
Integrable systems of particles and nonlinear

equations. Lecture 2
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Rational CM system in quadratic potential

The CM particles can be put in an external �eld with quadratic potential, and the
integrability is preserved. The Hamiltonian has the form

H =
N∑
i=1

p2i − g2
∑
i≠j

1

(xi − xj)2
+ ω2

N∑
i=1

x2
i ,

which leads to the equations of motion:

ẍi = −8g2
∑
j ̸=i

1

(xi − xj)3
− 4ω2xi.

They imply that the center of masses moves as the harmonic oscillator with frequency
2ω.

Commutation representation. Keeping the notation from the previous section, we
introduce the matrices

L± = L± iωX.

Problem. Show that the equations of motion are equivalent to the matrix equations

L̇± + [L±,M ]± 2iωL± = 0

with the matrix M from the previous section.

Consider the matrices

L1 = L+L− = L2 + ω2X2 − igω(E − I),

L2 = L−L+ = L2 + ω2X2 + igω(E − I).

Problem. Show that the matrices L1, L2 satisfy the Lax equations Ëàêñà:

L̇α + [Lα,M ] = 0, α = 1, 2.
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The same Lax equation holds for the matrix

L =
1

2
(L1 + L2) = L2 + ω2X2,

and we can immediately �nd a set of integrals of motion:

Ik = trLk.

At k = 1 we obtain the Hamiltonian of the system. It can be shown that all these integrals
are in involution.

Problem. Find I2 in the explicit form.

Note that the commutation representation can be written in terms of the matrices
L,M è X. From the equations L̇± + [L±,M ]± 2iωL± = 0 we �nd:

L̇+ [L,M ]± iω
(
Ẋ + [X,M ] + 2L

)
= 2ω2X.

The imaginary part must vanish, i.e.,

Ẋ + [X,M ] + 2L = 0.

Therefore, we arrive at the commutation representation in the form

L̇+ [L,M ] = 2ω2X.

The projection method. At ω ̸= 0 the free motion in the space of matrices should
be substituted by harmonic oscillations with frequency 2ω and project onto eigenvalues.
To wit, we will show that the eigenvalues of the matrix

X0 cos(2ωt)− L0
sin(2ωt)

ω

move as CM particles in the quadratic potential. Obviously, at ω = 0 this reduces to the
statement of the previous section. Let V be the diagonalizing matrix:

X0 cos(2ωt)− L0
sin(2ωt)

ω
= V XV −1,

where X is a diagonal matrix. Di�erentiating this with respect to time, we obtain:

2ω sin(2ωt)X0 + cos(2ωt)L0 = 2V LV −1,

where we have put L = −1
2
(Ẋ + [X,M ]) and M = −V̇ V −1. Di�erentiating once again,

we will have:
L̇+ [L,M ] = 2ω2X,

which is the commutation representation of the equations of motion.

Next, we should show that the matrix L is of the required form. The equation L̇ +
[L,M ] = 2ω2X is equivalent to the Lax equation for L = L2 + ω2X2. This we can write

V (L2 + ω2X2)V −1 = L2
0 + ω2X2

0 .
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Plugging here the time dependence of the matrix V XV −1, we obtain, after some simple
transformations:

V LV −1 = cos(2ωt)L0 + ω sin(2ωt)X0.

This relation allows one to �nd the commutator [L,X], which turns out to be time-
independent and equal to

[L,X] = V −1[L0, X0]V = gV −1(I − E)V = g(I − E),

as before (the matrix V is normalized in the same way as before). It then follows that
the matrix L has the same form as before.

Note also that if xi(t) is a solution of the equations of motion of the CM system with
ω = 0, the above formulas imply that

x̃i(t) = xi(ω
−1 tan(2ωt)) cos(2ωt)

is a solution of the equations of motion of the CM system in the external �eld with ω ̸= 0.

The CM system with trigonometric potential

The interaction potential of the CM system admits a deformation such that it becomes
periodic in the complex plane with one real or purely imaginary period. We call such
systems trigonometric (or hyperbolic) CM systems (sometimes they are called the Calogero-
Sutherland systems). This deformation preserves integrability. All statements of the
previous section related to the rational CM system (except the self-duality) have direct
analogs for the trigonometric systems; however, their formulations and proofs may be of
a more complicated form.

The Hamiltonian and equations of motion. The Hamiltonian has the form

H =
∑
i

p2i − g2
∑
i ̸=j

γ2

sinh2(γ(xi − xj))
,

where g2 is the coupling constant and γ is a parameter characterizing the period of
the potential, which is equal to πi/γ. At real γ we have a hyperbolic system, at purely
imaginary γ the system is trigonometric. In what follows we will not pay attention to
this di�erence, and will call the system trigonometric in the both cases. In the limit as
γ → 0 we come to the rational CM system.

The integrals of motion are:

ẋi = 2pi,

ṗi = −4g2γ3
∑
j ̸=i

cosh(γ(xi − xj))

sinh3(γ(xi − xj))
,

or, in the Newtonian form,

ẍi = −8g2γ3
∑
j ̸=i

cosh(γ(xi − xj))

sinh3(γ(xi − xj))
.
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Lax representation and integrals of motion. The Lax matrix of the trigonometric
CM system has the form

Lij = −piδij −
gγ(1− δij)

sinh(γ(xi − xj))
.

