own �ow in
discrete time. This hierarchy is called semi-discrete because the space variable x (and t1)
remain continuous. One can show, using the bilinear equations from the problem above,
that the linear equations for the wave functions have the form

µΨp − µΨp+1 = ∂xΨ
p +

(
w(1)(p+ 1)− w(1)(p)

)
Ψp,

µΨ∗p − µΨ∗ p−1 = −∂xΨ∗p +Ψ∗p
(
w(1)(p)− w(1)(p− 1)

)
,

or, in components,

µΨp
αβ − µΨp+1

αβ = ∂xΨ
p
αβ +

∑
γ

(
w(1)

αγ (p+ 1)− w(1)
γα (p)

)
Ψp

γβ,

µΨ∗p
αβ − µΨ∗ p−1

αβ = −∂xΨ∗p
αβ +

∑
γ

Ψ∗p
αγ

(
w

(1)
γβ (p)− w

(1)
γβ (p− 1)

)
.

Below we will use them for analysis of the dynamics of poles of rational in x = t1 solutions
of the semi-discrete matrix KP hierarchy.

Rational solutions. We study solutions of the semi-discrete matrix KP hierarchy that
are rational functions of x. The tau-function for such solutions is a polynomial of x:

τ p = C
N∏
i=1

(x− xi(p)).

The roots xi of this polynomial depend on the times t and on the discrete time p. In
this section, we will denote the dependence on the discrete time p as an argument in
brackets rather than an upper index. The matrix wave functions Ψ, Ψ∗ (and, therefore,
the coe�cient w(1)) as functions of x have simple poles at x = xi. From the general
theory of algebraic-geometrical solutions [17] it follows (see also the work [34], where
this is derived from the bilinear equations for the tau-function), that residues at the
poles are matrices of rank 1. We can parametrize them by the vectors ai = (a1i , . . . , a

n
i )

T,
bi = (b1i , . . . , b

n
i )

T:

res
x=xi

w
(1)
αβ = −aαi b

β
i or res

x=xi
w(1) = −aib

T
i .

For the residues we have [34]:

res
x=xi

Ψαβ = exiz+ξ(t,z)aαi c
β
i , res

x=xi
Ψ∗

αβ = e−xiz−ξ(t,z)c∗αi b
β
i ,

where cαi , c
∗α
i are components of the vectors ci = (c1i , . . . , c

n
i )

T, c∗i = (c∗1i , . . . , c
∗n
i ). The

vectors ai, bi depend on the times tk ñ k ≥ 2, while the vectors ci, c
∗
i depend also on

z. The dependence of the vectors on the discrete time will be denoted as aαi = aαi (p),
bαi = bαi (p). We have the following representation for the matrix wave functions:

Ψαβ = exz+ξ(t,z)

(
Cαβ +

N∑
i=1

aαi c
β
i

x− xi

)
,
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Ψ∗
αβ = e−xz−ξ(t,z)

(
C−1

αβ +
N∑
i=1

c∗αi b
β
i

x− xi

)
,

where the matrix Cαβ does not depend on x, and C−1
αβ are matrix elements of the inverse

matrix. The matrices w(1) è V = −2∂xw
(1) have the form

w
(1)
αβ = Sαβ −

N∑
i=1

aαi b
β
i

x− xi
, Vαβ = −2

N∑
i=1

aαi b
β
i

(x− xi)2
,

where the matrix S does not depend on x. Tending x→ ∞ in the relation

1

2πi

n∑
γ=1

∮
C∞

dz zmΨαγ(t; z)Ψ
∗
γβ(t; z) = −∂tmw

(1)
αβ (t),

which follows from the integral bilinear relation, we conclude that ∂tmS = 0 for allm ≥ 1,
hence the matrix S does not depend on all the times.

