Integrable systems of particles and nonlinear
equations. Lecture 6

A. Zabrodin*

Deformed Ruijsenaars-Schneider systems

The elliptic RS systems admit a further deformation preserving integrability. (see [11,
12]). However, the Hamiltonian structure of these deformed systems is not known, and
they are probably not Hamiltonian. We will discuss them on the level of Newtonian
equations of motion. Like the RS systems, they exist in rational, trigonometric and elliptic
versions. We will consider the most general elliptic version.

Equations of motion

The equations of motion of the deformed RS system have the form

N
B+ ) @iy (C(Sﬁz’j +n)+ ¢z —n) — 2@(5%')) +9(U;7 = U;") =0,

J#i

where N
2 i
U =[[U(@y),  U(ay) = 7l x )y 5 1)
i o(xij £ n)o(zi;)

and g is the deformation parameter. At g = 0 they become the equations of motion of the
elliptic RS system. Clearly, any g # 0 can be put equal to an arbitrary nonzero number

by rescaling the time variable as t — ¢~/?t. In what follows we set ¢ = o(21) without
loss of generality.

We will show that the equations of motion of the deformed RS system can be obtained
by restriction of the Hamiltonian flow with the Hamiltonian H, — o?(n)H_ of the RS
system with an even number of particles N = 2N, to the half-dimensional subspace P C
F of the 4Ny-dimensional phase space F that corresponds to configurations in which the
2Ny particles stick together in pairs forming Ny pairs with the distance between particles
in each pair equal to 7. Such configurations are immediately destroyed by flows with the
Hamiltonians H, H_ but are preserved by the flow with the Hamiltonian H, —o?(n)H_,
and the corresponding dynamics can be restricted to the subspace P. It is this restriction
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Puc. 1: Pairs of particles in the RS model (N = 6, Ny = 3).

that gives the equations of motion written above, where one should substitute N by N,
and z; (i = 1,..., Np) is the coordinate of the i-th pair which moves as a whole thing with
the fixed distance between particles. In fact the subspace P is Lagrangian; the meaning
of this fact for the theory of the deformed RS system is to be clarified.

So, let us show that the restriction of the RS dynamics of N = 2N, particles to the
subspace P in which the particles stick together in Ny pairs such that
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leads to the equations of motion of the deformed RS system for coordinates of the pairs.
It is natural to introduce the variables

Xi = T9i-1, i=1,..., Ny,

which are coordinates of pairs. As we will see below, such structure is preserved by
the flow with the Hamiltonian H = H, — o?(n)H_. Therefore, to define the dynamical
system, one should consider the evolution in the time ¢ that corresponds to the flow with
the Hamiltonian H = H, — o*(n)H_ fixing the time variables that correspond to the
other flows.

In order to simplify the formulas and to get rid of inessential multipliers and coefficients,
here we redefine the momenta and take the Hamiltonians in the form
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It is easy to see that these Hamiltonians lead to the same Newtonian equations of motion.
For further convenience, we also change normalization of the integrals of motion:
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then H = Jl — J_l.
For the velocities @; = OH /Op; we have:

2N, 2N,
i — e ] O@aictg £ 1) o i 1l ofw2i1g =)
j=1,£2i—1 0 (2i-1,5) j=1,£2i—1 0 (2i-1,5)
2N, 2N,
Ty = €M HO 70(@”- aakl) + o*(n)e P> HO 70(@” — TI).
o2 O (22i) iz O(T2i)



Imposing the constraint z9; — x9;_1 = 7, one sees that the first term in the right-hand
side of the first equation, as well as the second term in the second one, vanish since there
appears a zero multiplier in the product. Then in terms of the coordinates of the pairs
X, these equations are:
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with arbitrary P;, then @9; 1 = x9; for all 7, so the distance between particles in each pair
is preserved by the evolution. Therefore, under the H-flow each pair moves as a whole
thing, and
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We have passed from the initial 4/Ny-dimensional phase space F with coordinates

({xi}n,{pi}n) to the 2Ny-dimensional subspace P C F of pairs that is defined by
imposing the constraints
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The coordinates in P are ({X;}n,, {Pi}n)-

Restricting the second set of the Hamiltonian equations p; = —9H /Ox; to the subspace
P, we have:
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Taking the time derivative of Xi, we get:
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We have thus obtained the equations of motion of the deformed RS system (with g =

a(2n), N = Ny).

