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Abstract

This is a course on quantum integrable systems solved by Bethe ansatz based on
lectures given for students of Moscow Institute of Physics and Technology, Higher
School of Economics and Skolkovo Institute of Science and Technology. We start
from the coordinate Bethe ansatz for the spin chains and the one-dimensional Bose
gas with point-like interaction, proceed to the algebraic Bethe ansatz for the 6-
vertex and 8-vertex models and end with a discussion of such advanced issues
as scalar products of Bethe vectors, the master T -operator and quantum-classical
duality.
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1 Introductory remarks

The history of quantum integrable systems began in 1931 when Bethe managed to find
exact eigenfunctions of the Hamiltonian of the Heisenberg spin chain using a special
ansatz which is now famous and is named after him (Bethe ansatz). In one or another
form, this method turned out to be applicable to many other integrable models of solid
state physics and quantum field theory. From the mathematical point of view, the Bethe
method is related to representation theory of quantum algebras (q-deformations of uni-
versal envelopping algebras of Lie algebras).

Although many different generalizations and variants of the Bethe method have been
proposed over the years, the secret of its amazing effectiveness and universality has not
been revealed until now.

These lectures contain a presentation of the following matters:

� Coordinate Bethe ansatz on the examples of the Heisenberg model and one-dimen-
sional Bose-gas with pairwise point-like interaction between particles;

� Bethe ansatz in exactly solvable models of statistical mechanics on the lattice on
the example of the 6-vertex model;

� Bethe equations and the Yang function, calculation of norms of Bethe vectors;

� Calculation of physical quantities in integrable models in thermodynamic limit;

� Quantum inverse scattering method and algebraic Bethe ansatz, quantum R-mat-
rices, the Yang-Baxter equation;

� Generalized algebraic Bethe ansatz for the XY Z Heisenberg magnet and the 8-
vertex model;

� Calculation of scalar products of Bethe vectors, determinant representation of the
scalar products;

� The method of Baxter’s Q-operators, functional relations for transfer matrices;

� Connection with integrable hierarchies of classical soliton equations: the master
T -operator as tau-function;

� Connection with classical integrable systems of the Calogero-Moser type: quantum-
classical duality.

As is seen from this list, the presentation starts from very classical matters which were
repeatedly reviewed in the literature (such that coordinate Bethe ansatz) and ends with
a discussion of rather recent achievements.

Here is also a list of topics related to the theory quantum integrable systems that are
not covered in the lectures:

� Bethe ansatz for the sine-Gordon model and the massive Thirring model;
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� Chiral Potts model;

� Hierarchical (nested) Bethe ansatz in its coordinate and algebraic versions;

� Thermodynamic Bethe ansatz;

� Integrable spin chains and vertex models connected with classical Lie algebras and
superalgebras;

� Integrable systems with non-periodic boundary conditions, reflection equations;

� Exactly solvable models of the IRF-type (interaction round a face) on the lattice,
the correspondence between vertex models and IRF models (the vertex-IRF cor-
respondence);

� Calculation of correlation functions in quantum integrable systems and exactly
solvable models of statistical physics on the lattice.

Knowledge of the basics of quantum mechanics and statistical physics is highly desi-
rable but not absolutely necessary for understanding these lectures. Out of the physical
context, the Bethe ansatz in its finite-dimensional version is simply a method to diago-
nalize large matrices of a special form, and in this sense it does not require any prior
knowledge except the basics of linear algebra.

These notes are based on lectures given for students of Moscow Institute of Physics and
Technology (MIPT), Higher School of Economics (HSE) and Skolkovo Institute of Science
and Technology in 2013-2020. The lectures were intended for an audience unfamiliar
with the subject and were aimed at an initial introduction to it. There are a number of
exercises and problems in the text which are an essential part of the course. Exercises
are very simple; problems are somewhat more difficult.

The literature on quantum integrable systems and Bethe ansatz is enormous. Our
list of references contains, along with a very limited set of well-known monographs [1]–[4]
and reviews [5]–[11], some recent original papers which have had a substantial impact on
the content of the present lectures (sections 5, 6.3 and 6.5 are based on the papers [12],
[13] and [14] respectively). As a rule, we do not give explicit references to the literature
in the main text.

2 Coordinate Bethe ansatz

2.1 Bethe ansatz for the Heisenberg model

2.1.1 The notation and terminology

Pauli matrices. The Pauli matrices are the following 2×2 matrices:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.
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They from a convenient basis in the space of Hermitean 2×2 matrices with zero trace.
They are also denoted as σ1, σ2, σ3, and the unity matrix is denoted as σ0. We will
sometimes write 1 instead of the unity matrix. The main properties of the Pauli matrices
are

1) σ2
x = σ2

y = σ2
z = 1,

2) σxσy = iσz, σyσz = iσx, σzσx = iσy,

3) σjσk = −σkσj at j 6= k.

It is convenient to represent the Pauli matrices as a 3-vector with matrix components:
σ⃗ = (σx, σy, σz). We will also often use the matrices

σ+ =
1

2
(σx + iσy) =

(
0 1
0 0

)
, σ− =

1

2
(σx − iσy) =

(
0 0
1 0

)
.

It is easy to check that σ2
+ = σ2

− = 0, [σz, σ±] = ±2σ± and [σ+, σ−] = σz.

The following equality in End (C2 ⊗ C2) holds:

σ0 ⊗ σ0 + σx ⊗ σx + σy ⊗ σy + σz ⊗ σz = 2P12, (2.1)

where P12 is the permutation operator. It acts as follows: if u, v are any two vectors in
C2, then P12 (u ⊗ v) = v ⊗ u. Equivalently, if X, Y are any two operators in End (C2),
then P12X ⊗ Y = Y ⊗ X P12. In the notation σ⃗(1) = σ⃗ ⊗ 1, σ⃗(2) = 1 ⊗ σ⃗, the identity
(2.1) can be also written in the form

P12 =
1

2
(I+ σ⃗(1)σ⃗(2)) (2.2)

(here σ⃗(1)σ⃗(2) is undestood as the scalar product of the “vectors” σ⃗(1) and σ⃗(2), i.e., sum
of products of the components, and I is the unity matrix of size 4×4).

Another convenient basis in the space of 2× 2 matrices consists of the “matrix units”
eab (a, b = 1, 2). The ab matrix element of the matrix eab is equal to 1, and all other
matrix elements are 0. The permutation operator can be written as

P12 =
2∑

a,b=1

e
(1)
ab e

(2)
ba .

In the case when there are more than two tensor factors, it is convenient to introduce
the operators σ⃗(j) ∈ End (C2 ⊗ C2 ⊗ . . .⊗ C2︸ ︷︷ ︸

N

) according to the rule

σ⃗(j) = 1⊗ . . .⊗ 1︸ ︷︷ ︸
j−1

⊗ σ⃗ ⊗ 1⊗ . . .⊗ 1︸ ︷︷ ︸
N−j

,

and similarly for e
(j)
ab . Obviously, if j 6= k, then the components of the operator vector

σ⃗(j) commute with components of σ⃗(k) because they act nontrivially in different spaces.
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The space of states. Consider the linear space

H = C2 ⊗ C2 ⊗ . . .⊗ C2︸ ︷︷ ︸
N

.

We call it the space of states. (A state is any vector from H. If two vectors are propor-
tional, they define the same state.)

In quantum mechanics this is the space of states of a system of N fixed atoms having
magnetic degrees of freedom which we for brevity call spins. Other degrees of freedom
of the atom are not taken into account in this simplified picture. The space of states of
each atom is two-dimensional (spin 1

2
).

Let us choose the basis in C2 as follows:

|+〉 =
(

1
0

)
, |−〉 =

(
0
1

)
.

In the state |+〉 the z-projection of spin is +1 (up-looking arrow). Similarly, in the state
|−〉 the z-projection of spin is −1 (down-looking arrow). For brevity, we say that in the
first (second) case spin looks up (down). All other states of spin are linear combinations
of these two with complex coefficients. In such states the z-projection does not have a
definite value. The Pauli matrices σx, σy, σz are operators of projections of spin on the
axis x, y, z (more precisely, in physics the operator of spin 1

2
is not σ⃗ but 1

2
σ⃗, and possible

values of spin projections are ±1
2
). Since they do not commute, only projection to one

axis can have a definite value (+1 or −1). Clearly, we have: σz |+〉 = |+〉, σz |−〉 = − |−〉,
σ+ |+〉 = σ− |−〉 = 0, σ+ |−〉 = |+〉, σ− |+〉 = |−〉.

The basis vectors in H are tensor products of the basis vectors in each tensor factor.
For example,

|+〉 ⊗ |+〉 ⊗ |−〉 ⊗ |+〉 ⊗ |−〉 ⊗ |−〉 ⊗ . . . ⊗ |−〉 ⊗ |+〉 ,

which we will also write as

|+〉1 |+〉2 |−〉3 |+〉4 |−〉5 |−〉6 . . . |−〉N−1 |+〉N
or simply |++−+−− . . . −+〉. This is the state in which the first spin has z-
projection +1, the second +1, the third −1 and so on. There are 2N such vectors,
i.e., dimH = 2N .

Let us note that in the basis |++〉, |+−〉, |−+〉, |−−〉 the permutation operator P12

is represented as

P12 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .
Finally, we introduce in H the scalar product (which allows one to express physical

quantities such as correlation functions). In each space C2 we define the scalar product
in the natural way by the formula 〈ϵ| ϵ′〉 = δϵ,ϵ′ , where ϵ, ϵ

′ = ± and extend it to their
tensor product by the rule

〈ϵ1ϵ2 . . . ϵn| ϵ′1ϵ′2 . . . ϵ′n〉 =
N∏
i=1

δϵi,ϵ′i .
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Let us discuss this in some more details. The dual vectors (covectors or row-vectors) have
the form 〈+| = (1, 0), 〈−| = (0, 1). The scalar product of vectors |Φ〉 and |Ψ〉 is written
in the form (|Φ〉 , |Ψ〉) = 〈Φ|Ψ〉. For any operator O we have 〈Φ|O |Ψ〉 = 〈Ψ|O† |Φ〉,
where O† is the conjugated (transposed) operator. The operator O acts to dual vectors

(to the left) according to the rule 〈Φ|O =
(
O† |Φ〉

)†
for any vector |Φ〉 (note that in our

notation (|Φ〉)† = 〈Φ|). For example, 〈+| σ+ = 〈−|, 〈−| σ− = 〈+|, 〈+| σ− = 〈−| σ+ = 0.

The operator of total spin and decomposition of the space of states. The
operator

S⃗ =
N∑
j=1

σ⃗(j)

is called, for the clear reason, the operator of total spin of the system of atoms. By anal-
ogy, one can also introduce S± = 1

2
(Sx± iSy). The commutation relations of these opera-

tors are obviously the same as for the Pauli matrices, i.e., [Sz, S±] = ±2S±, [S+, S−] = Sz,
but S2

x, S
2
y , S

2
z , are no longer equal to the unity operator and S2

± 6= 0.

It is easy to see that all basis vectors in H in which m spins look up and the other
N − m look down (independently of their order) are eigenvectors for the operator Sz

with eigenvalue N − 2m. Accordingly, the space H can be represented as a direct sum
of subspaces H(m) for m = 0, 1, 2, . . . , N , on which the z-projection of the total spin is
equal to N − 2m:

H =
N⊗
j=1

C2 =
N⊕

m=0

H(m). (2.3)

It is easy to see that

dimH(m) =

(
N
m

)
=

N !

m!(N−m)!
.

In particular, H(0) and H(N) are one-dimensional spaces spanned by the state in which
all spins look up (respectively, down). The decomposition (2.3) is very important for
what follows. Let us note that the operators σ(j)

z map each space H(m) to itself while

the operators σ
(j)
± act as follows: σ

(j)
± : H(m) → H(m∓ 1).

2.1.2 Isotropic Heisenberg model (XXX spin chain)

The main problem is diagonalization of the following operator in End(H):

H(Jx, Jy, Jz) =
1

2

N∑
k=1

(Jxσ
(k)
x σ(k+1)

x + Jyσ
(k)
y σ(k+1)

y + Jzσ
(k)
z σ(k+1)

z ) , σ⃗(N+1) ≡ σ⃗(1), (2.4)

which can be understood as a 2N×2N matrix of special form. Of physical interest are its
eigenvalues and eigenvectors in the limit N → ∞ (the thermodynamic limit).

This operator serves as the Hamiltonian of a quantum-mechanical model of identical
atoms with magnetic degrees of freedom (spins). Each spin is assigned to its own atom
(site of the chain). The identification σ⃗(N+1) ≡ σ⃗(1) means imposing periodic boundary
conditions (a closed chain). The interaction is between the nearest neighbors only. The
strength of the interaction is characterized by the constants Jx, Jy, Jz. This model (in the
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particular case Jx = Jy = Jz) was suggested by one of the founders of quantum mechanics
W.Heisenberg. The eigenvalues of the Hamiltonian H(Jx, Jy, Jz) (the spectrum) are
possible values of energy of the system of spins.

The case when only one of the three constants is nonzero (for example, Jx = Jy = 0,
Jz 6= 0) is straightforwardly reduced to the one-dimensional Ising model which can be
easily solved by elementary methods. The case when two of the three constants are
nonzero is equivalent to the two-dimensional Ising model, the exact solution of which is
already nontrivial.

The following terminology is adopted in the theory of integrable systems. If the
model is completely anisotropic (i.e. Jx 6= Jy 6= Jz 6= Jx), it is called the XY Z spin chain
(magnet), if Jx = Jy 6= Jz it is called the XXZ spin chain, and, finally, if the interaction
is the same for all the three directions, i.e., Jx = Jy = Jz, it is called the XXX spin
chain.

From a purely algebraic point of view, the constants Jx, Jy, Jz can take any values
including complex ones. However, an important physical requirement is that the operator
H(Jx, Jy, Jz) must be Hermitean. Then the constants Jx, Jy, Jz should be real. Their
signs are again not important for algebraic methods but physical properties of the model
may essentially depend on their signs. The following problem shows that some different
choices of the signs lead to unitary equivalent operators. This allows one to restrict the
consideration by the cases when the constants are either all negative (ferromagnet) or all
positive (antiferromagnet).

Problem. Let the number of sites N be even. Show that

H(Jx, Jy,−Jz) = −UzH(Jx, Jy, Jz)(Uz)
−1,

where Uz = σ(2)
z σ(4)

z σ(6)
z . . . σ(N)

z . Prove also similar identities for the x- and y-directions.

Problem. Find spectrum of the Hamiltonian of the XY Z spin chain for N = 2:

H = Jxσ
(1)
x σ(2)

x + Jyσ
(1)
y σ(2)

y + Jzσ
(1)
z σ(2)

z .

Separately consider the case of the XXX spin chain (Jx = Jy = Jz = J).

Below in this section we consider the XXX spin chain in detail. The method to find
the eigenvectors and the spectrum of the Hamiltonian was suggested by Bethe in 1931
(ansatz Bethe). The role of this method in the theory of quantum integrable systems
goes far beyond the particular model.

We take the Hamiltonian of the XXX spin chain in the form

Hxxx = − 1

2

N∑
k=1

(
σ(k)
x σ(k+1)

x + σ(k)
y σ(k+1)

y + σ(k)
z σ(k+1)

z − σ
(k)
0 σ

(k+1)
0

)
.

Comaring to (2.4), we add the last term proportional to the identity operator. This
simply shifts the spectrum by a constant. The common factor is taken to be −1

2
(the

sign corresponds to the ferromagnetic case) but if necessary the common factor J can be
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easily restored. This operator can be represented in different equivalent forms:

Hxxx = − 1

2

N∑
k=1

(
σ(k)
x σ(k+1)

x + σ(k)
y σ(k+1)

y + σ(k)
z σ(k+1)

z − 1
)

= − 1

2

N∑
k=1

(
2σ

(k)
+ σ

(k+1)
− + 2σ

(k)
− σ

(k+1)
+ + σ(k)

z σ(k+1)
z − 1

)

= −
N∑
k=1

Pk,k+1 + N.

(2.5)

In the last line Pk,k+1 is the permutation operator of kth and (k+1)th tensor multipliers
in the tensor product, and PN,N+1 ≡ PN,1.

Problem. Prove that all eigenvalues of the operator Hxxx are non-negative.

2.1.3 Construction of eigenvectors in the XXX spin chain

Two eigenvectors of Hxxx are obvious. From the representation of the Hamiltonian in

the form Hxxx = −
N∑
k=1

Pk,k+1 + N (the last line in (2.5)) it immediately follows that the

vectors |Ω〉 := |++++ . . . +〉 ,
∣∣∣Ω̄〉 := |− − −− . . . −〉 are its eigenvectors with the

eigenvalue 0:
Hxxx |Ω〉 = Hxxx

∣∣∣Ω̄〉 = 0.

The further procedure implies that we choose one of them, say, |Ω〉 (all spins up), and
construct the other eigenvectors by applying some operators to it. Physicists call the
vector |Ω〉 the vacuum (sometimes bare or false), and the construction of other eigenstates
is interpreted as creation of some “excitations” or “quasiparticles” in the vacuum.

An important remark which allows one to simplify the construction of other eigen-
vectors is that the Hamiltonian of the XXX spin chain commutes with the z-projection
of the total spin:

[Hxxx, Sz] = 0 (2.6)

(this is also the case for the XXZ-model, but not for XY Z). Again, this can be most
easily seen from the representation of the Hamiltonian as sum of permutations. Moreover,
in the XXX spin chain the three directions are on equal footing, therefore,

[Hxxx, S⃗] = 0 (2.7)

(this is already not the case for XXZ). Consequences of this global SU(2)-invariance
will be discussed later. At the moment we need only the invariance with respect to
the Cartan subalgebra given by (2.6). It implies that the operators Hxxx and Sz have
common eigenvectors. Therefore, the eigenvectors of Hxxx have a definite z-projection of
spin, i.e., one can find them separately in each sector H(m) of the decomposition (2.3).
We already saw this on the simplest example: |Ω〉 ∈ H(0).