First we consider the pole dynamics in t2. For this, consider the linear problems

∂t2Ψαβ = ∂2xΨαβ − 2
N∑
i=1

∑
γ

aαi b
γ
i

(x− xi)2
Ψγβ,

−∂t2Ψ∗
αβ = ∂2xΨ

∗
αβ − 2

∑
γ

Ψ∗
αγ

N∑
i=1

aγi b
β
i

(x− xi)2

and substitute into them the pole ansatz for the wave functions. First consider the
equation for Ψ. Comparing the behavior of both sides as x → ∞, we concludde that
∂t2Cαβ = 0, hence Cαβ does not depend on t2. (In a similar way, considering the linear
problems for higher times, one can see that Cαβ does not depend on all tk's.) Equating
the coe�cients at the poles x = xi of di�erent orders, we obtain the following conditions:

� at 1
(x−xi)3

: bγi a
γ
i = 1 or bT

i ai = 1;

� at 1
(x−xi)2

: aαi c
β
i ẋi = −2zaαi c

β
i − 2aαi b̃

β
i − 2

∑
k ̸=i

aαi b
γ
i a

γ
kc

β
k

xi − xk
, b̃βi = bγiCγβ;

� at 1
x−xi

: ∂t2(a
α
i c

β
i ) = −2

∑
k ̸=i

aαk b
γ
ka

γ
i c

β
i − aαi b

γ
i a

γ
kc

β
k

(xi − xk)2
.

Hereafter summation over repeated Greek indices is assumed and dor means the t2-
derivative. The conditions coming from cancellation of third order poles are already
familiar constraints for the vectors ai, bi. The conditions coming from poles of the second
order can be written in the matrix form:

N∑
k=1

(zI − L)ikc
α
k = −b̃αi , Lik = − ẋi

2
δik − (1− δik)

bγi a
γ
k

xi − xk
.

Here L is the Lax matrix of the spin CM system. The conditions coming from simple
poles yield evolution equations in the time t2. Similar calculations for the linear problem
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for Ψ∗ give the same constraints bT
i ai = 1 and linear equations for the components c∗i

with the same Lax matrix L:

N∑
k=1

c∗αk (zI − L)ki = ãαi , ãαi = C−1
αγ a

γ
i .

For completeness, we give also already familiar equations of motion in the time t2:

ȧαi = −2
∑
k ̸=i

bγka
γ
i a

α
k

(xi − xk)2
, ḃαi = 2

∑
k ̸=i

bγi a
γ
kb

α
k

(xi − xk)2
,

ẍi = −8
∑
k ̸=i

bγi a
γ
kb

γ′

k a
γ′

i

(xi − xk)3
.

Now we are ready to study evolution in discrete time. The wave functions are of the
form

Ψp
αβ =

(
1− z

µ

)p
exz+ξ(t,z)

(
Cαβ +

∑
i

aαi (p)c
β
i (p)

x− xi(p)

)
,

Ψ∗p
αβ =

(
1− z

µ

)−p
e−xz−ξ(t,z)

(
C−1

αβ +
∑
i

c∗αi (p)bβi (p)

x− xi(p)

)
.

We should substitute them into the linear problems for discrete time and equate coe�cients
in front of poles at x = xi(p) and x = xi(p + 1). Note that the constant term Sαβ in

w
(1)
αβ (p) cancels in the combination w

(1)
αβ (p + 1) − w

(1)
αβ (p) because the shift p → p + 1 is

equivalent to a shift of continuous times, but Sαβ does not depend on them. Cancellation
of the poles yield the conditions:

� at 1
(x−xi(p))2

: bγi (p)a
γ
i (p) = 1;

� at 1
x−xi(p+1)

:

(z−µ)aαi (p+1)cβi (p+1) = −aαi (p+1)b̃βi (p+1)−
∑
j

aαi (p+ 1)bγi (p+ 1)aγj (p)c
β
j (p)

xi(p+ 1)− xj(p)
;

� at 1
x−xi(p)

:

(z − µ)aαi (p)c
β
i (p) + aαi (p)b̃

β
i (p)−

∑
j

aαj (p+ 1)bγj (p+ 1)aγi (p)c
β
i (p)

xi(p)− xj(p+ 1)

+
∑
j ̸=i

aαi (p)b
γ
i (p)a

γ
j (p)c

β
j (p)

xi(p)− xj(p)
+
∑
j ̸=i

aαj (p)b
γ
j (p)a

γ
i (p)c

β
i (p)

xi(p)− xj(p)
= 0.

