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Nonabelian Toda chain and spin RS system

Elliptic solutions of the nonabelian (matrix) 2D Toda chain were studied in the paper
[18]. The hierarchy of nonabelian 2D Toda chain can be constructed in a similar way
as it was done for the matrix KP hierarchy, using pseudo-di�erence Lax operators with
matrix coe�cients. Here we will not discuss the general theory, concentrating on the �rst
nontrivial equation which has the form

∂t((∂t̄g(x))g
−1(x)) = g(x)g−1(x− η)− g(x+ η)g−1(x),

where g(x) is an n× n matrix. This equation is equivalent to compatibility of the over-
determined system of linear problems

∂tΨ(x) = Ψ(x+ η) + V (x)Ψ(x),

∂t̄Ψ(x) = C(x)Ψ(x− η),

where
V (x) = (∂tg(x))g

−1(x), C(x) = g(x)g−1(x− η).

The analysis of elliptic solutions is similar to the one done before for the matrix KP
equation, so here we omit some details. Consider the �rst linear problem for the matrix
function Ψ and the conjugated problem for the dual matrix function Ψ∗:

∂tΨαβ(x) = Ψαβ(x+ η) + Vαγ(x)Ψγβ(x),

−∂tΨ∗
αβ(x) = Ψ∗

αβ(x− η) + Ψ∗
αγ(x)Vγβ(x),

where, as usual, summation over repeated Greek indices is assumed. The pole ansatz for
elliptic solutions has the form

Vαβ(x) =
∑
i

aαi b
β
i

(
ζ(x− xi)− ζ(x− xi + η)

)
.
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It is an elliptic function of x. Therefore, the wave functions can be found among double-
Bloch functions:

Ψαβ(x) = zx/η
∑
i

aαi c
β
i Φ(x− xi, λ),

Ψ∗
αβ(x) = z−x/η

∑
i

c∗αi b
β
i Φ(x− xi + η,−λ).

Substituting this into the linear problem, we arrive at an expression which has simple
poles at the points xi − η and also poles at xi (up to second order). Cancellation of the
second order poles gives the constraint

ẋi = bγi a
γ
i .

Cancellation of the poles at xi − η gives the linear equations∑
j

cβj b
γ
i a

γ
jΦ(xij − η) = zcβi .

Cancellation of the poles at xi gives the equations

∂t(a
α
i c

β
i ) + ζ(η)ẋia

α
i c

β
i = cβi

∑
j ̸=i

aαj a
γ
i b

γ
j

(
ζ(xij)− ζ(xij + η)

)
+ aαi

∑
j ̸=i

cβj b
γ
i a

γ
jΦ(xij, λ),

which can be rewritten in the form

ȧαi
aαi

−
∑
j ̸=i

ȧαj
aαi

aγi b
γ
j

(
ζ(xij)− ζ(xij + η)

)
= − ċ

β
i

cβi
+

∑
j ̸=i

ċβj

cβi
bγi a

γ
jΦ(xij, λ)− ζ(η)ẋi.

The right-hand side does not depend on the index α, hence

Λi =
ȧαi
aαi

−
∑
j ̸=i

ȧαj
aαi

aγi b
γ
j

(
ζ(xij)− ζ(xij + η)

)
does not depend on α, and so we obtain equations of motion for the vectors aαi , b

α
i :

ȧαi = Λia
α
i +

∑
j ̸=i

aαj a
γ
i b

γ
j

(
ζ(xij)− ζ(xij + η)

)
and evolution equations for cαi :

ċβi = −(Λi + ζ(η)ẋi)c
β
i +

∑
j ̸=i

cβj b
γ
i a

γ
jΦ(xij, λ).

In the matrix form, we have:

L(λ)cβ = zcβ, ∂tc
β =M(λ)cβ

with the matrices

Lij(λ) = bγi a
γ
jΦ(xij − η, λ),

Mij(λ) = −δij(Λi + ζ(η)ẋi) + (1− δij)b
γ
i a

γ
jΦ(xij, λ).