We have mentioned above that the spectrum of Hxxx is non-negative. From this and
from the result of the problem below we conclude that the ground state has E = 0 and
N -fold degenerate.
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Problem. Show that Hxxx |Ωm〉 = 0, Sz |Ωm〉 = (N − 2m) |Ωm〉, where |Ωm〉 =
Sm
− |Ω〉. How the vectors |Ωm〉 look like?

Let us remark that besides the projections of spin there is yet another operator
commuting with the Hamiltonian: the operator eiP of shift by one site of the chain. It
acts to the basis vectors as follows:

eiP |ϵ1〉1 |ϵ2〉2 |ϵ3〉3 |ϵ4〉4 . . . |ϵn−1〉N−1 |ϵn〉N = |ϵ2〉1 |ϵ3〉2 |ϵ4〉3 |ϵ5〉4 . . . |ϵN〉N−1 |ϵ1〉N ,

where ϵi = ±. It commutes with the operators σ⃗(j) according to the rule eiP σ⃗(j+1) =
σ⃗(j)eiP . Clearly, it commutes with the operators of total spin. Physicists call an eigen-
value of the operator −i log eiP = P quasimomentum. In what follows we call it simply
momentum.

Our task is thus to find common eigenstates of the operators Hxxx, eiP and Sz. In
other words, we will find stationary states of the spin system with definite values of the
momentum and z-projection of the total spin.

A single inverted spin. A more complicated (although also simple) case is the N -
dimensional space H(1) ⊂ H (one inverted spin) which should contain N eigenvectors.

The basis vectors of H(1) are obtained by action of the operators σ
(j)
− to the vacuum

vector |Ω〉. We will find eigenvectors of Hxxx in the general form

|Ψ(1)〉 =
N∑
k=1

a(k) σ
(k)
− |Ω〉 ,

where a(k) are as yet unknown coefficients satisfying the periodicity condition a(k+N) =
a(k). Physicists call a(k) one-particle wave function (in the coordinate representation).

Let us introduce the temporary notation σ
(j)
− |Ω〉 = |j〉. It is easy to see that the operator

P ≡ ∑
k Pk,k+1 sends the vector |j〉 to

(N − 2) |j〉+ |j + 1〉+ |j − 1〉 = N |j〉+ |j + 1〉+ |j − 1〉 − 2 |j〉 ,

so that the eigenvalue equation HxxxV = EV with the eigenvalue E is equivalent to the
following linear difference equation for the coefficients a(k):

−a(k + 1)− a(k − 1) + 2a(k) = Ea(k). (2.8)

The solution can be found in the form a(k) = eipk with 0 ≤ p < 2π, then

|Ψ(1)〉 = |Ψ(1)(p)〉 =
N∑
k=1

eipk σ
(k)
− |Ω〉 , E = 2(1− cos p) = 4 sin2(p/2).

However, we should take into account the periodicity condition a(k + N) = a(k). It
implies that the parameter p (the momentum) can take only a finite number of values

p = pℓ =
2πℓ

N
, ℓ = 0, 1, 2, . . . , N − 1.

We have found N eigenvectors of the form

|Ψ(1)〉 = |Ψ(1)
ℓ 〉 =

N∑
j=1

e2πiℓj/Nσ
(j)
− |Ω〉 , ℓ = 0, 1, 2, . . . , N − 1

11



with eigenvalues Eℓ = 2
(
1− cos 2πℓ

N

)
. Note that Eℓ > 0 at ℓ 6= 0 (the state with ℓ = 0 is

S− |Ω〉). These energy levels are degenerate because all states of the form Sm
− |Ψ(1)

ℓ 〉 with
1 < m ≤ N−1 are eigenstates with the same energy. Obviously, Sz|Ψ(1)

ℓ 〉 = (N−2)|Ψ(1)
ℓ 〉.

It is also easy to check that these states are also eigenstates for the shift operator:
eiP |Ψ(1)(p)〉 = eip|Ψ(1)(p)〉 or

eiP |Ψ(1)
ℓ 〉 = e2πiℓ/N |Ψ(1)

ℓ 〉.

In the limit N → ∞ possible values of p densely occupy the segment from 0 to 2π. In
the solid state physics such states are called magnons. At small p the energy of a magnon
as a function of its momentum has the same dependence as for usual free massive non-
relativistic particles: E(p) ≈ p2. If we recall the constant J , we would obtain E(p) ≈ Jp2,
so (2J)−1 plays the role of mass of these particles.

Problem. Prove that S+|Ψ(1)
ℓ 〉 = 0 at ℓ 6= 0.

Problem. a) Find the norm of the constructed vectors with respect to the scalar

product in H introduced above; b) Prove that
〈
Ψ

(1)
l

∣∣∣ Ψ(1)
l′

〉
= 0 at l 6= l′.

Two inverted spins. In the subspace H(2) ⊂ H (two inverted spins) there are N(N−
1)/2 eigenvectors. We can find them in the form∣∣∣Ψ(2)

〉
=

∑
1≤k1<k2≤N

a(k1, k2) σ
(k1)
− σ

(k2)
− |Ω〉 ,

where a(k1, k2) are as yet unknown coefficients satisfying the periodicity conditions to
be taken into account later. Physicists call a(k1, k2) two-particle wave function (in the

coordinate representation). Below we will write simply |Ψ〉 instead of
∣∣∣Ψ(2)

〉
.

The eigenvalue equation for the operator Hxxx = N − P , where P ≡
N∑
k=1

Pk,k+1 has

the form
P |Ψ〉 = (N − E) |Ψ〉 .

We should obtain from it relations for the coefficients a(k1, k2), similarly to (2.8). For

this purpose, multiply both sides from the left by the covector 〈Ω| σ(n2)
+ σ

(n1)
+ ,

〈Ω| σ(n2)
+ σ

(n1)
+ P |Ψ〉 = (N − E) 〈Ω| σ(n2)

+ σ
(n1)
+ |Ψ〉 ,

and move the permutation operators to the left end, where they will disappear after
acting to the left vacuum because the vacuum is invariant under all permutations (all
spins look up). The commutation rule is

σ
(n)
+ Pk,k+1 = Pk,k+1

[
σ
(n)
+ + δkn(σ

(n+1)
+ − σ

(n)
+ ) + δk+1,n(σ

(n−1)
+ − σ

(n)
+ )

]
.

12



Applying it two times, we obtain:

〈Ω| σ(n2)
+ σ

(n1)
+ Pk,k+1

= 〈Ω| σ(n2)
+ σ

(n1)
+

+ δkn1 〈Ω| σ
(n2)
+ (σ

(n1+1)
+ −σ(n1)

+ ) + δk+1,n1 〈Ω| σ
(n2)
+ (σ

(n1−1)
+ −σ(n1)

+ )

+ δkn2 〈Ω| (σ
(n2+1)
+ −σ(n2)

+ )σ
(n1)
+ + δk+1,n2 〈Ω| (σ

(n2−1)
+ −σ(n2)

+ )σ
(n1)
+

+ δkn1δk+1,n2 〈Ω| (σ
(n2−1)
+ −σ(n2)

+ )(σ
(n1+1)
+ −σ(n1)

+ )

+ δkn2δk+1,n1 〈Ω| (σ
(n2+1)
+ −σ(n2)

+ )(σ
(n1−1)
+ −σ(n1)

+ ).

Next, take sum over k and use the identity a(n1, n2) = 〈Ω| σ(n2)
+ σ

(n1)
+ |Ψ〉 (at n1 < n2). In

the case n1 < n2 − 1 (but (n1, n2) 6= (1, N)) the last two lines do not work and we get
the equation

a(n1+1, n2)+a(n1−1, n2)+a(n1, n2+1)+a(n1, n2−1)−4a(n1, n2) = −Ea(n1, n2). (2.9)

If n1 = n2 − 1 = n, the penultimate line comes into play and we get:

a(n, n+ 2) + a(n− 1, n+ 1)− 2a(n, n+ 1) = −Ea(n, n+ 1). (2.10)

Finally, if n1 = 1, n2 = N , the last line contributes:

a(1, N − 1) + a(2, N)− 2a(1, N) = −Ea(1, N) (2.11)

(recall that δN+1,n = δ1,n due to pariodic boundary conditions).

Let us forget for a while about equations (2.10) and (2.11) which work only for nearest
neighbors and try to find a general solution of equation (2.9), extending it to all possible
values of n1, n2 without any periodicity conditions. Obviously, a(n1, n2) = eip1n1+ip2n2

is one of possible solutions of (2.9) at all n1, n2 and for this solution the energy is E =
2(1−cos p1)+2(1−cos p2) and the momentum is P = p1+p2. What is the general solution
with given energy and momentum? One can consider a linear combination of solutions
of the form e±ip1n1±ip2n2 . All of them have the same energy but their superposition is
in general not suitable for us because they are not eigenfunctions of the shift operator.
However, we can take

a(n1, n2) = Aeip1n1+ip2n2 +Beip2n1+ip1n2 (2.12)

with arbitrary A,B; we have still E = 2(1− cos p1) + 2(1− cos p2) and P = p1 + p2, i.e.,

a(n1 + 1, n2 + 1) = ei(p1+p2)a(n1, n2). (2.13)

But this solution is not all right: for arbitrary A, B it does not satisfy equation (2.10).
Let us see (following Bethe) whether it is possible to choose A and B in such a way that
this equation would be also satisfied. Subtract (2.10) from (2.9) at n1 = n2 − 1 = n < N
in order to exclude E. In this way we get an additional condition

a(n, n) + a(n+ 1, n+ 1) = 2a(n, n+ 1), 1 ≤ n < N, (2.14)

13



which should be satisfied by the wave function (2.12). Substituting (2.12) into (2.14), we
find that (2.12) is a solution if the coefficients A,B are connected by the formula

A

B
= − 1 + ei(p1+p2) − 2eip1

1 + ei(p1+p2) − 2eip2
:= eiθ(p1,p2).

For brevity we will often write θ12 = θ(p1, p2) = −θ21. So, the final answer is

a(n1, n2) = ei(p1n1+p2n2+
θ12
2

) + ei(p2n1+p1n2+
θ21
2

) (at n1 < n2). (2.15)

Exercise. Check that 2ctg
θ12
2

= ctg
p1
2

− ctg
p2
2
.

For the infinite chain the parameters p1, p2 are arbitrary. But our chain is a ring
(N -periodic). There is an obvious periodicity condition

a(n1 +N,n2 +N) = a(n1, n2), (2.16)

which simply means that the system can be rotated as a whole 360◦, and it will go into
itself. This condition implies quantization of the total momentum: ei(p1+p2)N = 1, i.e.,
p1 + p2 =

2πl
N
, l = 0, 1, . . . N − 1.

There is also a more subtle periodicity condition. Let us explain it on the example of
a(1, 2). How it is connected with a(1, N)? On the ring they should be connected because
both cases correspond to states with two neighboring inverted spins. They differ only by
a shift by one site. Recalling (2.13), we can therefore write a(1, 2) = ei(p1+p2)a(1, N). But
according to the same equation (2.13), ei(p1+p2)a(1, N) = a(2, N + 1), so that we should
require a(1, 2) = a(2, N + 1).

Consider now the amplitudes a(1, n) at n > 1. How a(1, n) and a(1, N − n + 2)are
connected? Both amplitudes correspond to the states in which the inverted spins are
separated by n−1 edges of the lattice. They differ by a shift by n−1 sites and, therefore,
a(1, n) = ei(n−1)(p1+p2)a(1, N − n + 2). But ei(n−1)(p1+p2)a(1, N − n + 2) = a(n,N + 1),
and we should require a(1, n) = a(n,N + 1). At last, shifting this condition as a whole
along the chain by k steps, we get a(k + 1, n + k) = a(n + k,N + k + 1), which can be
written in the form

a(n1, n2) = a(n2, n1 +N) (at 1 ≤ n1 < n2 ≤ N). (2.17)

This condition is the periodicity condition under the shift of one of the variables (n1)
by N at a fixed value of n2. Note that the condition a(n1 +N,n2) = a(n1, n2) is wrong
because our wave function is defined only at n1 < n2, and the shift n1 → n1+N changes
the relative position of the arguments.

Another way to understand this periodicity condition is to extend the wave function to
the region n1 > n2 by imposing a natural symmetry requirement under the permutation
of variables: a(n1, n2) = a(n2, n1). It is easy to see that the extended wave function is
given by the formula

asymm(n1, n2) = ei(p1n1+p2n2+
1
2
sign(n2−n1)θ12) + ei(p2n1+p1n2+

1
2
sign(n2−n1)θ21). (2.18)
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This wave function satisfies the periodicity condition in the usual form asymm(n1 +
N,n2) = asymm(n1, n2). It is equivalent to (2.17).

The periodicity condition implies the restrictions for possible values of p1, p2:{
eip1N = eiθ(p1,p2)

eip2N = e−iθ(p1,p2).
(2.19)

This is the simplest example of the system of Bethe equations. Physicists interpret them
in the following way. The first magnon, moving around the circle, acquires a phase which
should be a multiple of 2π. On the other hand, this phase is a sum of the phase due to
the free motion p1N and the scattering phase on the second magnon which is equal to
θ(p2, p1). The Bethe equations just state that the sum is a multiple of 2π.

In fact the Bethe equations (2.19) are obtained automatically if one takes into account
the condition (2.11) (which was not of any use so far). For this we subtract (2.11) from
(2.9) at n1 = 1, n2 = N and obtain the equation

a(0, N) + a(1, N + 1) = 2a(1, N).

Substituting (2.12), we get (taking into account that ei(p1+p2)N = 1 and A/B = eiθ12) the
same Bethe equatins for p1, p2.

Problem. Find solutions of the Bethe equations such that p1 = p2, and also find the
corresponding eigenvectors.

The result of this problem suggests that not all solutions of the Bethe equations corre-
spond to nontrivial eigenstates.

It is convenient to rewrite the Bethe equations in a different parametrization, in which
they become algebraic. For example, one can put eip1 = z1, e

ip2 = z2, and then
zN1 = − 1 + z1z2 − 2z1

1 + z1z2 − 2z2

zN2 = − 1 + z1z2 − 2z2
1 + z1z2 − 2z1

.

But in what follows another parametrization will be much more convenient. Instead of
p, let us introduce the parameter λ as follows:

eip =
λ+ i

2

λ− i
2

or λ =
1

2
ctg

p

2
. (2.20)

This parameter is sometimes called rapidity. For a reason which will be clear later it is
also called spectral parameter. Introduce the useful functions

p(λ) := −i log
λ+ i

2

λ− i
2

= −2 arctg(2λ) + π (mod 2π),

ε(λ) := 2(1−cos p(λ)) =
1

λ2 + 1
4

,

(2.21)
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which have the meaning of momentum and energy of a free magnon with spectral pa-
rameter λ. A direct calculation shows that

eiθ(p1,p2) =
λ1−λ2+i
λ1−λ2−i

, (2.22)

i.e., the scattering phase shift of two magnons depends only on the difference of their
rapidities, and this is the main advantage of the λ-parametrization. The system of Bethe
equations is written in the form

(
λ1 − i

2

λ1 +
i
2

)N

=
λ1−λ2−i
λ1−λ2+i

(
λ2 − i

2

λ2 +
i
2

)N

=
λ2−λ1−i
λ2−λ1+i

.

(2.23)

Let us see how the solutions look like as N → ∞. We have:

λ1 − i
2

λ1 +
i
2

= ω1e
i
N

θ12

λ2 − i
2

λ2 +
i
2

= ω2e
− i

N
θ12 ,

where ω1,2 are two arbitrary roots of 1 of Nth degree. In the limit N → ∞ their
arguments independently run in the segment [0, 2π), and exponential functions in the
right hand sides tend to 1, so the variables separate and the equations are solved in a
trivial way, with real λ1, λ2. Physically the corresponding eigenstates are interpreted as
scattering states of two magnons.

However, equations (2.23) have also complex solutions. Set λ1 = u1+iv1, λ2 = u2+iv2.
Taking module of the first equation, we get:(

u21 + (v1 − 1
2
)2

u21 + (v1 +
1
2
)2

)N

=
(u1 − u2)

2 + (v1 − v2 − 1)2

(u1 − u2)2 + (v1 − v2 + 1)2
.

Assume that v1 > 0, then the left hand side is exponentially small as N → ∞. So,
with exponential precision we have u1 = u2, v1 − v2 = 1. Taking module of the second
equation, we see that v2 < 0. Multiplying the both equations, we get:(

u1 + i(v1 − 1
2
)

u1 + i(v1 +
1
2
)
·
u2 + i(v2 − 1

2
)

u2 + i(v2 +
1
2
)

)N

= 1.

Plugging here u1 = u2, v1 − v2 = 1, we arrive at the relation(
u1 + i(v1 − 3

2
)

u1 + i(v1 +
1
2
)

)N

= 1,

hence v1 = 1
2
. So, with the exponential precision as N → ∞ we obtain the family of

solutions

λ1 = u+
i

2
, λ2 = u− i

2
. (2.24)
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Such a solution is called a string. In our case it is a string of length 2. The real parameter
u is arbitrary. The total momentum of the state and the energy are expressed as

p(λ1, λ2) = p(λ1) + p(λ2) = p(u/2) = −i log u+ i

u− i
,

E(λ1, λ2) = ε(λ1) + ε(λ2) = 1− cos p(λ1, λ2) =
2

u2 + 1
.

