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Equations of motion of integrable many-body systems

as conditions of existence of meromorphic solutions to

linear equations

This section is devoted to an alternative approach to derivation of equations of motion
for integrable systems of particles. Its advantage is that it is rather direct and economic.
This approach was suggested by Krichever (see [25, 26, 11]). Within this approach, the
equations of motion are obtained as conditions of existence of meromorphic solutions to
linear di�erential or di�erence equations, which serve as auxiliary linear problems for
integrable nonlinear equations. A weak side of this method is that it does not allow one
to �nd commutation representations for the equations of motion.

The linear equation for KP Consider the linear equation

(∂t − ∂2x − 2u)ψ = 0,

which is one of the auxiliary linear problems for the KP equation. It is easy to see that
if the function u = u(x) has a pole at some point a in the complex x-plane, then this
pole has to be of the second order with zero residue. Expanding the left-hand side in a
neighborhood of this pole, one can �nd a necessary condition for a meromorphic solution
to the equation to exist in this neighborhood. The expansions are:

u = − 1

(x− a)2
+ u0 + u1(x− a) + . . . ,

ψ =
α

x− a
+ β + γ(x− a) + δ(x− a)2 + . . . .

Plugging them into the linear equation, we see that the highest poles (of the third order)
cancel identically. Equating the coe�cients in front of (x− a)−2, (x− a)−1 and (x− a)0
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to zero, we obtain the conditions

ȧα + 2β = 0,

α̇ + 2γ − 2u0α = 0,

β̇ − ȧγ − 2u0β − 2u1α = 0,

where dot means the t-derivative, as usual. Taking the t-derivative of the �rst condition,
substituting in the result α̇ and β̇ from the second and the third ones, and then using
the �rst one again, we obtain the necessary condition:

ä+ 4u1 = 0.

It is possible to obtain the equations of motion for the CM system (in general elliptic)
from it. Indeed, let u(x) be a double-periodic function with poles at the points xi:

u = −
∑
i

℘(x− xi).

Its expansion near each pole at xi has the form given above, where

u0 = −
∑
j ̸=i

℘(xi − xj), u1 = −
∑
j ̸=i

℘′(xi − xj),

so the conditions of existence of a meromorphic solution in a neighborhood of each pole
give the equations of motion for the elliptic CM system:

ẍi = 4
∑
j ̸=i

℘′(xi − xj).

The linear equation for BKP. Consider the linear equation

(∂t − ∂3x − 6u∂x)ψ = 0,

which is one of the auxiliary linear problems for the BKP equation. Suppose that the
function u has a pole at some point a, and that there exists a meromorphic solution for
ψ in a neighborhood of this point. The expansions are:

u = − 1

(x− a)2
+ u0 + u1(x− a) + u2(x− a)2 + u3(x− a)3 + . . . ,

ψ =
α

x− a
+ β + γ(x− a) + δ(x− a)2 + ε(x− a)3 + µ(x− a)4 + . . . .

Plugging them into the left-hand side of the linear equation, we see that possible poles
of the fourth and third order cancel identically. Equating to zero the coe�cients in front
of (x− a)−2, (x− a)−1, (x− a)0 and (x− a), we obtain the conditions

αȧ+ 6αu0 + 6γ = 0,

α̇ + 6αu1 + 12δ = 0,

β̇ − γȧ− 6γu0 + 6αu2 + 12ε = 0,

γ̇ − 2δȧ− 12δu0 − 6γu1 + 6αu3 = 0.
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Note that the coe�cient µ, which could enter the last condition, cancels. Let us take the
t-derivative of the �rst condition:

ä+ 6u̇0 + 6
γ̇

α
− 6

γα̇

α2
= 0.

Substituting α̇ from the second condition and γ̇ from the fourth one, we �nd the condition
of existence of a meromorphic solution:

ä+ 6u̇0 − 12u1(ȧ+ 6u0)− 36u3 = 0.

This condition allows one to obtain the equations of motion of the system discussed
before in connection with elliptic solutions to the BKP equation. Indeed, let u(x) be the
double-periodic function

u = −
∑
i

℘(x− xi),

then its expansion in a neighborhood of xi has the form given above with

u0 = −
∑
j ̸=i

℘(xi − xj), u1 = −
∑
j ̸=i

℘′(xi − xj), u3 = −1

6

∑
j ̸=i

℘′′′(xi − xj),

and
u̇0 = −

∑
j ̸=i

(ẋi − ẋj)℘
′(xi − xj).