It is convenient to pass to the new variables

wi = e2γxi

and together with the diagonal matrixX = diag(x1, . . . , xN) consider the diagonal matrix
W = diag(w1, . . . , wN). We also introduce the matrices A,B with matrix elements

Aik = 2γ(1− δik)
w

1/2
i w

1/2
k

wi − wk

,

Bik = 4γ2(1− δik)
w

3/2
i w

1/2
k

(wi − wk)2
,

and the diagonal matrix

Dik = 4γ2δik
∑
l ̸=i

wiwl

(wi − wl)2
.

We keep the same notation for them as for the corresponding matrices of the previous
section, since the former ones are direct analogs of the latter, and reduce to them as
γ → 0. Here is the Lax pair:

L = −1
2
Ẋ − gA,

M = γẊ + 2gB − 2gD.

Problem. Prove that the Lax equation L̇+ [L,M ] = 0 is equivalent to the equations of
motion.

The equation that characterizes the Lax matrix is

[W,L] = 2gγ
(
W −W 1/2EW 1/2

)
or

W 1/2LW−1/2 −W−1/2LW 1/2 = 2gγ(I − E).

In the limit γ → 0 it reduces to the equation [X,L] = g(I − E), which was discussed in
the previous section.

As before, the Lax equation implies that the evolution of the Lax matrix in time is
an isospectral transformation, and the quantities Hk = trLk are integrals of motion.

Problem. Check that H2 = H and �nd H3 in the explicit form.

Problem. Using the method of the previous section (suggested by A.Perelomov), prove
that the integrals Hk are in involution.
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Linearization in the space of matrices. The linearization in the space of matrices
has an analog for the trigonomatric system: the quantities wi(t) = e2γxi(t), where xi(t)
are coordinates of the particles in the trigonometric CM system, are eigenvalues of the
matrix

e−4γtL0e2γX0 .

Problem. Prove this statement.

Problem. Try to �nd the corresponding matrix for the higher �ows.

The trigonometric CM system versus the rational one in an external �eld. In
1997, Nekrasov obtained a remarkable result which establishes a correspondence between
the trigonometric CM dynamics and the dynamics of the rational CM system in an
external quadratic potential.

Let us consider the systems with repulsive potential, i.e., change g → ig and γ → iγ.
To avoid mixing of the notation, we will denote the coordinates and momenta of the
trigonometric system by θi, −ξi, with the canonical Poisson brackets. The Hamiltonian
and the Lax matrix of the trigonometric system have the form

H =
∑
i

ξ2i + g2
∑
i ̸=j

γ2

sin2(γ(θi − θj))
,

Ljk = ξjδjk −
igγ(1− δjk)

sin(γ(θj − θk))
.

Also, we change the notation for the Lax matrix of the rational system and introduce
the matrix

Pjk = −pjδjk −
ig(1− δjk)

xj − xk

(it is just the former matrixL); in the case of repulsion it is Hermitian. Instead of the
matrices L± we consider the matrices

Z = P + iωX, Z† = P − iωX.

As it follows from the previous section, the matrix Z satis�es the equation of the Lax
type:

Ż + [Z,M ] + 2iωZ = 0,

which implies that
Z(t) = e2iωtV Z(0)V −1

with some unitary matrix V .

Let us consider decomposition of the matrix Z into a product of a unitary and a
Hermitian matrix, which is analogous to representation of a complex number z in the
form z = reiφ. We will write such a decompositon in the symmetrized form:

Z = U1/2R1/2U1/2, R† = R, U † = U−1,

then
Z†Z = U−1/2RU1/2.
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Let V be the unitary matrix diagonalizing the matrix U , i.e.,

U = VWV −1, W = diag(e2iωθ1 , . . . , e2iωθN ).

It is de�ned up to multiplication by a diagonal matrix from the right. We �x this freedom
by the condition Ue = e.

Set
L = V −1RV.

The commutation relation [X,P ] = ig(I−E) or [Z,Z†] = −2ωg(I−E) is then rewritten
in the form

U1/2RU−1/2 − U−1/2RU1/2 = −2ωg(I − E)

or
W 1/2LW−1/2 −W−1/2LW 1/2 = 2ωg(I − E).

Comparing this with the similar relation for the trigonometric CM system, we conclude
that there should be ω = γ, and then L becomes its Lax matrix with diagonal elements
ξi = (V −1RV )ii. Therefore, the Hamiltonians tr(Z

†Z)k of the rational system transform
into the Hamiltonians trLk of the trigonometric system. In particular, at k = 1 we have
that the dynamics of the CM particles in the external �eld is equivalent to the free
dynamics of the trigonometric system with the Hamiltonian

∑
i ξi, i.e. all the θj's move

with the same constant velocity. This follows from the relation

Z(t) = e2iωtV Z(0)V −1

established earlier.

It remains to prove that the transformation from (pi, xi) to (ξi, θi) is canonical. We
have:

tr(dZ ∧ dZ†) = 2iωtr(dP ∧ dX).

Problem. Using the identity

tr(dX̃ ∧ dỸ ) = tr(dX ∧ dY )− dtr([X,Y ]U−1dU)

from the problem of the previous section, show that∑
i

dξi ∧ dθi = −tr(dP ∧ dX) =
∑
i

dpi ∧ dxi,

which just means that the transformation is canonical.
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