(2.25)

Exercise. Derive these formulas.

Problem. Prove that E(u+ i
2
, u− i

2
) is always less than the energy of two magnons

with momenta p1 and p2 such that p1 + p2 = p(u + i
2
, u − i

2
) = p(u/2). Therefore, such

state can be interpreted as a bound state of two magnons. Describe how its wave function
looks like.

To summarize, we constructed eigenstates of the operator Hxxx of the form |Ψ(λ1, λ2)〉,
where λ1, λ2 is a solution of the Bethe equations (2.23). Their momentum and energy
are given by the formulas

p(λ1, λ2) = p(λ1) + p(λ2),

E(λ1, λ2) = ε(λ1) + ε(λ2).

These states are degenerate because all states of the form Sm
− |Ψ(λ1, λ2)〉 with 1 < m ≤

N − 2 have the same energy. Obviously, Sz|Ψ(λ1, λ2)〉 = (N − 4)|Ψ(λ1, λ2)〉.
Problem. Prove that S+|Ψ(λ1, λ2)〉 = 0 (λ1, λ2 satisfy the Bethe equations).

More than two inverted spins: general case. Actually, it is not surprising that we
managed to solve the problem in the sector with two inverted spins. It is truly remarkable
that the same method allows one to go much further and to solve the problem in the
sector with arbitrary number m of inverted spins.

We will find eigenvectors of the operator Hxxx = N −P in the subspace H(m) in the
form

|Ψ〉 =
∑

1≤k1<...<km≤N

a(k1, . . . , km) σ
(k1)
− . . . σ

(km)
− |Ω〉 .

The eigenvalue equation is the same as before: P |Ψ〉 = (N − E) |Ψ〉 (recall that P =∑
k Pk,k+1). Similarly to the case of two inverted spins, multiply the both sides from the

left by the covector 〈Ω| σ(n1)
+ . . . σ

(nm)
+ (at n1 < n2 < . . . < nm),

〈Ω| σ(n1)
+ . . . σ

(nm)
+ P |Ψ〉 = (N − E) 〈Ω| σ(n1)

+ . . . σ
(nm)
+ |Ψ〉 (2.26)

and move all parmutation operators to the left end. For brevity, we write the commuta-
tion rule in the form

σ
(n)
+ Pk,k+1 = Pk,k+1(σ

(n)
+ + β

(n)
k ),

where
β
(n)
k ≡ δkn(σ

(n+1)
+ − σ

(n)
+ ) + δk+1,n(σ

(n−1)
+ − σ

(n)
+ ).

The right hand side of (2.26) is (N − E)a(n1, . . . , nm). The left hand side, after moving
the permutation operators to the left, is of the form∑

k

〈Ω| (σ(n1)
+ + β

(n1)
k )(σ

(n2)
+ + β

(n2)
k ) . . . (σ

(nm)
+ + β

(nm)
k ) |Ψ〉 .
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Not very instructive but let us see what this gives after opening the brackets and taking
the sum over k (from 1 to N). First, there is the term not containing the operators β

(n)
k ;

it does not depend on k and gives

N 〈Ω| σ(n1)
+ . . . σ

(nm)
+ |Ψ〉 .

Second, there are m terms in which the operators β enter once. They are unified in the
expression

m∑
α=1

〈Ω| σ(n1)
+ . . .

/
σ
(nα)
+ . . . σ

(nm)
+

(∑
k

β
(nα)
k

)
|Ψ〉 .

Here the crossed operator means that it is absent at this place. It is easy to see that∑
k

β
(n)
k = σ

(n+1)
+ + σ

(n−1)
+ − 2σ

(n)
+ ,

, so these terms have the expected form already familiar from the previous cases. Consider
now the terms in which there are two operators β:

m∑
α,α′=1
α<α′

〈Ω| σ(n1)
+ . . .

/
σ
(nα)
+ . . .

/
σ
(nα′ )
+ . . . σ

(nm)
+

(∑
k

β
(nα)
k β

(nα′ )
k

)
|Ψ〉 .

Problem. Prove that∑
k

β
(nα)
k β

(nα′ )
k = 0 at |α′ − α| ≥ 2 (mod m),

∑
k

β
(nα)
k β

(nα+1)
k = 2 δnα+1,nα+1σ

(nα)
+ σ

(nα+1)
+ .

It follows from this that the bilinear terms in β yield

2
m∑

α=1

δnα+1,nα+1 〈Ω| σ
(n1)
+ . . . σ

(nm)
+ |Ψ〉 .

(Hereafter the index α is understood modulo m.) Finally, let us look on the higher terms
in β. The key fact is that∑

k

β
(nα1 )
k β

(nα2 )
k . . . β

(nαr )
k = 0 at r ≥ 3 for all nαi

.

The proof is not difficult; we suggest to prove this identity as a problem. So, all the
terms containing more than two operators β in the left hand side of (2.26) vanish! That
is why the Bethe’s method works for m > 2.

Collecting everything together, we have:

〈Ω|σ(n1)
+ . . . σ

(nm)
+ (P −N)

=
m∑

α=1

〈Ω|σ(n1)
+ . . . σ

(nα−1)
+ σ

(nα+1)
+ σ

(nα+1)
+ . . . σ

(nm)
+ +

m∑
α=1

〈Ω|σ(n1)
+ . . . σ

(nα−1)
+ σ

(nα−1)
+ σ

(nα+1)
+ . . . σ

(nm)
+
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+2
m∑

α=1

(δnα+1,nα+1 − 1) 〈Ω|σ(n1)
+ . . . σ

(nm)
+ . (2.27)

In the second sum, shift the summation index α → α+1. After taking the scalar product
with the vector |Ψ〉 we get the following equation for a(n1, . . . , nm):

m∑
α=1

(1− δnα+1,nα+1) a(n1, . . . , nα−1, nα+1, nα+1, . . . , nm)

+
m∑

α=1

(1− δnα,nα+1−1) a(n1, . . . , nα−1, nα, nα+1−1, . . . , nm)

− 2
m∑

α=1

(1− δnα+1,nα+1) a(n1, . . . , nm) = −E a(n1, . . . , nm).

The δ-symbols in the first two sums appear for the following reason. In the first sum
the term with nα +1 = nα+1 would correspond to the vector 〈Ω| σ(n1)

+ . . . σ
(nα−1)
+ , in which

there are two operators σ+, hence this vector vanishes and its contribution should be
excluded. Using the shift operators e±∂nα , we can write the equation in somewhat more
compact form:

m∑
α=1

(
2−e∂nα−e−∂nα

)
a(n1, . . . , nm) +

m∑
α=1

δnα+1,nα+1

(
2−e∂nα−e−∂nα

)
a(n1, . . . , nm)

= E a(n1, . . . , nm).
(2.28)

As in the case m = 2, we will find solutions among the functions a(n1, . . . , nm), which
satisfy the equation

m∑
α=1

(
2−e∂nα−e−∂nα

)
a(n1, . . . , nm) = E a(n1, . . . , nm) (2.29)

for all ni. The remaining terms in the left hand side will vanish if we impose the additional
conditions

a(n1, . . . , nα, nα, . . . , nm)+a(n1, . . . , nα+1, nα+1, . . . , nm) =2a(n1, . . . , nα, nα+1, . . . , nm).
(2.30)

The general solution of the first equation, which is an eigenstate for the shift operator, is

a(n1, . . . , nm) =
∑

σ∈Sm

Aσ exp
(
i

m∑
j=1

pσ(j)nj

)
.

The sum is taken over all m! permutations of the indices {1, 2, . . . ,m}. The parameters
pα and the coefficients Aσ are arbitrary. The momentum and the energy are given by the
formulas

P =
m∑

α=1

pα , E = 2
m∑

α=1

(1− cos pα).

Similarly to the case m = 2, the conditions (2.30) impose certain relations for the coeffi-
cients Aσ which can be uniquely solved up to a common multiplier. The detailed analysis
is an instructive exercise (do it at least for m = 3).
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The result has the form (at 1 ≤ n1 < n2 < . . . < nN ≤ N)

a(n1, n2, . . . , nm) =
∑

σ∈Sm

exp
(
i

m∑
j=1

pσ(j)nj +
i

2

∑
j<k

θσ(j)σ(k)
)
, (2.31)

where the phases θjk ≡ θ(pj, pk) are defined by the same formula

eiθ(pj ,pk) = − 1 + ei(pj+pk) − 2eipj

1 + ei(pj+pk) − 2eipk

as before. The expression (2.31) is called the Bethe wave function. Similarly to (2.18),
one can extend the wave function (2.31) to other sectors of the configuration space sym-
metrically:

asymm(n1, n2, . . . , nm) =
∑

σ∈Sm

exp
(
i

m∑
j=1

pσ(j)nj +
i

2

∑
j<k

sign (nk − nj)θσ(j)σ(k)
)
. (2.32)

The periodicity condition is now as follows:

a(n1, n2, . . . , nm) = a(n2, n3, . . . , n1 +N), (2.33)

which leads to the system of Bethe equations

eipjN =
∏
k ̸=j

eiθ(pj ,pk), j = 1, . . . ,m. (2.34)

In the λ-parametrization these equations read

(
λj − i

2

λj +
i
2

)N

=
∏
k ̸=j

λj − λk − i

λj − λk + i
, j = 1, . . . ,m. (2.35)

Problem. Find spectrum of the Hamiltonian of the XXX spin chain on 3 sites with
periodic boundary conditions:

Hxxx = − 1

2

3∑
k=1

(
σ⃗(k)σ⃗(k+1) − I

)
, σ⃗(4) ≡ σ⃗(1).

Determine also the degeneracy of the levels.

Problem (difficult). Prove that all eigenstates
∣∣∣Ψ(m)

〉
corresponding to solutions of

the Bethe equations satisfy S+

∣∣∣Ψ(m)
〉
= 0.

Solutions of the system (2.35) as N → ∞ are analyzed similarly to the case of two
magnons. Real solutions correspond to the states of m independent magnons. Complex
solutions form “strings”. Their lengths can be 2M + 1 ≤ m, where M ∈ 1

2
Z≥0. The

numbers λk for a string of length 2M + 1 are

λk = u+ ik, k = −M,−M + 1, . . . ,M − 1,M,
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where u is an arbitrary real number. For example, string of length 2 is {u + i
2
, u − i

2
},

string of length 3 is {u+i, u, u−i} and so on. Strings of length 2M+1 > 1 are interpreted
as bound states of 2M + 1 magnons. Magnons themselves are formally strings of length
1 (in this case M = 0).

Problem. Find possible form of string solutions of the Bethe equations in the limit
N → ∞.

So, in the eigenstate of general form the Bethe numbers λj form strings of different
lengths. Let νM be the number of strings of length 2M + 1 and λj,M (j = 1, . . . , νM)
be real parts of the parameters λ forming the string indexed by j. Let Q be the total
number of strings (including strings of length 1). We have:

Q =
∑
M≥0

νM , m =
∑
M≥0

(2M + 1)νM .

The set of integer numbers {m,Q, {νM}} connected by these relations and Q real numbers
λj,M characterize the state. We call such set of parameters configuration. The energy and
momentum of the state corresponding to a given configuration is a sum of Q terms each
of them is energy and momentum of a separate string (this is true with the exponential
precision as N → ∞).

Problem. Show that energy and momentum of the string of length 2M + 1 with
λk = u+ ik (k = −M,−M +1, . . . ,M − 1,M) with exponential precision as N → ∞ are
given by the formulas

E =
1

2M + 1
ε
( u

2M + 1

)
=

2M + 1

u2 + (M + 1
2
)2

=
2

2M + 1
(1− cosP ),

P = p
( u

2M + 1

)
= −2arctg

u

M + 1
2

+ π (mod 2π).

(2.36)

At a fixedm andN → ∞ the real parts of the parameters λj,M are arbitrary. However,
if m tends to ∞ together with N in such a way that m/N is fixed, then the parameters
λj,M of a given configuration satisfy a system of equations which is obtained from the
original Bethe equations as follows. For a given string of length 2M + 1 multiply the
Bethe equations corresponding to the parameters λj which form this string. In the right

hand side, multiply the factors λj−λk−i

λj−λk+i
over k according to the decomposition of λ to the

strings in a given configuration. Let us introduce the notation

V0(λ) =
λ− i

λ+ i
.

Problem. Prove the identities
M∏

l=−M

V0(2λ+ 2il) = V0
( 2λ

2M + 1

)
,

M∏
l=−M

V0(λ+ il) = V0
( λ
M

)
V0
( λ

M+1

)
≡ VM(λ),

M1∏
l1=−M1

M2∏
l2=−M2

V0(λ+ i(l1 + l2)) =
M1+M2∏

L=|M1−M2|
VL(λ) ≡ VM1,M2(λ).
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Problem. Prove that the system of equations for real parts of the parameters λj,M
has the form

V N
0

( λj,M1

M1 +
1
2

)
=
∏
M2

νM2∏
k=1

(k,M2) ̸=(j,M1)

VM1,M2(λj,M1 − λk,M2). (2.37)

So, as N → ∞ the eigenstates of the Hamiltonian of the XXX spin chain are states
of independent magnons and their bound states (strings of length greater than 1).

2.1.4 Ground state of antiferromagnetic chain

Consider now the Hamiltonian of the XXX spin chain with the opposite sign:

Hxxx,AF =
1

2

N∑
k=1

(
σ(k)
x σ(k+1)

x + σ(k)
y σ(k+1)

y + σ(k)
z σ(k+1)

z − σ
(k)
0 σ

(k+1)
0

)
.

Accordingly, one should change sign in all expressions for energies of m-magnon states.
The vacuum |Ω〉 now has the maximal energy (equal to 0) and all states with some
number of magnons with nonzero momenta will have negative energies. Physicists say
that in this case |Ω〉 is a false vacuum while the true (physical) vacuum, i.e. the state
with the minimal energy is obtained by filling of the false vacuum by enough number of
magnons. This is similar to the Dirac sea.

In this section we assume that N is even. Then the ground state belongs to the
sector with zero total projection of spin, i.e. it has m = N/2 inverted spins. We will
show that the Bethe equations allow one to obtain an exhaustive information about this
state as N → ∞. A complete description of excited states over the physical vacuum
is also possible (it is given in [6]), but we will restrict ourselves by the analysis of the
ground state. One can show that in the ground state all λj are real, i.e. there are no
strings of lengths greater than 1.

So, we consider the system of equations (2.35) and pass to logarithms in it:

N log
λj − i

2

λj +
i
2

=
N/2∑

k=1, ̸=j

log
λj − λk − i

λj − λk + i
+ 2πiqj, j = 1, . . . ,

N

2
,

or

Np(λj) =
N/2∑

k=1, ̸=j

p
(λj−λk

2

)
− 2πqj,

where qj are some integer numbers. Recalling that 2λ = −tg
p− π

2
(see (2.20)), we can

write these equations in the form

arctg(2λj) =
π

N
Qj +

1

N

N/2∑
k=1

arctg(λj − λk) , j = 1, . . . ,
N

2
,

where integer (at odd N/2) or half-integer (at even N/2) numbers Qj are connected with
qj as Qj =

1
4
(3N+2)−qj. A detailed analysis shows that in the ground state the numbers
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Qj monotonically increase with j in the interval
[
−N

4
+ 1

2
, N

4
− 1

2

]
, i.e., Qj+1 − Qj = 1.

In the limit N → ∞ we can substitute

Qj

N
→ x, λj → λ(x), −1

4
≤ x ≤ 1

4
,

where λ(x) is a monotonic continuous function and λ(±1
4
) = ±∞. In the limit, we obtain

the integral equation

arctg 2λ(x) = πx+

1/4∫
−1/4

arctg (λ(x)− λ(x′))dx′ (2.38)

for it. However, it is more convenient to work with the function

ρ(λ) =
(dλ(x)
dx

)−1
∣∣∣∣∣
x=x(λ)

(2.39)

(here x(λ) is the function inverse to λ(x)), which has the meaning of normalized density
of the numbers λj in the interval [λ, λ+ dλ]. This can be easily understood by writing

Nρ(λ)dλ = N(x(λ+ dλ)− x(λ)) = N
dx

dλ
dλ = Ndx.

By the definition of x(λ), the right hand side is the amount of the numbers Qj in the
interval [x, x + dx]. Therefore, the left hand side gives the amount of the numbers λj
in the interval [λ, λ + dλ]. It is clear that the function ρ(λ) satisfies the normalization
condition ∫ +∞

−∞
ρ(λ) dλ =

1

2
. (2.40)

The density function allows one to replace sums by integrals in the limit N → ∞ accord-
ing to the rule ∑

j

f(λj) = N
∫ ∞

−∞
f(λ)ρ(λ)dλ.

Differentiating (2.38) with respect to x, we get the integral equation for ρ(λ):

πρ(λ) +
∫ +∞

−∞

ρ(µ) dµ

(λ− µ)2 + 1
=

2

4λ2 + 1
. (2.41)

It can be solved by the Fourier transformation. Integrate both parts with the function
eiλξ and take into account that

∞∫
−∞

eiλξdλ

λ2 + 1
= πe−|ξ|.

Then we obtain an algebraic equation for the Fourier image ρ̂(ξ) =
∫ ∞

−∞
eiλξρ(λ)dλ. Its

solution has the form ρ̂(ξ) =
1

2 cosh(ξ/2)
, hence

ρ(λ) =
1

2π

∞∫
−∞

e−iλξ dξ

2 cosh(ξ/2)
=

1

2 cosh(πλ)
. (2.42)
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The energy and momentum of the ground state are found as

E0 = −
N/2∑
k=1

ε(λk) = −N
∫ ∞

−∞
ε(λ)ρ(λ)dλ,

P0 =
N/2∑
k=1

p(λk) = N
∫ ∞

−∞
p(λ)ρ(λ)dλ.