Hence we see that our condition yields the equations of motion

ẍi + 6
∑
j ̸=i

(ẋi + ẋj)℘
′(xi − xj)− 72

∑
j ̸=k ̸=i

℘(xi − xj)℘
′(xi − xk) = 0,

obtained earlier from other arguments.

The linear problem for the 2D Toda chain in the time t1. Consider the di�erential-
di�erence linear equation

∂tψ(x) = ψ(x+ η) + b(x)ψ(x),

which is the auxiliary linear problem for the 2D Toda chain for the t = t1-�ow. Suppose
that the function b(x) has a simple pole at some point a, then the equation implies that
it has to have another pole at the point a− η:

b(x) =


ν

x− a
+ µ0 + O(x− a), x→ a

− ν

x− a+ η
+ µ1 +O(x− a+ η), x→ a− η.

The expansion of the function ψ(x) in a neighborhood of the point a is of the form

ψ(x) =
α

x− a
+ β +O(x− a),

then

∂tψ(x) =
αȧ

(x− a)2
+

α̇

x− a
+O(1).
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Note that the function ψ is regular at the point a− η. Substitute these expansions into
the linear equation:

αȧ

(x− a)2
+

α̇

x− a
+O(1) =

(
ν

x− a
+ µ0 + . . .

)(
α

x− a
+ β + . . .

)
.

Equating the coe�cients in front of the poles in the left- and right-hand sides, we obtain
the conditions 

ν = ȧ,

α̇ = νβ + µ0α.

In a neighborhood of the point a− η we have:

∂tψ(a− η) +O(x− a+ η)

=
α

x− a+ η
+ β −

( ν

x− a+ η
+ µ1 + . . .

)(
ψ(a− η) + (x− a+ η)ψ′(a− η) + . . .

)
.

Equating the coe�cients at (x− a+ η)−1 and (x− a+ η)0, we obtain the conditions
α = νψ(a− η),

∂tψ(a− η) = β − µ1ψ(a− η)− νψ′(a− η).

Taking the t-derivative of the �rst equation and using the conditions obtained earlier, we
�nd:

α̇ = äψ(a− η) + ȧψ̇(a− η),

where
ψ̇(a− η) = ∂tψ(a− η) + ȧψ′(a− η)

is the full t-derivative of ψ(a− η) (here ψ′(a− η) is the x-derivative at a− η). Combining
these conditions, we arrive at the condition of existence of a meromorphic solution:

ä− ȧ(µ0 + µ1) = 0.

Suppose now that b(x) is an elliptic function of x, with simple poles at the points xj,
then it is of the form

b(x) =
∑
j

ẋj
(
ζ(x− xj)− ζ(x− xj + η)

)
.

Put a = xi for some i, then

µ0 =
∑
k ̸=i

ẋkζ(xi − xk)−
∑
k

ẋkζ(xi − xk + η),

µ1 =
∑
k ̸=i

ẋkζ(xi − xk)−
∑
k

ẋkζ(xi − xk − η),

and the conditions obtained above yield the equations of motion for the elliptic RS system:

ẍi +
∑
k ̸=i

ẋiẋk
(
ζ(xi − xk + η) + ζ(xi − xk − η)− 2ζ(xi − xk)

)
= 0.
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The linear problem for the 2D Toda chain in the t̄1-�ow. Consider now the
linear equation

∂tψ(x) = v(x)ψ(x− η),

which is the linear problem for the 2D Toda chain in the time t = t̄1. Suppose that the
function v(x) has a second order pole at a point a with the expansion

v(x) =
ν

(x− a)2
+

µ

x− a
+O(1)

in a neighborhood of this point. Suppose also that v(x) has zero at a− η: v(a− η) = 0.
Then ψ(x) has a simple pole at the point a:

ψ(x) =
α

x− a
+O(1), x→ a.