Commutation representation

The equations of motion of the deformed RS system do not admit any representation of
the Lax type. However, they admit a more general commutation representation which is
known as the Manakov’s triple. It allows one to find integrals of motion. Here we present
only the result; the derivation will be given later in the section devoted to the dynamics
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of poles of elliptic solutions to the Toda lattice of type B.



In this more general case the matrices L and M depend on two spectral parameters,
A and k (they will be connected by equation of the spectral curve). Consider the matrices

Lij(k,A) = &;®(xi; — 0, A) + k1 gU; ®(; — 2n, A),

Mij(k, A) = (1 = 635) @ (25, A) + k™' gU @ (2 — 1, A)
+ 035 (D G (@ + ) = > #n(wa))
I I#i
Rij<k7 >\) = gk_l(Ui_ - Uj)@(l’w -, )‘)
Here and below g = 0(2n). The statement is that the matrix equation
L+ [L,M]=R(L - kI)

is equivalent to the equations of motion of the deformed RS system. The matrix equation
can be written in a little bit different way in terms of the matrices £(k,\) = L(k,\) — kI

and
Mi:]‘-:(k’, )\) = ZL’Z(l — 52‘3‘)@(1‘2‘]‘, )\) + k‘_lgUiiCI)(l‘ij -1, )\)
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and the matrices £, M ™, M~ form the Manakov’s triple.

The calculation necessary for the proof is non-trivial and requires some explanations.
To this end, introduce the matrices

Agj = (1 - 5ij)q)(95ij)a Aij = (I)(mij - 77)> Bz’j = (D(l'ij - 277)
and diagonal matrices

y . + +
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zg = 0ij (Z$1C aEtn) — foUzC(fEu)),

I£i

Di — 51] Z( Til — 277 + C('Tzl + 77) C(le - 77) - C({Ezl))a
l#i

S5 = 8y Y dr(Clwa — 20) + C(wa + 1) = ((wa —n) = ().
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We will also need the matrices A}; = ®'(xy —n, ), Bj; = ®(25 —2n, A). In this notation
L=XA+ gk 'U B,
M=XA+ gk '\UtA—Z+.
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Now we find:
L [L,M) = (X + (254 27)X +g(U™=U"))A + gk~ (U~ =U")A(L — kI)

+ WQ + gklel + g2k372W2,
where
Wo=X2A"— XAX + XAXA* - XA XA - XAZ+ — XZ~ A,
W, =UXDB—-U(S"—Z")B+U XB —U B'X + XAU+A
+ U BXA" - XAU-B—U"BZ+* - U AXA,

Wy =U"BU*A—U+*AU~B — (U~ — U*)AU~B.

A direct calculation (which uses the identities from Section 1) shows that W, = 0. The
calculation of Wy yields:

(U*BU+A - U*AU*B)

ij

= @z — 3n) Y [U; U (Clwa — 20) + C(ay — ) = Clwyg — 30+ A) +C(N)

— U U7 (S — ) + C(ay — 20) = Gl — 30+ A) + C(V) |-
Using the fact that the sum of residues of the elliptic function

—x;—n) — ((x—2x; ole — o+ 2)o(r —z —n)
(C(:c =) —¢( 1+277)>1;[ o(x —x +n)o(x —x)

in the fundamental domain is zero, we conclude that

(U—BU+A - U+AU—B)

= Oz —3n)(U; —U;) D [Up (Clwa—n) + C(ay—2n) = C(wi—3n+A) + C(),
l

so Wy = 0. The calculation that shows that W; = 0 too, is the most difficult. One should
use the fact that the sum of residues of the elliptic function

—zi—n) — ((z—x; oz — 2+ 2n)ole — zi — 1)
(Cla—a;—n) = < Z+’7))H oz —x +n)o(z —x)

in the fundamental domain is zero (this function has simple poles at © = z; and x = z;—7,
and a second order pole at z = z; — 7).