Exercise. Calculate these integrals and show that

E0 = −2N log 2, P0 = πN/2 (mod 2π).

2.1.5 Anisotropic (XXZ) spin chain

The Hamiltonian of the XXZ spin chain has the form

Hxxz = − 1

2

N∑
k=1

(
σ(k)
x σ(k+1)

x + σ(k)
y σ(k+1)

y +∆(σ(k)
z σ(k+1)

z − 1)
)
, (2.43)

where ∆ is called the anisotropy parameter. The diagonalization of this operator is only
a little bit more difficult than in the isotropic case. Indeed, writing

Hxxz = Hxxx − 1

2
(∆− 1)

( N∑
k=1

σ(k)
z σ(k+1)

z −N I
)
,

we see that the additional part acts to the basis vectors diagonally, and so its effect is
easy to take into account.

Introduce the temporary notation
∣∣∣ k1, k2, . . . , km〉 ≡ σ

(k1)
− σ

(k2)
− . . . σ

(km)
− |Ω〉 (as usual,

1 ≤ k1 ≤ . . . ≤ km ≤ N). From the obvious equality

σ(k)
z

∣∣∣ k1, k2, . . . , km〉 = (
1− 2

m∑
α=1

δk,kα
) ∣∣∣ k1, k2, . . . , km〉

it easily follows that

( N∑
k=1

σ(k)
z σ(k+1)

z −N
) ∣∣∣ k1, k2, . . . , km〉 = 4

m∑
α=1

(
δkα+1,kα+1 − 1

) ∣∣∣ k1, k2, . . . , km〉 .
This additional contribution changes the expression for the covector

〈Ω| σ(n1)
+ . . . σ

(nm)
+ Hxxz = 〈Ω| σ(n1)

+ . . . σ
(nm)
+

[
N I− P − 1

2
(∆− 1)

( N∑
k=1

σ(k)
z σ(k+1)

z −N I
)]

similar to (2.27) and the third sum in the right hand side will acquire the coefficient 2∆
instead of 2. Therefore, the equation (2.29) and the conditions (2.30) acquire the form

m∑
α=1

(
2∆−e∂nα−e−∂nα

)
a(n1, . . . , nm) = E a(n1, . . . , nm) (2.44)
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a(n1, . . . , nα, nα, . . . , nm) + a(n1, . . . , nα+1, nα+1, . . . , nm)

= 2∆a(n1, . . . , nα, nα+1, . . . , nm).
(2.45)

The general solution of the first equation which is simultaneously an eigenvector for the
shift operator is the same as in the isotropic case:

a(n1, . . . , nm) =
∑

σ∈Sm

Aσ exp
(
i

m∑
j=1

pσ(j)nj

)
.

The total momentum is again given by the sum of the pα’s but the expression for energy
should be modified:

P =
m∑

α=1

pα , E = 2
m∑

α=1

(∆− cos pα).

The conditions (2.45) imply similar relations for the coefficients Aσ, and they can be
uniquely resolved up to a common multiplier.

The Bethe wave function (at 1 ≤ n1 < n2 < . . . < nN ≤ N) has the same general
form (2.31) as before:

a(n1, n2, . . . , nm) =
∑

σ∈Sm

exp
(
i

m∑
j=1

pσ(j)nj +
i

2

∑
j<k

θσ(j)σ(k)
)
, (2.46)

but the phases θjk ≡ θ(pj, pk) are now defined by the formula

eiθ(pj ,pk) = − 1 + ei(pj+pk) − 2∆eipj

1 + ei(pj+pk) − 2∆eipk
.

The periodicity condition (2.33) leads to the same Bethe equations for pi in the form
(2.34).

There exist also analogs of the λ-parametrization. They are different in the cases
∆ > 1 and 0 < ∆ < 1. Assume first that ∆ > 1. The parameter λ is introduced by the
formula

eip =
sin η(λ+ i

2
)

sin η(λ− i
2
)

or ctg
p

2
= coth (η/2) tg (ηλ), (2.47)

where η is connected with ∆ by the relation

∆ = cosh η. (2.48)

For the phase shift we have

eiθ12 =
sin η(λ1 − λ2 + i)

sin η(λ1 − λ2 − i)
. (2.49)

The functions p(λ) and ε(λ) are (cf. (2.21)):

p(λ) = −2 arctg

(
tg (ηλ)

tanh(η/2)

)
+ π,

ε(λ) =
2 sinh2 η

cosh η − cos(2ηλ)
.

(2.50)
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They coincide with (2.21) in the limit η → 0. The Bethe equations for the XXZ spin
chain in the λ-parametrization are(

sin η(λj − i
2
)

sin η(λj +
i
2
)

)N

=
∏
k ̸=j

sin η(λj − λk − i)

sin η(λj − λk + i)
, j = 1, . . . ,m. (2.51)

The formulas for the case |∆| < 1 are obtained from the ones written above by the
substitution η = iγ, then ∆ = cos γ.

Problem. Find string solutions of Bethe equations for the XXZ spin chain at
m = 2 in the limit N → ∞ and express energy and momentum of the corresponding
states through the real parts of λj’s.

2.2 Bethe ansatz for one-dimensional Bose gas with point-like
interaction

The aim of this section is to show how the coordinate Bethe ansatz works for continuous
models.

Consider N quantum particles on the line which interact only when any two of them
are in one and the same point. Such “point-like interaction” is mathematically described
by the δ-function potential. The Hamiltonian in the coordinate representation is

ĤN = −
N∑
j=1

∂2

∂x2j
+ 2c

∑
1≤j<k≤N

δ(xj − xk). (2.52)

We have put h̄ = 1, mass of particle = 1
2
. At c = 0 we have a system of free (non-

interacting) particles. At c > 0 the interaction is repulsive (the particles do not like to be
at the same point), at c < 0 it is attractive. Below we consider the repulsive case c > 0.

According to the quantum mechanical rules, the momentum operator of this system
of particles is

P̂N = −i
N∑
j=1

∂

∂xj
. (2.53)

It commutes with the Hamiltonian because the interaction depends only on the differences
of the coordinates (the total momentum is conserved). The stationary Schrodinger equ-
ation for the wave function Ψ is

ĤNΨ(x1, . . . , xN) = EΨ(x1, . . . , xN). (2.54)

We are going to find common eigenfunctions of the Hamiltonian and the total momentum
and the corresponding eigenvalues (the energy spectrum).

In the secondary quantization formalism, the model is described by the Hamiltonian

Ĥ =
∫ (

∂xψ
†(x)∂xψ(x) + cψ†(x)ψ†(x)ψ(x)ψ(x)

)
, (2.55)

where ψ†, ψ are creation and annihilation operators of the Bose particles. They satisfy
the commutation relations

[ψ(x, t), ψ†(y, t)] = δ(x− y), [ψ(x, t), ψ(y, t)] = [ψ†(x, t), ψ†(y, t)] = 0.
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The equation of motion reads

i∂tψ = −∂2xψ + 2cψ†ψψ. (2.56)

It is called the quantum nonlinear Schrodinger equation. That is why the model of
particles is often called the quantum nonlinear Schrodinger equation. The Fock vacuum
is defined by the equation ψ(x) |0〉 = 0. In the N -particle sector the eigenstates of the
Hamiltonian are constructed as

|Ψ〉 =
∫
dx1 . . . dxNΨ(x1, . . . , xN)ψ

†(x1) . . . ψ
†(xN) |0〉 ,

where Ψ(x1, . . . , xN) is the wave function satisfying equation (2.54).

2.2.1 The Bethe wave function

In this section we work in the sector with a fixed number of particles. Let us start with
the trivial case of one particle. We have:

Ψ(x1) = eip1x1 , E = p21.

If we impose the periodic boundary conditions Ψ(x1 + L) = Ψ(x1), then the momentum
p1 is quantized: p1 = 2πℓ/L, ℓ ∈ Z≥0. For one particle the interaction is absent.

For two particles the problem is more interesting:

−(∂2x1
+ ∂2x2

)Ψ(x1, x2) + 2cδ(x1 − x2)Ψ(x1, x2) = EΨ(x1, x2).

At x1 = x2 there is a singularity. The wave function is continuous but its derivative has
a jump. At x1 6= x2 there is no interaction and the particles behave as free ones, i.e., for
example at x1 < x2 we can find the wave function in the form

Ψ(x1, x2) = A12e
i(p1x1+p2x2) + A21e

i(p1x2+p2x1),

so that −(∂2x1
+ ∂2x2

)Ψ = EΨ, E = p21 + p22.

The delta-function potential is equivalent to certain boundary condition at x1 = x2−0.
Simple arguments show that this condition has the form

(∂x2 − ∂x1 − c)Ψ
∣∣∣
x1=x2−0

= 0, (2.57)

hence
A21

A12

=
p1 − p2 − ic

p1 − p2 + ic
. (2.58)

In order to derive this condition, we pass to the coordinates x = x2−x1, X = 1
2
(x2+x1),

then ∂x2 − ∂x1 = 2∂x, ∂
2
x1
+ ∂2x2

= 2∂2x +
1
2
∂2X , and the Schrodinger equation is written in

the form
−2∂2xΨ+ 2cδ(x)Ψ = (E + 1

2
∂2X)Ψ.

The terms in the right hand side remain finite at x = 0. The left hand side also should be
finite, so the singularity coming from the δ-function should cancel by the discontinuity
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of the derivative of Ψ at x = 0. In other words, integrate both sides over small interval
[0, ε] and tend ε→ 0: ∫ ε

0
(−2∂2xΨ+ 2cδ(x)Ψ)dx = 0.

In the right hand side we write 0 because in the limit ε → 0 the integral in the right
hand side vanish. We obtain, therefore,

−2∂xΨ
∣∣∣ε
0
+ 2c

∫ ε

0
δ(x)Ψdx = 0.

How to understand the integral of the δ-function over the segment such that its left end
is the support of the δ-function (the point x = 0)? In most presentation of the Bethe
method in the literature, the integration here goes over the segment |x| ≤ ε. This, on one
hand, removes the problem, but, on the other, requires extension of the wave function
to the domain x1 > x2 in which it originally was not defined. Certainly, the symmetric
extension is implied but we believe that it is important that there exists an argument
which allows one to remain in the sector x1 ≤ x2. If so, the integral one of the limits of
which is the support of the δ-function, should be understood as half of the integral over
the segment containing the support. (Only half of the δ-function will work). Similarly,
∂xΨ(0) should be understood as 0 by symmetry. Therefore, our condition tells us that

2 lim
x→+0

∂xΨ(x) = cΨ(0),

which is the same as (2.57).

A more formal way to derive this condition is to find the solution for all x1, x2 but to
impose the symmetry Ψ(x1, x2) = Ψ(x2, x1). Namely, let us find the solution in the form

Ψ(x1, x2) = f(x1, x2)θ(x2 − x1) + f(x2, x1)θ(x1 − x2),

where θ(x) is the step function (θ(x) = 1 at x > 0 and θ(x) = 0 at x < 0), and

f(x1, x2) = A12e
i(p1x1+p2x2) + A21e

i(p1x2+p2x1)

is the function which we denoted as Ψ before. Note that if we add the condition θ(0) = 1
2

to the definition of the step function, then the function Ψ will be continuous at x1 = x2.
Since ∂xθ(x) = δ(x), a direct calculation yields

(∂2x1
+ ∂2x2

)Ψ(x1, x2) = θ(x2 − x1)(∂
2
x1

+ ∂2x2
)f(x1, x2) + θ(x1 − x2)(∂

2
x1

+ ∂2x2
)f(x2, x1)

− 2δ(x1 − x2)(∂x1−∂x2) [f(x1, x2)− f(x2, x1)]− 2δ′(x1 − x2) [f(x1, x2)− f(x2, x1)].

Note that the term with δ′ do not cancel. It should be understood in the sense of
distributions (generalized functions) as

δ′(x1 − x2)φ(x1, x2) = − 1

2
δ(x1 − x2)(∂x1−∂x2)φ(x1, x2),

which is valid for any antisymmetric function φ because integrals of both sides with any
smooth test function are equal. Taking this into account, we get:

(∂2x1
+ ∂2x2

)Ψ(x1, x2) = θ(x2 − x1)(∂
2
x1

+ ∂2x2
)f(x1, x2) + θ(x1 − x2)(∂

2
x1

+ ∂2x2
)f(x2, x1)
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− δ(x1 − x2)(∂x1−∂x2) [f(x1, x2)− f(x2, x1)].

Since

(∂x1−∂x2) [f(x1, x2)− f(x2, x1)] = i(A12 − A21)(p1 − p2)(e
i(p1x1+p2x2) + ei(p2x1+p1x2)),

and one can put x2 = x1 in the terms with the δ-function, we have finally:

ĤNΨ = (p21 + p22)Ψ + 2δ(x1−x2)
(
c(A12 + A21) + i(A12 − A21)(p1 − p2)

)
ei(p1+p2)x1 .

The condition of vanishing of the last term gives the same relation (2.58).

In the case of N particles the wave function in the sector 0 ≤ x1 < x2 < . . . < xN ≤ L
has the form

Ψ =
∑

σ∈SN

Aσ exp
(
i

N∑
j=1

pσ(j)xj
)

(2.59)

with boundary conditions(
∂xj+1

− ∂xj
− c

)
Ψ
∣∣∣
xj=xj+1−0

= 0, j = 1, 2, . . . , N − 1.

These conditions are obtained precisely in the same way as for two particles.

Theorem. The exact eigenfunction of the N -particle Hamiltonian (2.52) in the sector
0 ≤ x1 ≤ x2 ≤ . . . ≤ xN ≤ L has the form

Ψ = C
∏
m<n

(
i∂xn−i∂xm−ic

)
det

1≤j,k≤N

(
eipjxk

)
. (2.60)

For the proof one should check that it is of the form (2.59) and the boundary conditions
are satisfied. The former is evident from the expansion of the determinant,

Ψ = C
∑

σ∈SN

(−1)[σ]
∏
m<n

(pσ(m) − pσ(n) − ic) exp
(
i

N∑
j=1

pσ(j)xj
)
, (2.61)

and the latter is more convenient to check in the form (2.60) not expanding the determi-

nant. Verify, for example, the condition (∂x2 − ∂x1 − c)Ψ
∣∣∣
x1=x2−0

= 0. For this we note

that Ψ = −i(∂x2 − ∂x1 + c)Ψ̃, where

Ψ̃ = C
N∏
j=3

(
i∂x1−i∂xj

−ic
) (
i∂x2−i∂xj

−ic
) ∏
3≤m<n≤N

(
i∂xm−i∂xn−ic

)
det

1≤j,k≤N

(
eipjxk

)
.

The function Ψ̃ is obviously symmetric with respect to the permutation x1 ↔ x2.
Rewriting the left hand side of our condition (∂x2 − ∂x1 − c)Ψ

∣∣∣
x1=x2−0

= 0 in the form

−i ((∂x2 − ∂x1)
2 − c2) Ψ̃, we see that it is antisymmetric with respect to the permutation

x1 ↔ x2, and, therefore, it is equal to 0.

Corollary. The exact symmetrized eigenfunction of the N -particle Hamiltonian
(2.52) has the form

Ψsymm
N = CN

∑
σ∈SN

(−1)[σ]
∏
m<n

(
pσ(n)−pσ(m)+ic sign (xm−xn)

)
exp

(
i

N∑
j=1

pσ(j)xj
)
. (2.62)
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In order to indicate the dependence on coordinates and momenta, we will write Ψsymm
N =

Ψsymm
N ({xi}|{pi}).
The normalization constant CN can be defined from the normalization condition∫

RN
dx1 . . . dxNΨ

symm
N ({xi}|{pi})Ψsymm

N ({xi}|{p′i}) = (2π)N
N∏
j=1

δ(pi − p′i). (2.63)

The condition of completeness is also valid:∫
RN

dp1 . . . dpNΨ
symm
N ({xi}|{pi})Ψsymm

N ({x′i}|{pi}) = (2π)N
N∏
j=1

δ(xi − x′i). (2.64)

Problem. Show that the normalization constant CN is given by

CN =

N !
∏
j<k

[
(pj − pk)

2 + c2
]

−1/2

(2.65)

and check the normalization condition and the condition of completeness.

The limiting case c→ ∞ corresponds to the system of impenetrable Bose particles. In
this case the wave function in the sector x1 < . . . < xN coincides with the wave function
of N free fermions detjk(e

ipjxk), and Ψsymm ∝ detjk(e
ipjxk)

∏
j<k sign (xj − xk).

So, the exact eigenfunctions of the N -particle Hamiltonian (2.52) (Bethe wave func-
tions) have the form (2.61), (2.60), or, in the symmetrized version (2.62). They are
parametrized by N numbers p1, . . . , pN . The momentum and energy for them are

P =
N∑
j=1

pj , E =
N∑
j=1

p2j . (2.66)

Note that from (2.60) itis clear that the wave function vanishes if there is a pair of indices
j 6= k such that pj = pk (the Pauli principle for one-dimensional bosons).