Plugging these expansions in the linear equation, we write:

αȧ

(x− a)2
+

α̇

x− a
=

( ν

(x− a)2
+

µ

x− a
+O(1)

)(
ψ(a− η) + (x− a)ψ′(a− η) + . . .

)
.

Equating the coe�cients at the poles, we obtain the conditions
αȧ = νψ(a− η),

α̇ = νψ′(a− η) + µψ(a− η).

At x = a−η our linear equation yields: ∂tψ(a−η) = 0, so the full t-derivative of ψ(a−η)
is

ψ̇(a− η) = ȧψ′(a− η).

Combining the equations obtained, we �nd the condition

νä+ µȧ2 − ν̇ȧ = 0.

Suppose now that v(x) is an elliptic function of the form

v(x) =
N∏
j=1

σ(x− xj + η)σ(x− xj − η)

σ2(x− xj)
,

then we have, putting a = xi:

ν = −σ2(η)
∏
j ̸=i

σ(xi − xj + η)σ(xi − xj − η)

σ2(xi − xj)
,

µ = ν
∑
k ̸=i

(
ζ(xi − xk + η) + ζ(xi − xk − η)− 2ζ(xi − xk)

)
,

and this condition yields the same equations of motion for the elliptic RS system.
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The linear equation for the 2D Toda chain of type B. Consider the linear
equation

∂tψ(x) = v(x)(ψ(x+ η)− ψ(x− η)),

which is the auxiliary linear problem for the 2D Toda chain of type B. Suppose that the
function v(x) has a second order pole at some point a with the expansion

v(x) =
ν

(x− a)2
+

µ

x− a
+O(1)

in a neighborhood of this point. Suppose also that v(x) has zeros at the points a − η è
a+ η:

v(x) =


(x− a− η)V +(a) +O((x−a−η)2), x→ a+ η,

(x− a+ η)V −(a) +O((x−a+η)2), x→ a− η.

Then the function ψ(x) has a simple pole at a:

ψ(x) =
α

x− a
+O(1), x→ a.

As x→ a, the linear equation with these expansions gives:

αȧ

(x− a)2
+

α̇

x− a

=
( ν

(x− a)2
+

µ

x− a
+O(1)

)(
ψ(a+η)−ψ(a−η)+(x− a)(ψ′(a+η)−ψ′(a−η))+ . . .

)
.

Equating the coe�cients in front of the poles, we obtain the conditions
αȧ = ν(ψ(a+ η)− ψ(a− η)),

α̇ = µ(ψ(a+ η)− ψ(a− η)) + ν(ψ′(a+ η)− ψ′(a− η)).

At x = a± η the linear equation yields:

∂tψ(a± η) = ∓αV ±(a).

Therefore,
ψ̇(a± η) = ∓αV ±(a) + ȧψ′(a± η).

Taking the t-derivative αȧ = ν(ψ(a + η) − ψ(a − η)) and combining with the other
equations, we obtain the condition

νä+ µȧ2 − ν̇ȧ+ ν2(V +(a) + V −(a)) = 0.

Suppose that v(x) is an elliptic function of the form

v(x) =
N∏
j=1

σ(x− xj + η)σ(x− xj − η)

σ2(x− xj)
,

then we have, putting a = xi:

ν = −σ2(η)
∏
j ̸=i

σ(xi − xj + η)σ(xi − xj − η)

σ2(xi − xj)
,
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µ = ν
∑
k ̸=i

(
ζ(xi − xk + η) + ζ(xi − xk − η)− 2ζ(xi − xk)

)
,

V ±(xi) = ±σ(2η)
σ2(η)

∏
j ̸=i

σ(xi − xj ± 2η)σ(xi − xj)

σ2(xi − xj ± η)
,

and our condition gives the equations

ẍi +
∑
k ̸=i

ẋiẋk
(
ζ(xi−xk+η) + ζ(xi−xk−η)− 2ζ(xi − xk)

)

−σ(2η)

∏
j ̸=i

σ(xi−xj+2η)σ(xi−xj − η)

σ(xi − xj+η)σ(xi−xj)
−

∏
j ̸=i

σ(xi−xj−2η)σ(xi−xj + η)

σ(xi−xj−η)σ(xi−xj)

 = 0,

which are equations of motion for the deformed RS system.
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