In a similar way, from the linear problem for Ψ∗ we obtain:

� at 1
(x−xi(p))2

: bγi (p)a
γ
i (p) = 1;
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� at 1
x−xi(p−1)

:

(z−µ)c∗αi (p− 1)bβi (p− 1) = ãαi (p− 1)bβi (p− 1)+
∑
j

c∗αj (p)bγj (p)a
γ
i (p− 1)bβi (p− 1)

xi(p− 1)− xj(p)
;

� at 1
x−xi(p)

:

(z − µ)c∗αi (p)bβi (p)− ãαi (p)b
β
i (p) +

∑
j

c∗αi (p)bγi (p)a
γ
j (p− 1)bβj (p− 1)

xi(p)− xj(p− 1)

−
∑
j ̸=i

c∗αi (p)bγi (p)a
γ
j (p)b

β
j (p)

xi(p)− xj(p)
+
∑
j ̸=i

c∗αj (p)bγj (p)a
γ
i (p)b

β
i (p)

xj(p)− xi(p)
= 0.

The conditions coming from second order poles are the same constraints, as before.
Introduce the matrices

Lij(p) = −δij
ẋi(p)

2
− (1− δij)

bγi (p)a
γ
j (p)

xi(p)− xj(p)

(the Lax matrix) and

Mij(p) =
bγi (p+ 1)aγj (p)

xi(p+ 1)− xj(p)
,

then the conditions coming from simple poles at xi(p) and xi(p± 1) can be written as

(z − µ)cβi (p+ 1) = −b̃βi (p+ 1)−
∑
j

Mij(p)c
β
j (p)

aαi (p)

∑
j

(
zδij − Lij(p)

)
cβj (p) + b̃βi (p)


︸ ︷︷ ︸

=0

+ cβi (p)

∑
j

aαj (p+ 1)Mji(p) +
∑
j

aαj (p)Lji(p)− µaαi (p)

 = 0,



(z − µ)c∗αi (p− 1) = ãαi (p− 1)−
∑
j

c∗αj (p)Mji(p− 1)

bβi (p)

∑
j

c∗αj (p)
(
zδij − Lji(p)

)
− ãαi (p)


︸ ︷︷ ︸

=0

+ c∗αi (p)

∑
j

Mij(p− 1)bβj (p− 1) +
∑
j

Lij(p)b
β
j (p)− µbβi (p)

 = 0.
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Introduce N -component column vectorsCα = (cα1 , . . . , c
α
N)

T,C∗α = (c∗α1 , . . . , c
∗α
N )T,Aα =

(aα1 , . . . , a
α
N)

T, Bα = (bα1 , . . . , b
α
N)

T and Ãα = (ãα1 , . . . , ã
α
N)

T, B̃α = (b̃α1 , . . . , b̃
α
N)

T. In this
notation, our equations acquire the form of linear equations for the vectors Aα and Bβ:

AαT (p+ 1)M(p) +AαT(p)L(p) = µAαT(p)

M(p− 1)Bβ(p− 1) + L(p)Bβ(p) = µBβ(p)

and linear equations for the vectors Cα è C∗α:
(z − µ)Cβ(p+ 1) = −B̃β(p+ 1)−M(p)Cβ(p)

(z − µ)Cβ(p) = −B̃β(p) + L(p)Cβ(p)− µCβ(p),


(z − µ)C∗αT(p− 1) = ÃαT(p− 1)−C∗αT(p)M(p− 1)

(z − µ)C∗αT(p) = ÃαT(p) +C∗αT(p)L(p)− µC∗αT(p).

From these equations we have:

M(p)Cβ(p) +
(
L(p+ 1)− µI

)
Cβ(p+ 1) = 0,

C∗αT(p+ 1)M(p) +C∗αT(p)
(
L(p)− µI

)
= 0.

Combining these equations, we obtain:

M(p)
(
−B̃β(p) + L(p)Cβ(p)− µCβ(p)

)
−
(
L(p+ 1)−µI

)(
B̃β(p+ 1) +M(p)Cβ(p)

)
= 0,

(
ÃαT (p) +C∗αT (p)L(p)− µC∗αT (p)

)
M(p− 1)

+
(
ÃαT (p− 1)−C∗αT (p)M(p− 1)

)(
L(p− 1)−µI

)
= 0,

or, after simpli�cations,(
M(p)L(p)− L(p+ 1)M(p)

)
Cβ(p) = 0,

C∗αT(p+ 1)
(
M(p)L(p)− L(p+ 1)M(p)

)
= 0.