2.2.2 Bethe equations

Imposing periodic boundary conditions on a segment of length L leads to constraints
for possible values of the parameters pj. Arguments similar to the ones used for the
derivation of Bethe equations in the spin chain lead to the condition

Ψ(x1, x2, . . . , xN) = Ψ(x2, x3, . . . xN , x1 + L)

in the sector x1 < x2 < . . . < xN .
(2.67)

It is equivalent to the system of Bethe equations for the pj’s:

eipjL =
∏
k ̸=j

pj − pk + ic

pj − pk − ic
, j = 1, . . . , N. (2.68)

One can show that contrary to the case of the spin chains, all their solutions for c > 0
are real.
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Problem. For the system of three identical Bose particles with the Hamiltonian

Ĥ3 = −
3∑

j=1

∂2

∂x2j
+ 2c

∑
1≤j<k≤3

δ(xj − xk)

a) construct common eigenstates of the Hamiltonian and the momentum operator

P̂ = −i
3∑

j=1

∂

∂xj
,

b) impose periodic boundary conditions on the segment [0, L] and obtain the Bethe
equations.

Problem. Find eigenstates and the energy spectrum for two Bose particles with the
Hamiltonian

Ĥ2 = −
2∑

j=1

∂2

∂x2j
+ 2cδ(xj − xk)

on the segment [0, L] with impenetrable ends (this means that the wave function vanishes
if at least one of the particles is at the ends of the segment).

Note that after the substitution pj = λj the right hand sides of the Bethe equations
for the XXX spin chain and the Bose gas coincide. In fact this is a particular case of a
general rule that possible form of the right hand sides of Bethe equations is determined by
general laws of integrability (which are still behind the scene) and allows one to classify
quantum integrable models while the left hand sides may contain arbitrary functions
of λ which determine concrete models within a given class. So, we see that the XXX
spin chain and the Bose gas belong to the same class while the XXZ spin chain to
another one. An analogy with representation theory is appropriate: the right hand sides
of Bethe equations are similar to structure constants of an algebra and left hand sides to
a particular representation.

Having this in mind, we will write the Bethe equations for the Bose gas in terms of
λ:

eiλjL =
∏
k ̸=j

λj − λk + ic

λj − λk − ic
, j = 1, . . . , N. (2.69)

In the Bose gas model the parameter λ is connected with momentum in the most simple
way.

For the analysis of these equations it is useful to take logarithm:

Lλj +
∑
k ̸=j

Φ̃(λj − λk) = 2πñj. (2.70)

Here Φ̃(λ) = i log
λ+ ic

λ− ic
, and ñj are some integer numbers. Instead of Φ̃(λ) it is conve-

nient to introduce the odd function

Φ(λ) = Φ̃(λ) + π = 2arctg
(
λ/c

)
(2.71)
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and redefine the numbers ñj as follows: nj = ñj +
1
2
(N − 1) (at even N they are half-

integer). Our equations will have the form

Lλj +
∑
k

Φ(λj − λk) = 2πnj (2.72)

(note that one can extend the sum to all values of k because Φ(0) = 0). the representation
in the form (2.72) is better because one can prove (see below) that solutions of this system
such that λj 6= λk at j 6= k exist and are uniquely defined by sets of integer or half-integer
distinct numbers nj.

Lemma. If nj > nk, then λj > λk; if nj = nk, then λj = λk.

For the proof consider the difference of two equations of the system:

L(λj − λk) + 2
N∑
l=1

(
arctg ((λj − λl)/c)− arctg ((λk − λl)/c)

)
= 2π(nj − nk).

Since arctg is a monotonically increasing function, the left hand side is positive if and
only if λj > λk and is zero if and only if λj = λk. Therefore, at nj > nk one should have
λj > λk, and at nj = nk λj = λk.

Lemma. The energy E =
∑
λ2j in the model with N particles is minimal in the state

with the following set of nj:

nj = −N+1

2
+ j , j = 1, 2, . . . , N. (2.73)

In other words, in the ground state the numbers nj fill the interval from −1
2
(N − 1) to

+1
2
(N − 1) without holes. This is more or less clear from the symmetry argument but

one can find a rigorous proof in the literature.

Problem. Prove that in the state which is characterized by the numbers nj the

total momentum is equal to P =
2π

L

∑
j

nj.

2.2.3 The Yang function

Let us move all terms in the Bethe equations (2.72) to the left hand side and denote

Bj(λ1, . . . , λN) ≡ Lλj − 2πnj +
∑
k

Φ(λj − λk),

then the Bethe equations state that Bj = 0.

Problem. Show that
∂Bj

∂λl
=
∂Bl

∂λj
. (2.74)

This implies that there exists a function Y(λ1, . . . , λN) such that Bj = ∂Y/∂λj. It is called
the Yang function and plays an important role. The Bethe equations are conditions that
the Yang function has an extremum: ∂Y/∂λj = 0. For the Bose gas model

Y =
L

2

N∑
j=1

λ2j − 2π
N∑
j=1

njλj +
1

2

N∑
j,k=1

Φ1(λj − λk), (2.75)
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where

Φ1(λ) =
∫ λ

0
Φ(µ)dµ = 2λ arctg (λ/c)− c log

(
1 +

λ2

c2

)
.

In fact the possibility to represent the Bethe equations as a variational principle is a
general fact and exists also for other models. The Bose gas is distinguished by the fact
that in this case the Yang function has especially good properties which allow one to
prove rigorously the following important statement.

Theorem. Solutions of the system (2.72) exist and are uniquely defined by sets of
integer or half-integer numbers nj.

As was already said, the Bethe equations (2.72) are obtained as conditions for an extre-
mum of the Yang function. The statement of the theorem follows from the fact that the
Yang function is convex; thus the extremum is a minimum and it is unique. To prove
that the Yang function is convex, it is enough to show that the matrix Yjk = ∂2Y/∂λj∂λk
(Hessian) is positively defined, i.e., all its eigenvalues are positive. This matrix has the
form

Yjk = δjk
(
L+

N∑
l=1

K(λj − λl)
)
−K(λj − λk),

where

K(λ− µ) = Φ′(λ− µ) =
2c

(λ− µ)2 + c2
. (2.76)

For any real vector vj we have

∑
jk

Yjkvjvk = L
∑
j

v2j +
1

2

∑
k ̸=j

K(λj − λk)(vj − vk)
2 > 0

(here it is important that c > 0). This means that the matrix Yjk is positively defined
for all λj.

For XXX and XXZ spin chain the Yang function is in general not convex and
rigorous proofs of similar statements are problematic.

The matrix Yjk is also important for the following reason. The squared norm of
the Bethe state of the Bose gas in a finite volume is expressed through its determinant.
Namely, for the function Ψsymm

N (2.62) with the constant CN as in (2.65) and momenta
pj = λj satisfying the Bethe equations it holds∫ L

0
. . .
∫ L

0
|Ψsymm

N |2 dx1 . . . dxN = det
1≤j,k≤N

Yjk. (2.77)

We stress that this formula is valid only for the states in which the parameters λj satisfy
the Bethe equations. A direct verification of this formula is non-trivial already in the
case N = 2.

Problem. Find the explicit form of the Yang function for the XXX spin chain.

2.2.4 Solution of Bethe equations in the thermodynamic limit

The thermodynamic limit is the limit N → ∞, L → ∞ such that ρ0 = N/L (the mean
density of the particles) remains finite.
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The ground state. Let us begin with the ground state (the vacuum state). According
to the above lemma, the numbers nj should be as in (2.73). The total momentum is zero.
The numbers nj and λj are placed symmetrically with respect to 0 forming an analog of
the Dirac sea. In the limit the numbers λj densely fill an interval (−Λ,Λ). Their density
is given by the formula

ρ(λj) = lim
N,L→∞

1

L(λj+1 − λj)
. (2.78)

This function allows one to substitute sums by integrals according to the rule∑
j

f(λj) = L
∫ Λ

−Λ
f(λ)ρ(λ)dλ.

take to neighboring equations (2.72) (for j + 1 and j) and subtract them:

L(λj+1 − λj) +
∑
k

[Φ(λj+1 − λk)− Φ(λj − λk)] = 2π.

The difference λj+1 − λj is small and we can expand the expression in the Taylor series
up to the first term. After that, divide both sides by L(λj+1 − λj):

1 +
1

L

∑
k

Φ′(λj − λk) =
2π

L(λj+1 − λj)
. (2.79)

Substituting the sum by the integral, recalling the definition of density (2.78) and the
function K(λ− µ) (2.76), we obtain the following integral equation for the density func-
tion:

2πρ(λ)−
∫ Λ

−Λ
K(λ− µ)ρ(µ)dµ = 1. (2.80)

A more formal way to derive this equation is to define the density function by the

formula ρ(λ) =
1

L

N∑
j=1

δ(λ− λj) and to represent (2.72) as an integral equation

λ+
∫ Λ

−Λ
Φ(λ− µ)ρ(λ)dλ =

2πn(λ)

L

from the very beginning. Here n(λ) =
∑

j θ(λ−λj) is a non-decreasing step function which
takes into account how many momenta are places from the left of the point λ. Taking
the λ-derivative, we arrive at (2.80). The singular function ρ(λ) becomes continuous in
the limit.

Contrary to the XXX spin chain, the solution to the integral equation can not be
expressed through known functions (because of the fact that the limits of integration
are finite) but can be effectively found numerically. One can also prove some rigorous
statements about the solution. We will not discuss this point here.

The quantity Λ (the Fermi momentum) is determined from the normalization condi-
tion

ρ0 =
N

L
=
∫ Λ

−Λ
ρ(λ)dλ. (2.81)

The ground state energy is given by the formula

E(0) = L
∫ Λ

−Λ
λ2ρ(λ)dλ. (2.82)
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Elementary excitations. Let us show, on the simplest example, how the Bethe ansatz
technique allows one to construct excited states (eigenstates of the Hamiltonian with
energy E > E(0)). Physically the most interesting are low-lying excitations, i.e. such
that E − E(0) remains finite as L → ∞. They are interpreted as physically observable
“dressed” particles and their scattering states. Original particles, in terms of which the
Hamiltonian was written, are called “bare” particles.

Let us consider the states with a fixed number of particles. The simplest excitations
correspond to the choice of the numbers nj as follows:

{nj} =
{
− N−1

2
, − N−3

2
, . . . , N−1

2
−mh−1, N−1

2
−mh+1, . . . , N−1

2
, N−1

2
+mp

}
.

Here mh and mp are positive integer numbers. This can be thought of as creation of
a “particle” at mp and a “hole” at mh (the latter means that the number N−1

2
−mh

is absent in the sequence). Assume that mh < N−1
2

. Accordingly, one can introduce
the momentum of the added particle λp as the Bethe root corresponding to the added
munber N−1

2
+mp and the momentum of the hole λh as the Bethe root corresponding to

the number N−1
2

−mh in the vacuum solution.

It is important to note that the total momentum of the excited state is not equal to
λp−λh because in the new solution of Bethe equations the values of all other parameters
λj are slightly shifted comparing to their vacuum values. But since there are many of
them (of order O(N)), the total contribution of such shifts can be O(1), i.e., of the same
order as λp − λh. Physicists say that λp − λh is a “bare” momentum while the observed
(“dressed”) momentum is due to interaction. Note that at c = ∞ they coincide.

In order to find the response of the “Dirac sea” to creation of the pair particle-hole,
we subtract the Bethe equations for the excited and vacuum states and expand in small
δλj = λ̃j − λj = O(1/L). Here λj is jth Bethe root for the ground state and λ̃j is jth
Bethe root for the excited state. We obtain, for 1 ≤ j ≤ N −mh − 1:

(λ̃j − λj)L+
∑
k

[
Φ(λ̃j − λ̃k)− Φ(λj − λk)

]
= Φ(λj − λh)− Φ(λ̃j − λp).

The terms with integer numbers nj cancel because they are the same for all such j. The
terms corresponding to the particle and the hole are moved to the right hand side. After
expanding in small δλj = λ̃j − λj, these equations become (in the leading order):

δλjL+ δλj
∑
k

Φ′(λj − λk)−
∑
k

Φ′(λj − λk)δλk = Φ(λj − λh)− Φ(λj − λp),

where in the right hand side we changed λ̃j to λj because the difference appears only in
the next order. The first two terms in the left hand side can be transformed using (2.79):

2π
λ̃j − λj
λj+1−λj

− 1

L

∑
k

K(λj − λk)
λ̃k − λk
λk+1 − λk

L(λk+1 − λk) = Φ(λj − λh)− Φ(λj − λp).

Let us introduce the shift function

F (λj|λh, λp) = lim
N,L→∞

λ̃j − λj
λj+1−λj

= lim
N,L→∞

(
Lδλjρ(λj)

)
(2.83)

35



and write the result as the integral equation

2πF (λ|λh, λp)−
∫ Λ

−Λ
K(λ− µ)F (µ|λh, λp)dµ = Φ(λ−λh)− Φ(λ−λp). (2.84)

Here originally λh < Λ, λp > Λ but the solution can be analytically continued to the
whole real axis. From the right hand side it follows that

F (λ|λh, λp) = f(λ|λp)− f(λ|λh),

where f(λ|µ) satisfies the integral equation

2πf(λ|µ)−
∫ Λ

−Λ
K(λ− ν)f(ν|µ)dν = −Φ(λ− µ). (2.85)

From the fact that Φ(λ) is an odd function, it easily follows that

f(−λ| − µ) = −f(λ|µ). (2.86)

The function f(λ|µ) will be also called the shift function. Its physical meaning will be
clarified below.

The excited state energy is

E − E(0) = (λp)2 − (λh)2 +
∑
j

(λ̃2j − λ2j) = (λp)2 − (λh)2 + 2
∑
j

λjδλj

= (λp)2 − (λh)2 + 2
∫ Λ

−Λ
λF (λ|λh, λp)dλ = ε(λp)− ε(λh),

(2.87)

where

ε(λ) = λ2 − h+ 2
∫ Λ

−Λ
µf(µ|λ)dµ, (2.88)

and the constant h is choisen from the condition that ε(±Λ) = 0. Note that ε(λ) is an
even function because of (2.86). The momentum is

P = λp − λh +
∑
j

(λ̃j − λj) = λp − λh +
∫ Λ

−Λ
F (λ|λh, λp)dλ. (2.89)

Multiplying both sides of equation (2.84) by ρ(λ) and integrating over λ, we get∫ Λ

−Λ
F (λ|λh, λp)dλ =

∫ Λ

−Λ

(
Φ(λ− λh)− Φ(λ− λp)

)
ρ(λ)dλ,

hence we obtain another formula for the excited state momentum:

P = λp − λh +
∫ Λ

−Λ

(
Φ(λ− λh)− Φ(λ− λp)

)
ρ(λ)dλ. (2.90)

The integral term is the “dressed” part.

Consider now the case of several particles and holes. So far we have assumed that the
numbers of particles and holes are the same. This restriction can be removed if one does
not consider the number N of bare particles as fixed. Suppose there are m particles and
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n holes with the parameters λpa, λ
h
b . The shift function is introduced in a way similar to

(2.83):

F (λj|{λhb}, {λpa}) = lim
N,L→∞

λ′j − λj

λj+1−λj
, (2.91)

where now λ′j are Bethe roots in the presense of m particles and n holes. The integral
equation for this shift function can be derived in a similar way:

2πF (λ|{λha}, {λpa})−
∫ Λ

−Λ
K(λ−µ)F (µ|{λha}, {λpa})dµ =

n∑
b=1

Φ(λ−λhb )−
m∑
a=1

Φ(λ−λpa). (2.92)

The solution is

F (λ|{λhb}, {λpa}) =
m∑
a=1

f(λ|λpa)−
n∑

b=1

f(λ|λhb ). (2.93)

The velocity of sound. Consider the one-particle excitation in more detail. The
excitations constructed above correspond to massless particles because they have the
linear dispersion law E = vsP as P → 0, where vs has the meaning of velocity of sound.
In order to see this and to obtain a formula for the velocity of sound, some calculations
are necessary. According to the definition,

vs =
∂E

∂P

∣∣∣∣∣
P=0

=
ε′(λ)

P ′(λ)

∣∣∣∣∣
λ=Λ

, (2.94)

where P is regarded as a function of λ = λp (see (2.90)). From (2.90) we have:

P ′(Λ) = 1 +
∫ Λ

−Λ
K(Λ− λ)ρ(λ)dλ = 2πρ(Λ). (2.95)

Differentiating equation (2.80) and then integrating by parts, we find:

2πρ′(λ) =
∫ Λ

−Λ
K(λ− µ)ρ′(µ)dµ− ρ(Λ)

(
K(λ− Λ)−K(λ+ Λ)

)
(2.96)

(here we take into account that ρ(λ) is an even function). Differentiating equation (2.85)
with respect to µ, we obtain:

K(λ− µ) = 2πḟ(λ|µ)−
∫ Λ

−Λ
K(λ− ν)ḟ(ν|µ)dν,

where

ḟ(λ|µ) = ∂f(λ|µ)
∂µ

.

Substitute this into (2.96) instead of K(λ ± Λ). In this way we get the homogeneous
integral equation

2πg(λ) =
∫ Λ

−Λ
K(λ− µ)g(µ)dµ

for the function g(λ) = ρ′(λ)+ρ(Λ)(ḟ(λ|Λ)− ḟ(λ|−Λ)), which has the solution g(λ) = 0,
i.e.,

ρ′(λ) = −ρ(Λ)
(
ḟ(λ|Λ)− ḟ(λ| − Λ)

)
. (2.97)
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Take the integral in the normalization condition (2.81) by parts,

ρ0 = 2Λρ(Λ)−
∫ Λ

−Λ
λρ′(λ)dλ,

and substitute here ρ′(λ) from (2.97). We obtain:

ρ0 = 2Λρ(Λ) + ρ(Λ)
∫ Λ

−Λ

(
λḟ(λ|Λ)− λḟ(λ| − Λ)

)
dλ

= ρ(Λ)

(
2Λ + 2

∫ Λ

−Λ
λḟ(λ|Λ)dλ

)

(the second equality follows from ḟ(λ| − Λ) = ḟ(−λ|Λ) by virtue of (2.86)). Comparing
this with (2.88), we conclude that ρ0 = ρ(Λ)ε′(Λ), and so for the velocity of sound we
find the formula

vs =
ρ0

2πρ2(Λ)
(2.98)

(see (2.94), (2.95)).