We recognize the Lax pair for the spin RS system.
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Similar calculations for the conjugated problem lead to the equations

c∗αL(λ) = zcα, −∂tc∗α = c∗αM∗(λ),

where c∗α is a row-vector, and

M∗
ij(λ) = −δij(Λ∗

i + ζ(η)ẋi) + (1− δij)b
γ
i a

γ
jΦ(xij, λ)

with

−Λ∗
i =

ḃβi

bβi
−

∑
j ̸=i

ḃβj

bβi
bγi a

γ
j

(
ζ(xij)− ζ(xij − η)

)
.

Compatibility conditions for these systems have the form of the Lax equations

L̇+ [L,M ] = 0, L̇+ [L,M ∗] = 0,

from which we conclude that Λ∗
i = Λi. In this way we get the second group of equations

for the vectors aαi , b
α
i in the form

ḃβi = −Λib
β
i +

∑
j ̸=i

bβj b
γ
i a

γ
j

(
ζ(xij)− ζ(xij − η)

)
.

As was already mentioned, we can put Λi = 0 without loss of generality.

2D Toda chain of type B and the deformed RS system

The deformed RS system introduced earlier can be obtained as dynamics of poles of
singular solutions to the 2D Toda chain of type B, which was introduced in [24].

2D Toda chain of type B

The hierarchy of 2D Toda chain of type B is a subhierarchy of the 2D Toda one, which
is obtained by imposing certain constraints on the Lax operators of the latter. It can be
regarded as a di�erence analog of the BKP hierarchy.

We will use the conventions and notations introduced in the previous discussion of
the deformed RS system. Let us introduce the shift operator

T = e−φ(x)eη∂x ,

where

eφ(x) =
τ(x+ η)

τ(x)
,

and impose the following constraint on the Lax operators:

(T − T †)L̄ = L†(T − T †).

The conjugation of di�erence operators (the †-operation) is de�ned in accordance with
the rule (f(x) ◦ eη∂x)† = e−η∂x ◦ f(x).
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Problem. Show that this constraint is invariant under the �ows ∂tk − ∂t̄k of the Toda
chain öåïî÷êè Òîäû for all k ≥ 1 and is destroyed by the �ows ∂tk + ∂t̄k).

Therefore, to de�ne the dynamics of the Toda chain of the type B (or simply B-Toda)
we should restrict the independent variables by setting t̄k = −tk. So, in the B-Toda there
is only one set of times t = {t1, t2, . . .} rather than two.

Here we will not discuss the general theory. Instead, we will show how to obtain the
�rst equation (more precisely, the system of equations) of the hierarchy. Consider the
di�erence operators

A1 = v(x)(eη∂x − e−η∂x),

A2 =
(
f0(x) + f1(x)e

η∂x + e−η∂xf1(x)
)
(eη∂x − e−η∂x)

with some functions v(x), f0(x), f1(x). Impose the Zakharov-Shabat equations

∂t2A1 − ∂t1A2 + [A1,A2] = 0.

This gives the following system of three equations for the three unknown functions:

v(x)f1(x+ η) = v(x+ 2η)f1(x),

∂t1f1(x) + v(x+ η)f0(x)− v(x)f0(x+ η) = 0,

∂t2v(x)− ∂t1f0(x) + 2v(x)
(
f1(x)− f1(x− η)

)
= 0.

The �rst equation allows us to exclude the function f1:

f1(x) = v(x)v(x+ η),

then the system acquires the form
∂t1 log

(
v(x)v(x+ η)

)
=
f0(x+ η)

v(x+ η)
− f0(x)

v(x)
,

∂t2v(x)− ∂t1f0(x) + 2v2(x)
(
v(x+ η)− v(x− η)

)
= 0.

One can introduce the tau-function of the B-Toda hierarchy. The functions v(x), f0(x)
are expressed through it as follows:

v(x) =
τ(x+ η)τ(x− η)

τ 2(x)
, f0(x) = v(x)∂t1 log

τ(x+ η)

τ(x− η)
.