As a result, we obtain the matrix identity
L+ ([L,M]=R(L-kI)+ P,
where the matrix P is
P=(X+(2"4+27)X +g(U —-U"))A,
and
R=gk " (U —UMA.

The equations of motion are equivalent to the condition P = 0.
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Integrals of motion

The equation of the spectral curve is
det £(k, A) = det (kI — L(k,\)) = 0.

The time evolution L — L(t) of our “Lax matrix” is not isospectral. Nevertheless, the
characteristic polynomial det(kl — L(k,\)) (which is in fact a Laurent polynomial in k)
is an integral of motion, so the spectral curve does not depend on time. This fact follows
from the Manakov’s representation. Indeed,

d d
al — = —trl —
: log det(L — kI) ; trlog(L — k1)

= tr(L(L = k1)) = trR =0

because the matrix R is traceless:

tr R = gk~ '®(—n, \) (U7 =U)=0.

This follows from the fact that > (U; — U;") is proportional to the sum of residues of

the elliptic function

oo =2, ole—z;+7)
P === =)

in the fundamental domain. The characteristic polynomial det(kI—L(k, \)) is the generating
function of integrals of motion.

In order to study properties of the spectral curve, it is convenient to pass to the
gauge-equivalent Lax matrix L = ¢ WG LG, where G is the diagonal matrlx with
matrix elements G; = e <M and to the spectral parameter z = ke=™. Then the
equation of the spectral curve acquires the form

det (z] — L(z, /\)) =0,

where

Denote
det (z[ — L(z, )\))

)\ —
It is a generating function of integrals of motion. Calculation of the determinant yields:
2N 2N
\) = _
QEN = 5N =N o0
N o(X —kn) o(A—2Nn+ kn)
+ N—k _ k=N
S et 2 et
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where Ji are integrals of motion of the deformed RS system. They can be found in an
explicit form (see below). From the equation of the spectral curve Q(z, ) = 0 it is seen
that the curve has a holomorphic involution ¢ : (z,\) — (271, 2Ny — ) with two fixed
points (+1, Nn).

The calculation of the determinant requires some comments. The calculation is rather
long but direct. It uses the formula for determinant of sum of two matrices and the formula
for determinant of the elliptic Cauchy matrix. First of all, the determinant det(I + M)
is equal to sum of all diagonal minors of the matrix M of all sizes, including the “empty
minor”, which should be put equal to 1. After that we encounter the determinants of the
form det(As + By), where Az, B are diagonal minors of the matrices X;p(X,;—n, u),
o(2n)2tU; ¢(Xij—2n,u) of size n < N with rows and columns indexed by indices from
the set J = {j1,.--,Jnt C {L,....N} (1 < j2 < ... < jn < N). The formula for
determinant of sum of two matrices states that

det(As + By) = > det ATV,
1cy

where the sum goes over all subsets Z of the set J and Aﬁ)z is the matrix Az, in which
the rows numbered by indices from the set Z are changed to the corresponding rows of
the matrix B7. Each matrix A(jB\)I is an elliptic Cauchy matrix multiplied by a diagonal
matrix, so its determinant is known. To see this, put z; = X; and

yj=X;—n ifje J\Z,

in the elliptic Cauchy matrix. The determinant is then represented as a Laurent polynomial

in z with coefficients that are written as sums over the sets Z, Z' C {1,..., N} such that
InT =0.

Problem. Do this calculation with all details and find the explicit form of the coefficients
Ji.

The explicit form of the integrals of motion is as follows:

[k/2]
Jin = Z Jin,ma
m=0

where Jy, ,, is given by

Jinm = Ug(nn) > (IX)(Tvex))II I Utx)).

n—2m
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o*(Xi)
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Here are the first two integrals:

Jl = Z ii?
=1

b= o S Vo) + ) ([T ) + TTU (o)

iF£] i lF# 01

One can prove that J; is an integral of motion directly summing all the equations of
motion. One can prove that J, ,, = J_, ;. This follows from the identity

>0 I vr(xi) = > 11 II U7 (Xa)

ICN' €T LeEN\T ICN' €T LeEN\T

where N is any subset of the set N'= {1,..., N}. The already familiar for us identity
> (U7 = U;") = 0is a very particular case of the general identity given here.
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