Dressing equation for the function ε(λ). The function ε(λ) (2.88) satisfies a linear
integral equation. Let us derive it. First derive the equation for the derivative ε′(λ). We
have, differentiating the definition (2.88):

ε′(λ) = 2λ+ 2
∫ Λ

−Λ
µḟ(µ|λ)dµ, (2.99)

where the function ḟ satisfies the equation

ḟ(λ|µ)− 1

2π

∫ Λ

−Λ
K(λ− ν)ḟ(ν|µ)dν =

1

2π
K(λ− µ)

(see (2.85)). The solution can be written in the form

ḟ(λ|µ) = 1

2π

∫ Λ

−Λ
R(λ, ν)K(ν − µ)dν, (2.100)

where R(λ, ν) is the kernel of the integral operator inverse to I − 1
2π
K̂ with the kernel

δ(λ− ν)− 1
2π
K(λ− ν). Since the kernel K(λ− µ) is symmmetric, the kernel R(λ, µ) is

also symmetric. By definition,∫ Λ

−Λ
R(λ, ν)

(
δ(ν − µ)− 1

2π
K(ν − µ)

)
dν = δ(λ− µ),

hence, comparing this with (2.100), we find:

ḟ(λ|µ) = R(λ, µ)− δ(λ− µ).

Now let us plug this into (2.99):

ε′(λ) = 2
∫ Λ

−Λ
R(λ, µ)µdµ,
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which is equivalent to the integral equation

ε′(λ)− 1

2π

∫ Λ

−Λ
K(λ− µ)ε′(µ)dµ = 2λ,

or, integrating by parts,

ε′(λ)− 1

2π

∫ Λ

−Λ
K ′(λ− µ)ε(µ)dµ = 2λ (2.101)

(recall that ε(±Λ) = 0). From comparison of (2.85) at µ → ±∞ and (2.80) it follows
that f(λ| ± ∞) = ±πρ(λ), and because ρ(λ) is an even function, from (2.88) it follows
that

ε(λ) = λ2 − h+ o(1) as λ→ ∞.

Therefore, integrating (2.101), we get the integral equation for ε(λ):

ε(λ)− 1

2π

∫ Λ

−Λ
K(λ− µ)ε(µ)dµ = λ2 − h. (2.102)

Sometimes this equation is called the dressing equation because the energy of a “bare”
particle λ2 is “dressed” to the energy of a physical (“dressed”) particle by means of the
integral operator with the kernel K(λ − µ). Similarly, the integral equation (2.80) with
the same kernel dresses the density 1

2π
of non-interacting particles to the density ρ(λ).

Scattering of physical particles. The physical particles do not have internal degrees
of freedom and their interaction is reduced to a phase shift. Using simple arguments, one
can find this phase shift and to give a physical meaning to the shift function f(λ|µ).

Let us calculate the phase shift ∆(λ2, λ1) for scattering of two particles with para-
meters λp1 = λ1, λ

p
2 = λ2. It is equal to the difference of the phase φ21 which the second

particle acquires when moves from 0 to L in the presence of the first one and the phase
φ2 which the second particle would acquire without the first one: ∆(λ2, λ1) = φ21 − φ2.
We have:

φ2 = Lλ2 +
∑
k

Φ(λ2 − λ̃k),

φ21 = Lλ2 +
∑
k

Φ(λ2 − λ′k) + Φ(λ2 − λ1),

where λ̃k are Bethe roots with the presence of only the second particle while λ′k are Bethe
roots in the presence of both particles. Then

∆(λ2, λ1) = Φ(λ2 − λ1) +
∑
k

(
Φ(λ2 − λ′k)− Φ(λ2 − λ̃k)

)

= Φ(λ2 − λ1)−
∑
k

K(λ2 − λ1)
(
F (λk|{λ1, λ2})− F (λk|λ2)

)
(λk+1 − λk).

Substituting the sum by the integral and using (2.93), we obtain:

∆(λ2, λ1) = Φ(λ2 − λ1)−
∫ Λ

−Λ
K(λ2 − µ)f(µ|λ1)dµ. (2.103)
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Comparing this with (2.85), we find:

∆(λ2, λ1) = −2πf(λ2|λ1), (2.104)

which gives a physical meaning to the function f(λ|µ) and justifies its name “shift func-
tion”. Note that the equation (2.85) can be interpreted as dressing equation for the
phase shift which dresses the bare phase shift Φ(λ2 − λ1) to the phase shift ∆(λ2 − λ1)
of physical particles.

2.2.5 Thermodynamics of the model at finite temperature

Particles and holes. The bijection between states and sets of distinct integer or half-
integer numbers {nj}Nj=1 allows for a relatively simple analysis of thermodynamics of the
model at finite temperature. For simplicity we assume that nj are integer numbers.

Let a set of real numbers {λj}Nj=1 be a solution of Bethe equations. Consider the
function

y(λ) = λ+
1

L

N∑
k=1

Φ(λ− λk). (2.105)

It monotonically increases with λ and y(±∞) = ±∞. Let {n̄j} be the set of integer
numbers complimentary to {nj}Nj=1: {n̄j} = Z \ {nj}Nj=1. The following terminology is
convenient.

- Those λj ∈ R for which y(λj) =
2πnj

L
are called particles;

- Those λk ∈ R for which y(λk) =
2πn̄k

L
are called holes.

Solutions to the equation y(λ) ∈ 2π Z/L (for given {nj}Nj=1) are sometimes called vacan-
cies. Obviously, a vacancy is either a particle or a hole. Particles are sometimes called
occupied vacancies and holes are called free vacancies.

The density of particles ρ is defined by equation (2.78) as before. A similar density
function ρ̄ can be introduced for holes. At zero temperature, there were no holes in the
interval from −Λ to Λ or the number of holes was finite. That is why the function ρ̄ is of
no use at zero temperature. At finite temperature both functions are nontrivial on the
whole real axis. So, we have:

- Density of particles: Lρ(λ)dλ is the number of particles on the segment [λ, λ+ dλ];

- Density of holes: Lρ̄(λ)dλ is the number of holes on the segment [λ, λ+ dλ].

The density of vacancies is then ρ(λ)+ ρ̄(λ). From the definitions it immediately follows
that y′(λ) = 2π(ρ(λ) + ρ̄(λ)). Differentiating (2.105), we get the integral equation which
connects densities of particles and holes:

2π(ρ(λ) + ρ̄(λ))−
∫
K(λ− µ)ρ(µ) dµ = 1. (2.106)
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Hereafter, the integration is from −∞ to ∞. Recall that K(λ) =
2c

λ2 + c2
. The meaning

of this equation is similar to Bethe equations in the form (2.72): given the density of
holes ρ̄ (this is analogous to the choice of a certain sequence of the numbers nj in (2.72)),
the density of particles ρ can be found from the integral equation.

Macroscopic description: entropy. The method of statistical thermodynamics con-
sists of not tracking individual states (by means of the numbers nj) but of passing to
description in terms of densities of particles and holes. To a given macroscopic state (a
fixed function ρ) there correspond many different microscopic states (sets of the numbers
nj). Indeed, there are

δN (λ) =

[
L(ρ(λ) + ρ̄(λ)dλ]![

Lρ(λ)dλ
]
!
[
Lρ̄(λ)dλ

]
!

possibilities to place Lρ(λ)dλ particles in L(ρ(λ)+ρ̄(λ)dλ vacancies, with fixed macrosco-
pic density functions. In the thermodynamic limit it is a large number. The Stirling for-
mula log n! = n log n−n+ . . . yields the contribution to the entropy δSN(λ) = log δN (λ):

δSN(λ) =
[
(ρ(λ) + ρ̄(λ)) log(ρ(λ) + ρ̄(λ))− ρ(λ) log ρ(λ)− ρ̄(λ) log ρ̄(λ)

]
Ldλ.

The total entropy is calculated as

SN =
∫
δSNdλ = L

∫ [
(ρ+ ρ̄) log(ρ+ ρ̄)− ρ log ρ− ρ̄ log ρ̄

]
dλ. (2.107)

Integral equation. In the thermodynamic limit the total energy

EN = L
∫
λ2ρ(λ) dλ (2.108)

depends only on the macroscopic density ρ. This allows one to pass in the partition
function from summation over nj to a “functional integration” over ρ(λ), taking into
account the entropy:

ZN =
∑

n1<n2<...<nN

e−βEN ({nj}) =
∫
[Dρ] eSN−βEN .

Here β = 1/T is the inverse temperature. As usual in statistical thermodynamics, when
N → ∞ the main contribution comes from the states for which eSN−βEN has a maximum.
In other words, we should find extremum off the functional

SN − βEN = −L
∫
dλ
[
βλ2ρ− (ρ+ ρ̄) log(ρ+ ρ̄) + ρ log ρ+ ρ̄ log ρ̄

]
of density ρ under the condition that the main density is kept constant:∫

ρ(λ) dλ = N/L = ρ0. (2.109)

Introducing the Lagrange multiplier βh and varying over ρ with the condition (2.106),
we have: ∫

dλ
[
β(λ2 − h)δρ+ δρ log ρ+ δρ̄ log ρ̄− (δρ+δρ̄) log(ρ+ρ̄)

]
= 0
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for all δρ. After simple transformations we obtain the condition that the variation is
zero:

β(λ2 − h) + log
ρ(λ)

ρ̄(λ)
− 1

2π

∫
K(λ−µ) log

(
1 +

ρ(µ)

ρ̄(µ)

)
dµ = 0. (2.110)

Let us introduce the notation
ρ̄(λ)

ρ(λ)
:= eβε(λ), (2.111)

then the above condition takes the form

ε(λ) = λ2 − h− 1

2πβ

∫
K(λ− µ) log

(
1 + e−βε(µ)

)
dµ. (2.112)

It is a nonlineaar integral equation for the function ε(λ), in which h is a parameter.
The solution scheme of the original problem is as follows: substitute ε(λ) determined by
this integral equation (parametrically depending on h) into the relation (2.106), which
becomes a Fredholm integral equation for ρ:

2π
(
1 + eβε(λ)

)
ρ(λ) = 1 +

∫
K(λ− µ)ρ(µ) dµ. (2.113)

The solution ρ should be substituted into the normalization condition (2.109), which
gives ρ0 from a given h. The functions ρ and ε are enough (in principle) to find all
thermodynamic quantities of interest.

In the limit T → 0 (β → ∞) the nonlinear integral equation (2.112) becomes linear
(2.102), and the function ε(λ) introduced in this section becomes the function ε(λ) which
enters equation (2.102) (the energy of elementary excitation).

Free energy and chemical potential. As an example, let us show how to derive
expressions for free energy and pressure. The entropy can be found from (2.107) with
the substituted definition of the function ε:

SN = L
∫
(ρ+ ρ̄) log

(
1 + e−βε

)
dλ+ Lβ

∫
ερ dλ. (2.114)

Next, multiply both sides of (2.112) by ρ(λ) and integrate over λ. Using (2.113), we
represent the result in the form

L
∫
(ρ+ρ̄) log

(
1 + e−βε

)
dλ = Lβ

∫
(λ2−ε)ρ dλ−βNh+ L

2π

∫
log

(
1 + e−βε

)
dλ, (2.115)

where the left hand side just coincides with the first term in the right hand side of (2.114).
Hence the formula for entropy (2.114) can be simplified:

SN = Lβ
∫
λ2ρ dλ− βNh+

L

2π

∫
log

(
1 + e−βε

)
dλ. (2.116)

For the free energy FN = EN − TSN (recall that β = 1/T ) we then get the expression

FN = Nh− LT

2π

∫
log

(
1 + e−ε/T

)
dλ. (2.117)
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The pressure is found by the formula

P = −
(∂FN

∂L

)
T
= −N ∂h

∂L
− L

2π

∫ dλ

1 + eε/T
∂ε

∂h

∂h

∂L
+
T

2π

∫
log

(
1 + e−ε/T

)
dλ.

The partial derivative ∂ε/∂h can be found by differentiating the integral equation (2.112)
with respect to the parameter h. We obtain:

−∂ε(λ)
∂ h

= 1− 1

2π

∫
K(λ− µ)

∂ε(µ)/∂h

1 + eε(µ)/T
dµ.

Comparing with (2.113), we see that the quantity − 1
2π

∂ε/∂h

1+eε/T
as a function of λ satisfies

the same integral equation (2.113) as ρ(λ). From the uniqueness of solution (which can
be proved separately) we conclude that

∂ε

∂h
= −2πρ

(
1 + eε/T

)
.

Plugging this into the right hand side of the formula for pressure and using the normali-
zation condition, we see that the first two terms in the right hand side cancel each other.
Therefore, we obtain the following remarkable result:

P =
T

2π

∫
log

(
1 + e−ε(λ)/T

)
dλ. (2.118)

Comparing with (2.117), we observe the known thermodynamic formula

FN = −LP +Nh

from which it is clear that h has the meaning of chemical potential of the system. In
fact one could start from a given h rather than ρ0, then the solution scheme is a little
bit simpler.

What is the meaning of the function ε(λ)? It turns out that ε(λ) is the energy of
excitation over the state of thermodynamic equilibrium. Intuitively, this can be under-
stood from the fact that the ratio of the number of occupied vacancies (i.e. particles) to
the total number of vacancies in a small interval δλ is equal to

ρ(λ)

ρ(λ) + ρ̄(λ)
=

1

1 + eβε(λ)

which coincides with the Fermi-Dirac distribution. Note also that the obtained formulas
for the pressure and free energy look like written for a gas of non-interacting fictitious
“Fermi-particles” with energies ε(λ). In particular, at c = ∞ these fictitious particles
can be identified with real ones in terms of which the original Hamiltonian is written.

At this point we finish the description of the thermodynamics of the model. A deeper
analysis is out of the scope of these lectures.
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3 Vertex models of statistical mechanics on two-di-

mensional lattice

This section serves as an intermediate step from studying particular models to analysis
of general algebraic structures of quantum integrability. Here we discuss vertex models
on square lattice. These are models of absolutely different nature (and from a different
branch of physics) comparing to the models considered in the previous section. However,
their exact solution is also possible using the Bethe method. At the same time vertex
models are closely connected with spin chains and allow one to construct a family of
commuting integrals of motion for the latter, i.e., operators that commute with each
other and the Hamiltonian. In the context of vertex models, the main general notions
and objects of the quantum inverse scattering method (such as transfer matrix, R-matrix
and other) become most natural.

3.1 General vertex model on square lattice

Consider the square lattice of size N ×M rolled into a torus, i.e. such that the end rows
and columns are identified. To each edge an arrow is assigned. On horizontal edges, the
arrows look either to the left or to the right, and on each vertical edge the arrows look
either up or down. Since each vertex is surrounded by 4 edges, we have 24 = 16 possible
configurations of arrows around vertex (16 types of vertices). Let us assign to each type
of vertex indexed by j = 1, . . . , 16 a number εj (energy of the local configuration). The
total energy of the lattice is then a sum of local energies over all vertices:

E =
16∑
j=1

Njεj,

where Nj is the number of vertices of the type j in a given configuration. The quantities
wj = e−εj/T (local Boltzmann weights) are often more convenient. We assume that they
are the same for all vertices. The partition function is

Z =
∑

e−E/T =
∑∏

j

w
Nj

j ,

where the summation is over all configurations of arrow on the lattice and E is the total
energy of the configuration. Usually the free energy per one vertex in the thermodynamic
limit is of the main interest:

f = −T lim
M,N→∞

logZ

MN

For the clear reason, such model is called 16-vertex model. For general values of the
Boltzmann weights it does not have an exact solution.

Note that Boltzmann weights of some local configurations can be equal to zero (their
energy is then +∞). This means that such local configurations at the vertex are forbid-
den. In such a way one introduces 8-vertex and 6-vertex models which already admit an
exact solution (see below).

Instead of arrows one may use spin variables σ = ±1 which live on edges of the lattice:
if an arrow looks to the right or up, then σ = +1, if it looks to the left or down, then
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σ = −1. To each local configuration there correspond 4 spin variables α, α′, β, β ′ taking
values ±1. The variables α, α′ live on vertical edges while β, β′ on horizontal ones (Fig.
1). Let us denote the local Boltzmann weight of such configuration as

Rα′

α (β, β′) or Rα′β′

αβ .

Consider some horizontal row of the lattice and adjacent vertical edges at the top and
bottom of it. Let {α1, α2, . . . , αN} be spin variables on the vertical edges at the bottom
row and {α′

1, α
′
2, . . . , α

′
N} at the top row (Fig. 2). At the moment, let them be fixed and

let us find the partition function of such horizontal “slice” of the lattice which we denote
as

T α′
1,α

′
2,...,α

′
N

α1,α2,...,αN
or, for brevity T

{α′}
{α} .

To calculate it, one should multiply the local Boltzmann weights and take the sum over
all states on the horizontal edges:

T α′
1,α

′
2,...,α

′
N

α1,α2,...,αN
=

∑
β1,...,βN

Rα′
1

α1
(β1, β2)R

α′
2

α2
(β2, β3) . . . R

α′
N

αN
(βN , β1). (3.1)

It is useful to regard the quantity T
α′
1,α

′
2,...,α

′
N

α1,α2,...,αN as matrix element of an operator T which
acts in the space H = C2⊗C2⊗ . . .⊗C2 = (C2)⊗N , in the basis |α1〉⊗ |α2〉⊗ . . . ⊗|αN〉:

T |α1α2, . . . , αN〉 = T α′
1,α

′
2,...,α

′
N

α1,α2,...,αN
|α′

1α
′
2, . . . , α

′
N〉

(hereafter, we assume summation over repeated indices). Then

Z = trH TM ,

where the trace is taken in the space H. So, in order to find the partition function it is
enough to find eigenvalues of the matrix T. To determine the free energy per site in the
limit N,M → ∞ it is enough to know the largest eigenvalue as N → ∞. Because of its
importance, the matrix T has a special name. It is called the transfer matrix because
it describes transition from one horizontal row to the next one. Diagonalization of the
transfer matrix is the first main problem in the theory of vertex models. The second
main problem is finding correlation functions but it is much more difficult.