With this substitution, the �rst equation becomes an identity while the second one turns
into a bilinear equation for the tai-function.

Elliptic solutions

Let us consider solutions that are elliptic functions of x, and �nd the dynamics of their
poles as functions of t = t1. As usual, we should address the corresponding linear problem
∂tψ = A1ψ, which is written as the di�erential-di�erence equation

∂tψ(x) = v(x)
(
ψ(x+ η)− ψ(x− η)

)
.

4



The function v(x) is expressed through the tau-function as is mentioned above. For our
purposes, it is convenient to rewrite this equation in terms of the function

Ψ(x) =
τ(x+ η)

τ(x)
ψ(x+ η).

Then the equation acquires the form

∂tΨ(x− η) = Ψ(x) + b(x)Ψ(x− η)− u−(x)Ψ(x− 2η),

where

b(x) = ∂t log
τ(x)

τ(x− η)
, u−(x) =

τ(x− 2η)τ(x+ η)

τ(x− η)τ(x)
.

For elliptic solutions

τ(x) = C
N∏
j=1

σ(x− xj),

then
b(x) =

∑
j

ẋj
(
ζ(x− xj − η)− ζ(x− xj)

)
,

u−(x) =
∏
j

σ(x− xj − 2η)σ(x− xj + η)

σ(x− xj − η)σ(x− xj)

are elliptic functions of x with periods 2ω1, 2ω2. Therefore, solutions for Ψ(x) should be
found among double-Bloch functions of the form

Ψ(x) = kx/η
N∑
i=1

ciΦ(x− xi, λ),

where the coe�cients ci do not depend on x. The spectral parameters k, λ are to be
connected by equation of the spectral curve. Substituting into the linear equation, we
get:

k−1
∑
i

ċiΦ(x−xi−η)− k−1
∑
i

ciẋiΦ
′(x−xi−η)

=
∑
i

ciΦ(x− xi) + k−1
∑
j

ẋj
(
ζ(x−xj−η)− ζ(x−xj)

)∑
i

ciΦ(x−xi−η)

− k−2
∏
j

σ(x− xj − 2η)σ(x− xj + η)

σ(x− xj − η)σ(x− xj)

∑
i

ciΦ(x−xi−2η),

where Φ′(x) = ∂xΦ(x, λ). The both sides have poles at x = xi è x = xi+η (possible poles
at x = xi + 2η in the last terms cancel by zeros of the numerator). The second order
poles at x = xi + η cancel identically. Comparing the simple poles at x = xi, we obtain
the equations

ci − k−1ẋi
∑
j

cjΦ(xij − η)− k−2σ(2η)U−
i

∑
j

cjΦ(xij − 2η) = 0,
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where

U−
i =

∏
j ̸=i

σ(xij − 2η)σ(xij + η)

σ(xij − η)σ(xij)
.

Below we will also encounter the function U+
i , which di�ers from U−

i by the change of
sign η → −η. Let us introduce the N×N matrix L = L(k, λ) with matrix elements

Lij(k, λ) = ẋiΦ(xij − η, λ) + k−1σ(2η)U−
i Φ(xij − 2η, λ)

and the vector c = (c1, . . . , cN)
T. Then the system of linear equations can be written in

the matrix form:
L(k, λ)c = kc,

which gives the equation of the spectral curve

det
(
kI − L(k, λ

)
= 0.

Comparing the poles at x = xi + η, we obtain the equations

ċi =
∑
j

Mijcj èëè ċ =Mc,

where the matrix M =M(k, λ) has the form

Mij(k, λ) = ẋi(1− δij)Φ(xij, λ) + k−1σ(2η)U+
i Φ(xij − η, λ)

− δij
(∑

k

ẋkζ(xik + η)−
∑
k ̸=i

ζ(xik)
)
.

We recognize the matrices L,M of the deformed RS system. Compatibility of the over-
determined system of equations for the vector c is expressed as the Manakov's triple
equation, which generalizes the Lax equation. Therefore, the dynamics of poles in the
time t1 is isomorphic to the dynamics of the deformed RS system.
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