This implies the compatibility condition

L(p+ 1)M(p) =M(p)L(p)

or L(p + 1) = M(p)L(p)M−1(p), i.e., the discrete Lax equation. By a direct calculation
it is possible to show that it is satis�ed if the already mentioned equations hold:

AαT (p+ 1)M(p) +AαT(p)L(p) = µAαT(p)

M(p− 1)Bβ(p− 1) + L(p)Bβ(p) = µBβ(p).
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In the explicit form these equations read:

∑
j

aαj (p+ 1)bγj (p+ 1)aγi (p)

xj(p+ 1)− xi(p)
=
ẋi(p)

2
aαi (p) +

∑
j ̸=i

aαj (p)b
γ
j (p)a

γ
i (p)

xj(p)− xi(p)
+ µaαi (p),

∑
j

bγi (p)a
γ
j (p− 1)bβj (p− 1)

xi(p)− xj(p− 1)
=
ẋi(p)

2
bβi (p) +

∑
j ̸=i

bγi (p)a
γ
j (p)b

β
j (p)

xi(p)− xj(p)
+ µbβi (p).

Multiply the �rst equation by bαi (p) and sum over α, after that multiply the second
equation by aβi (p) and sum over β. Taking into account that the constraints bγi a

γ
i = 1 hold,

and subtracting the equations obtained above from each other, we obtain the following
equations of motion:

∑
j

bγi (p)a
γ
j (p+ 1)bβj (p+ 1)aβi (p)

xi(p)− xj(p+ 1)
+
∑
j

bγi (p)a
γ
j (p− 1)bβj (p− 1)aβi (p)

xi(p)− xj(p− 1)

= 2
∑
j ̸=i

bγi (p)a
γ
j (p)b

β
j (p)a

β
i (p)

xi(p)− xj(p)
,

which generalize the equations of motion for the CM system in discrete time to the spin
case. The previous two equations are not closed since they contain ẋi, i.e., the derivative
of xi with respect to the �alien� time t2. Nevertheless, we will show that their continuum
limit gives the required equations of motion of the spin CM system for the spin variables.

Continuum limit. Set xi(p) = λp+ yi(p) and expand xi(p± 1) = ±λ+xi(p)± ε∂tyi+
ε2

2
∂2t yi + O(ε3), aαi (p ± 1) = aαi ± ε∂ta

α
i + O(ε2), bαi (p ± 1) = bαi ± ε∂tb

α
i + O(ε2), where

λ = O(
√
ε). Separating the terms with j = i in the sums that enter the equations of

motion, expand it up to the �rst non-vanishing order O(ε) as ε → 0. This yields the
equations of motion for the spin CM system in continuous time:

∂2t yi = −2g
∑
j ̸=i

bγi a
γ
j b

β
j a

β
i

(yi − yj)3
, g = λ4/ε2 = O(1),

Hence we see that it is necessary to put λ4 = 4ε2.

Next, let us consider the continuum limit of the other two equations. Expanding the
second equation as λ, ε→ 0, we obtain:

bβi
λ

− ε

λ2
bβi ∂tyi −

ε

λ
bγi ∂ta

γ
i b

β
i −

ε

λ
∂tb

β
i − λ

∑
j ̸=i

bγi a
γ
j b

β
j

(yi − yj)2
+O(ε) =

ẏi
2
bβi + µbβi .

Comparison of the leading terms gives λ = µ−1. Terms of the next order lead to the
relation

∂tyi = −λ
2

2ε
ẏi − λbγi ∂ta

γ
i +O(ε).

We expect that in the continuum limit the time t that corresponds to p tends to t2. That
is why we should require λ2 = −2ε, which agrees with the relation λ4 = 4ε2 between
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them mentioned above. Then in the order O(λ) we have:

∂tb
β
i = 2

∑
j ̸=i

bγi a
γ
j b

β
j

(yi − yj)2
,

which is the equation of motion for the spin variables in the continuous time. The
continuum limit of the �rst equation is considered in the similar way.
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