Let us discuss the structure of the transfer matrix in more detail. The set of quantities
Rα′

α (β, β′) can be regarded as a 2 × 2 matrix Rα′
α with respect to the indices β, β′ whose

matrix elements are in their turn 2 × 2 matrices (with indices α, α′):

(Rα′

α )ββ′ = Rα′

α (β, β′).

In other words, one can regard Rα′
α (β, β′) as a block matrix. Then the right hand side of

equation (3.1) is nothing else than the matrix product in the horizontal (common for all
matrices) space C2 (it is called the auxiliary space) with subsequent taking trace in it:

T
{α′}
{α} = T α′

1,α
′
2,...,α

′
N

α1,α2,...,αN
= trC2

(
Rα′

1
α1
Rα′

2
α2
. . . Rα′

N
αN

)
.

So, the elementary building block is the set of Boltzmann weights Rα′
α (β, β′) = Rα′β′

αβ .
They can be unified in a 4 × 4 matrix which can be regarded as the matrix of a linear
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operator in the tensor product of two two-dimensional spaces. This linear operator acts
as

R : C2 ⊗ C2 → C2 ⊗ C2.

In the basis |β〉 ⊗ |α〉 it acts in the following way:

R : |β〉 ⊗ |α〉 7→ Rαβ
α′β′ |β′〉 ⊗ |α′〉 .

The matrix R in the basis |+〉 ⊗ |+〉, |+〉 ⊗ |−〉, |−〉 ⊗ |+〉, |−〉 ⊗ |−〉 is written as

R =



R++
++ R−+

++ R+−
++ R−−

++

R++
−+ R−+

−+ R+−
−+ R−−

−+

R++
+− R−+

+− R+−
+− R−−

+−

R++
−− R−+

−− R+−
−− R−−

−−


.

Note that although physically the Boltzmann weights should be real non-negative num-
bers, from the algebraic point of view it is convenient to regard them as arbitrary complex
variables.

Finally, let us explain how to write down the transfer matrix without indices. Given
the tensor product V1⊗ . . .⊗VN of identical spaces Vi ∼= C2, let Rij be the operator acting
on the product Vi⊗Vj as R and as the identity operator on the other tensor factors. Then

T = trV0

(
R01R02 . . .R0N

)
.

The operator under the trace T = R01R02 . . .R0N has a special name, too. For historical
reasons (following an analogy with the inverse scattering method) it is called the quantum
monodromy matrix. It is naturally represented as a 2 × 2 matrix in the auxiliary space
whose elements are operators in the space H:

T =

(
A B
C D

)
, T = A+D.

The operators A,B,C,D have the meaning of transfer matrices for the chain with open
ends (with fixed spins at the ends).

3.2 The 6-vertex model

Let us consider only local configurations at a vertex such that the number of incoming
arrows is the same as the number of outgoing ones, and declare the other configurations
forbidden (put their Boltzmann weights equal to zero). There are 6 such configurations
(Fig. 3). They come in pairs which correspond to inverting all the arrows. In the
symmetric 6-vertex model, the Boltzmann weights are the same for the two configurations
in each pair. So, there are three independent parameters in the model, and the number
of essential parameters is two because the dependence on the common factor is trivial.
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3.2.1 The matrix of Boltzmann weights of the symmetric 6-vertex model

The matrix of local Boltzmann weights of the symmetric 6-vertex model has the form

R =


R+

+(+,+) 0 0 0
0 R−

−(+,+) R+
−(+,−) 0

0 R−
+(−,+) R+

+(−,−) 0
0 0 0 R−

−(−,−)

 =


a 0 0 0
0 b c 0
0 c b 0
0 0 0 a

 .
It is called the R-matrix. Sometimes other ways to write it down are more convenient:

R =


a+b
2

+ a−b
2
σz cσ−

cσ+
a+b
2

− a−b
2
σz



=
a+ b

2
σ0 ⊗ σ0 +

a− b

2
σz ⊗ σz +

c

2
σy ⊗ σy +

c

2
σx ⊗ σx.

The matrix of Boltzmann weights at jth site of the lattice can be written as

R0j =


a+b
2

+ a−b
2
σ(j)
z cσ

(j)
−

cσ
(j)
+

a+b
2

− a−b
2
σ(j)
z



=
a+ b

2
σ
(0)
0 ⊗ σ

(j)
0 +

a− b

2
σ(0)
z ⊗ σ(j)

z +
c

2
σ(0)
y ⊗ σ(j)

y +
c

2
σ(0)
x ⊗ σ(j)

x .

Problem. Show that the vector |Ω〉 = |+++ . . .+〉 is an eigenvector for the transfer

matrix T = trV0

(
R01R02 . . .R0N

)
and find the eigenvalue. (It can be shown that at a > b+c

this is the maximal eigenvalue.)

Problem. Show that the transfer matrix of the 6-vertex model commutes with the

operator of the cyclic shift eiP and the operator Sz =
N∑
j=1

σ(j)
z : [T, eiP ] = [T, Sz] = 0.

The commutation relation [T, Sz] = 0 means that the number of arrow looking down
(an analog of inverted spins) is conserved under the action of the operator T, i.e., it is
the same in all slices. Therefore, one can find eigenvectors in sectors with fixed number
of inverted arrows. For example, the eigenvectors in the N -dimensional subspace with
one inverted arrow can be found in the form

N∑
n=1

znσ
(n)
− |Ω〉 ,

where z is a complex number such that zN = 1 (due to the periodic boundary condition).
The explicit construction of eigenvectors can be performed in the sector with arbitrary
number of inverted arrows, and it turns out to be identical with the solution of the XXZ
spin chain by coordinate Bethe ansatz! Of course there is a deep hidden reason for this
and this fact suggests that the transfer matrix of the 6-vertex model commutes with
the Hamiltonian of the XXZ spin chain, and the Bethe method gives their common
eigenvectors.
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In the general 16-vertex model the vector |Ω〉 is not an eigenvector and the number of
inverted arrows is not conserved. The same is true for the 8-vertex model, in which only
configurations with even number of incoming arrows are allowed. It turns out, however,
that the 8-vertex model is exactly solvable, as well as the 6-vertex one, but the coordinate
Bethe ansatz is not applicable to it. The solution of the 8-vertex model was obtained
by other methods, which are more algebraic (developed in the works of Baxter and the
former Leningrad school). We will first look at these methods in a simpler example of
the 6-vertex model.

3.2.2 Commutig transfer matrices and the Yang-Baxter equation

A key to the algebraic solution of the 6-vertex model is finding a commutative family
of transfer matrices. Namely, we will show that the transfer matrices of the models for
which

∆ =
a2 + b2 − c2

2ab
has the same value commute.

So, we ask when the transfer matrices

T = trV0T = trV0

(
R01R02 . . .R0N

)
, T′ = trV0T ′ = trV0

(
R′
01R

′
02 . . .R

′
0N

)
commute with each other. Here R′ is the R-matrix with the parameters (a′, b′, c′). The
products TT′ and T′T can be written as

TT′ = trV0⊗V0

(
T ⊗ T ′

)
, T′T = trV0⊗V0

(
T ′ ⊗ T

)
.

In the right hand sides there are tensor products of T -matrices while their elements are
multiplied as operators H, taking into account the order. For example,

T ⊗ T ′ =

(
A B
C D

)
⊗
(
A′ B′

C ′ D′

)
=


AA′ AB′ BA′ BB′

AC ′ AD′ BC ′ BD′

CA′ CB′ DA′ DB′

CC ′ CD′ DC ′ DD′

 .
For commutativity of the transfer matrices it is enough that there is a non-degenerate
number-valued 4 × 4 matrix M such that

T ′ ⊗ T = M(T ⊗ T ′)M−1 or M(T ⊗ T ′) = (T ′ ⊗ T )M.

Then the traces of T ⊗ T ′ and T ′ ⊗ T will be the same due to cyclicity of the trace.

Let P be the permutation operator in the space C2 ⊗ C2: P u ⊗ v = v ⊗ u. (In the
previous section this operator was denoted as P12.) Assuming that the matrix elements
of T commute with matrix elements of T ′, we would have P(T ⊗ T ′) = (T ′ ⊗ T )P, i.e.,
in this simplest case, when the traces trivially commute, we would have M = P. In the
non-commuting case we will find the matrix M in the form M = PR′′, where R′′ is some
number-valued matrix (the meaning of such notation will be clear below).

The “intertwining” relation

PR′′(T ⊗ T ′) = (T ′ ⊗ T )PR′′ (3.2)
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will be of the main importance for us. It is useful to rewrite it in a little bit different
form. Denote T1 = T ⊗ 1, T2 = 1 ⊗ T , then T ⊗ T ′ = T1T ′

2 , and T ′ ⊗ T = P T ′
2T1 P.

Multiplying both sides of our relation by P from the left, we write it in the form

R′′
12T1T ′

2 = T ′
2T1R

′′
12.

The indices remind in which spaces the operators act. The matrix R′′
12 acts in the tensor

product of the first and the second spaces.

The matrix R′′ can be found by imposing a stronger sufficient condition that such a
matrix exists for each R-matrix multiplier of the T -matrix, namely,

PR′′(R⊗ R′) = (R′ ⊗ R)PR′′ or R′′
12R13R

′
23 = R′

23R13R
′′
12.

Both sides of this equation are 8 × 8 number-valued matrices and one may hope that it
can be solved. In the notation with indices we have∑

µνλ

R
′′ νµ
βγ R

′ λβ′

αµ R
α′γ′

λν =
∑
µνλ

Rλµ
αβR

′ α′ν
λγ R

′′ γ′β′

µν (3.3)

(recall that Rα′
α (β, β′) = Rα′β′

αβ ). Besides, we suppose that the matrices R, R′, R′′ have the
same structure and differ only by values of the parameters: (a, b, c) for R, (a′, b′, c′) for
R′ and (a′′, b′′, c′′) for R′′.

The condition (3.3) is called the Yang-Baxter equation. One can represent it graphi-
cally (Fig. 1). It is a system of 64 equations with 3 unknown variables (non-zero elements
of the matrix R′′). Our task is to find whether one can choose R, R′ in such a way that
the system be solvable.

2
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Figure 1: The Yang-Baxter equation

First of all, notice that because of the property Rα′β′

αβ = 0 at α + β 6= α′ + β′ many
equations become trivial identities 0 = 0. Something non-zero in the both sides appear
only if α + β + γ = α′ + β′ + γ′. As a result, only 20 nontrivial equations are left which
are reduced to 10 if one takes into account the symmetry |+〉 ↔ |−〉. Four of these
10 equations are satisfied identically while the other ones form three pairs of equivalent
equations. So, there are only 3 nontrivial equations which have the form

bc′a′′ = cb′c′′ + ac′b′′

ca′a′′ = cb′b′′ + ac′c′′

ba′c′′ = cc′b′′ + ab′c′′.
(3.4)
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Consider them as a system of linear homogeneous equations with unknowns a′′, b′′, c′′. A
non-zero solution exists if the determinant of the system vanishes. A direct calculation
shows that this condition is equivalent to

a2 + b2 − c2

2ab
=
a′2 + b′2 − c′2

2a′b′
.

Similarly, regarding (3.4) as a system of homogeneous equations with unknowns a′, b′, c′,
we get

a2 + b2 − c2

2ab
=
a′′2 + b′′2 − c′′2

2a′′b′′
.

Therefore, we have shown that if the quantity

∆ =
a2 + b2 − c2

2ab

is the same for all R-matrices R, R′, R′′, then the corresponding transfer matrices com-
mute.

For what follows it is extremely convenient to parametrize the Boltzmann weights
a, b, c in the following way: 

a = ρ sinh(u+ η)
b = ρ sinh u
c = ρ sinh η.

(3.5)

Then ∆ = cosh η, and the transfer matrices commute for different values of u, ρ (and the
same η). The commutativity at different ρ is trivial because it is a common multiplier.
We will put ρ = 1. The variable u is called spectral parameter, and the R-matrix as well
as all other objects are usually regarded as functions of u: R = R(u), T = T(u) and so
on. (It is implied that u can vary while η is fixed, then [T(u), T(u′)] = 0).

The spectral parameters of the R-matrices entering the yang-Baxter equation turn
out to be connected. Substituting the parametrization (3.5) for each R-matrix (with u,
u′, u′′ and the same η) into the conditions (3.4), we get

u = u′ + u′′.

Then the Yang-Baxter equation acquires the symmetric form

R12(u1 − u2)R13(u1 − u3)R23(u2 − u3) = R23(u2 − u3)R13(u1 − u3)R12(u1 − u2) (3.6)

(for the given parametrization it is an identity). The quantum monodromy matrix is
constructed as

T (u) = R01(u)R02(u) . . .R0N(u). (3.7)

It satisfies the intertwining relation (3.2)

Ř(u− u′)(T (u)⊗ T (u′)) = (T (u′)⊗ T (u))Ř(u− u′) (3.8)

with the R-matrix

Ř(u) = PR(u) =


a(u) 0 0 0
0 c(u) b(u) 0
0 b(u) c(u) 0
0 0 0 a(u)

 .
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It guarantees that the transfer matrices T(u) (traces of the quantum monodromy matrices
in the auxiliary space) commute at different values of the spectral parameter.

For convenience we give here the explicit form of the R-matrix in the parametrization
(3.5) with ρ = 1:

R(u) = R(u, η) =


sinh(u+ η) 0 0 0

0 sinh u sinh η 0
0 sinh η sinh u 0
0 0 0 sinh(u+ η)



=


sinh

(
u+ η

2
+ η

2
σz
)

sinh η σ−

sinh η σ+ sinh
(
u+ η

2
− η

2
σz
)
 .

(3.9)

Note that Ř(u, η) = R(η, u) and R(0) = sinh η P or, writing with indices,

Rα′β′

αβ (0) = Rα′

α (0|β, β′) = sinh η δαβ′δα′β. (3.10)

The R-matrix (3.9) obeys the following important property: if g = diag (g1, g2) is a
diagonal matrix, then

R12(u)g1g2 = g1g2R12(u). (3.11)

This property allows one to generalize the definition of the transfer matrix to twisted
boundary conditions:

T(u) = tr0
(
g0R01(u) . . .R0N(u)

)
. (3.12)

The Yang-Baxter equation and property (3.11) guarantee that T(u) form a commutative
family of transfer matrices.

Problem. Prove property (3.11).

3.2.3 Connection of the 6-vertex model with the XXZ spin chain

Using (3.10), we see that the operator T(0) is proportional to the cyclic shift of the lattice
by one site:

T(0) = (sinh η)Ne−iP . (3.13)

Indeed,

T
{α′}
{α} (0) = (sinh η)N

∑
{β}

δα1β2δα′
1β1

δα2β3δα′
2β2

. . . δαNβ1δα′
NβN

= (sinh η)Nδα′
1αN

δα′
2α1

. . . δα′
NαN−1

= (sinh η)N
(
e−iP

){α′}

{α}
.

The connection with the XXZ spin chain is based on the remarkable fact that the
Hamiltonian of the latter is contained in the family of the transfer matrices T(u) of the
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6-vertex model; namely Hxxz ∝ T−1(0)∂uT(u)
∣∣∣
u=0

+ const. Here is the exact formula:

Hxxz = − sinh η
d

du
logT(u)

∣∣∣
u=0

+ N cosh η. (3.14)

The proof is a direct calculation. Below we give some details. By definition, we have:

d

du
T

{α′}
{α} (u)

∣∣∣
u=0

=
N∑
j=1

∑
{β}

R
α′
1β2

α1β1
(0) . . . R

α′
j−1βj

αj−1βj−1
(0)

d

du
R

α′
jβj+1

αjβj
(u)

∣∣∣
u=0

R
α′
j+1βj+2

αj+1βj+1
(0) . . . R

α′
Nβ1

αNβN
(0).

Under the sum all factors except the jth one are permutation operators of the type (3.10),
and

R′(0) =
dR(u)

du

∣∣∣
u=0

=


cosh η 0 0 0

0 1 0 0
0 0 1 0
0 0 0 cosh η

 =
cosh η+1

2
1⊗ 1 +

cosh η−1

2
σz ⊗ σz

= 1⊗ 1 +
cosh η−1

2

(
1⊗ 1 + σz ⊗ σz

)
.

Writing this with indices, we have

d

du
Rα′β′

αβ (u)
∣∣∣
u=0

=
∆+1

2
δαα′δββ′ +

∆−1

2
(σz)αα′(σz)ββ′ , ∆ = cosh η.

Now we are ready to complete the calculation:

sinh η

(
T−1(0)

d

du
T(u)

∣∣∣
u=0

){α′}

{α}

=
N∑
j=1

δα1α′
1
. . . δαj−1α′

j−1
· d
du
R

α′
jα

′
j+1

αj+1αj (u)
∣∣∣
u=0

· δαj+2α′
j+2

. . . δαNα′
N
.

It remains to transform

d

du
R

α′
jα

′
j+1

αj+1αj (u)
∣∣∣
u=0

= (PR′(0))
α′
j+1α

′
j

αj+1αj
=
(
P+

∆− 1

2
P(1 + σ(j)

z σ(j+1)
z )

)α′
j+1α

′
j

αj+1αj

and, taking into account that P(1 + σz ⊗ σz) = 1 + σz ⊗ σz, to obtain:

sinh η T−1(0)
d

du
T(u)

∣∣∣
u=0

=
N∑
j=1

(
Pj,j+1 +

∆− 1

2
(1 + σ(j)

z σ(j+1)
z )

)
,

which is equivalent to (3.14).

Problem. Find ∂2u logT(u)
∣∣∣
u=0

.
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3.2.4 Asymmetric 6-vertex model

In the asymmetric 6-vertex model, the Boltzmann weights of the local configurations
which differ by inverting all arrows are different. In the natural basis the matrix of
Boltzmann weights is

R =


a 0 0 0
0 b c 0
0 c′ b′ 0
0 0 0 a′

 .
The standard argument shows that the partition function of the model with periodic
boundary conditions depends only on the product cc′, so we can put c′ = c from the very
beginning without loss of generality. The asymmetric 6-vertex model can be treated as
a symmetric one in some vertical and horizontal external fields. It turns out that the
asymmetric model with the horizontal external field h (a/a′ = b/b′ = e2h) is equivalent
to the symmetric model (a′ = a, b′ = b) with twisted boundary conditions (3.12) which
preserve integrability. The twist matrix has the form g = diag (eNh, e−Nh).

The matrix of Boltzmann weights of the asymmetric model with horizontal field h
and vertical field v is as follows:

Rh,v
0i (u) = e

1
2
hσ

(0)
z e

1
2
vσ

(i)
z R0i(u) e

1
2
hσ

(0)
z e

1
2
vσ

(i)
z

=

(
eh/2 0
0 e−h/2

)
0

(
ev/2 0
0 e−v/2

)
i

R0i(u)

(
eh/2 0
0 e−h/2

)
0

(
ev/2 0
0 e−v/2

)
i

.

(3.15)
The explicit form of the “asymmetric” R-matrix in the trigonometric parametrization is

Rh,v(u) =


eh+v sinh(u+η) 0 0 0

0 eh−v sinh u sinh η 0
0 sinh η e−h+v sinh u 0
0 0 0 e−h−v sinh(u+η)

 . (3.16)

The Yang-Baxter equation together with the invariance with respect to the Cartan sub-
group (3.11) implies the following Yang-Baxter equation for the asymmetric R-matrices
with the same parameter η:

R−v′, v
12 (u− u′)Rh,v

13 (u)R
h,v′

23 (u′) = Rh,v′

23 (u′)Rh,v
13 (u)R

−v′, v
12 (u− u′). (3.17)

We will consider the asymmetric 6-vertex model with periodic boundary conditions
in the horizontal direction. The transfer matrix of the model is defined as usual:

Th,v(u) = tr0
(
Rh,v
01 (u)R

h,v
02 (u) . . . R

h,v
0N(u)

)
. (3.18)

From the yang-Baxter equation it follows that the transfer matrices with different u and
v (but with the same η and h) commute: [Th,v(u), Th,v′(u′)] = 0. It is easy to see that
the dependence of the transfer matrix on the vertical field v is very simple:

Th,v(u) = evSzTh,0(u), (3.19)

53



where

Sz =
N∑
i=1

σ(i)
z = M1 −M2 (3.20)

is the operator which counts the (conserved) difference between the total number of

arrows looking up (M1 =
1

2

N∑
i=1

(1 + σ(i)
z )) and down (M2 =

1

2

N∑
i=1

(1− σ(i)
z )). Note that

M1 +M2 = N I, where I is the identity operator.

The transfer matrix of the asymmetric model with periodic boundary conditions is
connected with the transfer matrix of the symmetric model with twisted boundary con-
ditions by a similarity transformation. Set

U = 1⊗ ehσz ⊗ e2hσz ⊗ . . .⊗ e(N−1)hσz = exp

 N∑
j=1

(j−1)hσ(j)
z

 .
From the invariance with respect to the Cartan subgroup (3.11) it follows that

UTh,v(u)U−1 = evSzT(h)(u),

where
T(h)(u) = tr0

(
eNhσ

(0)
z R01(u)R02(u) . . . R0N(u)

)
(3.21)

is the transfer matrix of the symmetric model with the boundary conditions twisted by
the diagonal group element g = eNhσz .

3.3 The 8-vertex model

3.3.1 Elliptic parametrization of the R-matrix

The matrix of Boltzmann weights of the symmetric 8-vertex model is

R =


a 0 0 d
0 b c 0
0 c b 0
d 0 0 a

 .

It contains 3 independent parameters (not counting a common multiplier). There exists a
parametrization of this R-matrix similar to (3.9) but in elliptic rather than trigonometric
functions. A third parameter (the elliptic modular parameter τ) is added to the two
existing ones in (3.9) (u and η). Repeating the arguments from section 3.2.2, one can
show that the transfer matrices constructed with the help of R-matrices for the 8-vertex
model commute if they have the same quantities

Γ =
cd

ab
, ∆ =

a2 + b2 − c2 − d2

2ab
. (3.22)
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For the elliptic parametrization of the R-matrix of the 8-vertex model we use the
Jacobi theta-functions

θ1(u|τ) = −i
∑
k∈Z

(−1)kq(k+
1
2
)2eπi(2k+1)u,

θ2(u|τ) =
∑
k∈Z

q(k+
1
2
)2eπi(2k+1)u,

θ3(u|τ) =
∑
k∈Z

qk
2

e2πiku,

θ4(u|τ) =
∑
k∈Z

(−1)kqk
2

e2πiku,

(3.23)

where τ ∈ C, Im τ > 0, and q = eπiτ . Their infinite product representations are also
useful:

θ1(u|τ) = 2q
1
4 sin πu

∏
n≥1

(1− q2n)(1− q2ne2πiu)(1− q2ne−2πiu),

θ2(u|τ) = 2q
1
4 cos πu

∏
n≥1

(1− q2n)(1 + q2ne2πiu)(1 + q2ne−2πiu),

θ3(u|τ) =
∏
n≥1

(1− q2n)(1 + q2n−1e2πiu)(1 + q2n−1e−2πiu),

θ4(u|τ) =
∏
n≥1

(1− q2n)(1− q2n−1e2πiu)(1− q2n−1e−2πiu).

(3.24)

It is seen from here that θ1 and θ2 become respectively sin and cos as q → 0 while θ3
and θ4 become constants (equal to 1). The function θ1 is odd while the other three are
even. Theta-functions satisfy a large number of non-trivial identities which we use below
without comments. All these identities with proofs can be found in [15].

It is convenient for us to denote the Pauli matrices σx, σy, σz as σ1, σ2, σ3 (σ0 = 1).
The matrix of Boltzmann weights of the 8-vertex model in the elliptic parametrization
has the form

R(u) = R(u; η, τ) =
3∑

a=0

Wa(u) σa ⊗ σa, (3.25)

where

Wa(u) = Wa(u; η, τ) = θ1(η|τ)
θ5−a

(
u+ η

2

∣∣∣τ)
2θ5−a

(
η
2

∣∣∣τ) , a = 0, . . . , 3, (3.26)

and the index of the theta-functions is understood modulo 4 (for example, θ5 = θ1).
This R-matrix acts in the tensor product V1 ⊗ V2 (Vi ∼= C2) and can be also denoted as

R12(u) =
3∑

a=0

Wa(u) σ
(1)
a σ(2)

a . (Pictorially, the first space is associated with the horizontal
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line and the second one with the vertical line.) In the matrix form we have:

R(u) =


W0(u)+W3(u) 0 0 W1(u)−W2(u)

0 W0(u)−W3(u) W1(u)+W2(u) 0
0 W1(u)+W2(u) W0(u)−W3(u) 0

W1(u)−W2(u) 0 0 W0(u)+W3(u)



=


a8v(u) 0 0 d8v(u)

0 b8v(u) c8v(u) 0
0 c8v(u) b8v(u) 0

d8v(u) 0 0 a8v(u)

 ,
(3.27)

where the explicit form of the matrix elements is

a8v(u) =
2θ4(η|2τ) θ1(u+ η|2τ) θ4(u|2τ)

θ2(0|τ) θ4(0|2τ)
,

b8v(u) =
2θ4(η|2τ) θ4(u+ η|2τ) θ1(u|2τ)

θ2(0|τ) θ4(0|2τ)
,

c8v(u) =
2θ1(η|2τ) θ4(u+ η|2τ) θ4(u|2τ)

θ2(0|τ) θ4(0|2τ)
,

d8v(u) =
2θ1(η|2τ) θ1(u+ η|2τ) θ1(u|2τ)

θ2(0|τ) θ4(0|2τ)
.

(3.28)

It is easy to see that when the spectral parameter is shifted by the quasiperiods 1 and τ ,
the R-matrix transforms as follows:

R12(u+ 1) = −σ(1)
3 R12(u)σ

(1)
3 ,

R12(u+ τ) = −e−πi(2u+η+τ)σ
(1)
1 R12(u)σ

(1)
1 .

(3.29)

It can be shown that this R-matrix satisfies the Yang-Baxter equation (3.6) and commutes
with σa ⊗ σa:

σa ⊗ σaR(u) = R(u)σa ⊗ σa, a = 1, 2, 3. (3.30)

The quantities Γ and ∆ for the R-matrix (3.27) are

Γ =
θ21(η|2τ)
θ24(η|2τ)

, ∆ =
θ24(0|2τ)
θ24(η|2τ)

θ2(η|τ)
θ2(0|τ)

. (3.31)

Below we also need the following properties of the R-matrix (3.27):

R12(−u;−η, τ) = −R12(u; η, τ),

Rt1t2
12 (u) = R12(u),

R12(u− η; η, τ) = eπi(2u−η+τ)Rt1
12(u+ τ + 1;−η, τ),

(3.32)

where ti means transposition in the i-th space.
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Let us mention properties of the R-matrix (3.27) under the modular transformation
τ → −1/τ . Using the formulas for modular transformations of the theta-functions, we
find:

R
(u
τ
;
η

τ
,−1

τ

)
= −i

√
−iτ eπi(u2+uη+η2)/τ R̃(u; η, τ), (3.33)

where

R̃(u; η, τ) = θ1(η|τ)
3∑

a=0

θa+1

(
u+ η

2
|τ
)

2θa+1

(
η
2
|τ
) σa ⊗ σa =


ã(u) 0 0 d̃(u)

0 b̃(u) c̃(u) 0

0 c̃(u) b̃(u) 0

d̃(u) 0 0 ã(u)

 .

The explicit form of the matrix elements is as follows:

ã(u) =
θ2
(
η
2

∣∣∣ τ
2

)
θ2
(
u
2

∣∣∣ τ
2

)
θ1
(
u+η
2

∣∣∣ τ
2

)
θ2
(
0
∣∣∣ τ
2

)
θ4(0|τ)

,

b̃(u) =
θ2
(
η
2

∣∣∣ τ
2

)
θ1
(
u
2

∣∣∣ τ
2

)
θ2
(
u+η
2

∣∣∣ τ
2

)
θ2
(
0
∣∣∣ τ
2

)
θ4(0|τ)

,

c̃(u) =
θ1
(
η
2

∣∣∣ τ
2

)
θ2
(
u
2

∣∣∣ τ
2

)
θ2
(
u+η
2

∣∣∣ τ
2

)
θ2
(
0
∣∣∣ τ
2

)
θ4(0|τ)

,

d̃(u) = −
θ1
(
η
2

∣∣∣ τ
2

)
θ1
(
u
2

∣∣∣ τ
2

)
θ1
(
u+η
2

∣∣∣ τ
2

)
θ2
(
0
∣∣∣ τ
2

)
θ4(0|τ)

.

(3.34)

3.3.2 Connection with the XY Z spin chain

From (3.25), (3.26) it follows that R(0) = θ1(η|τ)P, so T(0), as in the case of the 6-
vertex model, is proportional to the cyclic shift by one site. The logarithmic derivative
∂u logT(u)

∣∣∣
u=0

contains the Hamiltonian HXYZ of the anisotropic Heisenberg spin chain.

To see this, one should perform some calculations similar to those done in section 3.2.3.
We have:

θ1(η|τ)
(
d

du
logT(u)

∣∣∣
u=0

){α′}

{α}
=

N∑
j=1

δα1α′
1
. . . δαj−2α′

j−2

d

du
R

α′
j−1α

′
j

αjαj−1(u)
∣∣∣
u=0

δαj+1α′
j+1

. . . δαNα′
N
.

Now note that PR(u) = Ř(u) =
3∑

a=0

W̌a(u) σa ⊗ σa, where

W̌0 =
1

2
(a+ c), W̌1 =

1

2
(b+ d), W̌2 =

1

2
(b− d), W̌3 =

1

2
(a− c),

then

R
α′
j−1α

′
j

αjαj−1(u) =
3∑

a=0

W̌a(u)(σa)αj−1α′
j−1

(σa)αjα′
j
.
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For the logarithmic derivative we obtain:

∂u logT(u)
∣∣∣
u=0

= θ−1
1 (η|τ)

N∑
j=1

3∑
a=0

W̌ ′
a(0)σ

(j)
a σ(j+1)

a .

A simple calculation using some identities for the Jacobi theta-functions shows that

W̌a(u) = θ1(u|τ)
θ5−a

(
u
2
+ η

∣∣∣τ)
2θ5−a

(
u
2

∣∣∣τ) , (3.35)

so

W̌ ′
0(0) =

1

2
θ′1(η|τ), W̌ ′

1(0) =
1

2
θ′1(0|τ)

θ4(η|τ)
θ4(0|τ)

,

W̌ ′
2(0) =

1

2
θ′1(0|τ)

θ3(η|τ)
θ3(0|τ)

, W̌ ′
3(0) =

1

2
θ′1(0|τ)

θ2(η|τ)
θ2(0|τ)

.

(Note that Ř(u; η, τ) = R(η; u, τ), which is obvious from (3.28).) We conclude that

∂u logT(u)
∣∣∣
u=0

=
θ′1(0|τ)
2θ1(η|τ)

HXYZ + J0N I, (3.36)

where J0 =
1
2
θ′1(η|τ)/θ1(η|τ), and the Hamiltonian of the XY Z spin chain is

HXYZ =
N∑
j=1

(
Jxσ

(j)
x σ(j+1)

x + Jyσ
(j)
y σ(j+1)

y + Jzσ
(j)
z σ(j+1)

z

)

with the constants

Jx =
θ4(η|τ)
θ4(0|τ)

, Jy =
θ3(η|τ)
θ3(0|τ)

, Jz =
θ2(η|τ)
θ2(0|τ)

.

Note that Jx : Jy : Jz = (1 + Γ) : (1− Γ) : ∆ (see (3.31)).

3.3.3 The result of diagonalization of the transfer matrix

The diagonalization of the transfer matrix of the 8-vertex model first done by Baxter is
a complicated nontrivial procedure. We will learn it below in section 4.3. Here we will
give the final answer. The eigenvalues at even N = 2n (for odd N the exact solution is
problematic) are given by the expression

T (u) = eiπηνθN1 (u+η|τ)
n∏

k=1

θ1(u− ui − η|τ)
θ1(u− ui|τ)

+e−iπηνθN1 (u|τ)
n∏

k=1

θ1(u− ui + η|τ)
θ1(u− ui|τ)

, (3.37)

where n numbers ui satisfy the system of n Bethe equations

e2iπην
(
θ1(uj + η|τ)
θ1(uj|τ)

)N

=
∏

k=1, ̸=j

θ1(uj − uk + η|τ)
θ1(uj − uk − η|τ)

. (3.38)

The parameter ν can take some discrete values, and ν = 0 is among them.
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3.3.4 Trigonometric degenerations of the elliptic R-matrix

Let us discuss trigonometric degenerations of the formulas from this section. In the limit
τ → +i∞ (q → 0) the elliptic R-matrix degenerates into the standard trigonometric
R-matrix of the 6-vertex model:

R(u) → 2q
1
4


sin π(u+ η) 0 0 0

0 sin πu sin πη 0
0 sin πη sin πu 0
0 0 0 sin π(u+ η)

+O(q
5
4 ).

For the correspondence with formulas from the previous section one should substitute
η → iη and u→ iu.

Another trigonometric degeneration is obtained as τ → 0 (q → 1). In order to see
what happens in this case, it is convenient to pass to the modular-transformed R-matrix
(3.33). Using formulas (3.29), we find:

i

4
lim

τ→+i∞
(−iτ)−1/2q−1/4R

(u
τ
;
η

τ
,−1

τ

)
= R̃trig(u; η) =


ãtrig 0 0 d̃trig

0 b̃trig c̃trig 0

0 c̃trig b̃trig 0

d̃trig 0 0 ãtrig

 .

The matrix elements are
ãtrig = cos η

2
cos u

2
sin u+η

2
,

b̃trig = cos η
2
sin u

2
cos u+η

2
,

c̃trig = sin η
2
cos u

2
cos u+η

2
,

d̃trig = − sin η
2
sin u

2
sin u+η

2
.

In the limit we get a 8-vertex model in which not all Boltzmann weights are independent
(only two parameters are left).

Let us mention that besides these standard trigonometric degenerations there exists
a more tricky trigonometric limit of the elliptic R-matrix which gives the so-called 7-
vertex model. It can be obtained if before taking the limit one performs the gauge
transformation

R(u) → Rq(u) = G1G2R(u)(G1G2)
−1, G1 = G⊗ 1, G2 = 1⊗G

with the matrix

G =

(
q

1
4γ−

1
2 0

0 q−
1
4γ

1
2

)
,

so that G1G2 = diag
(
q

1
2γ−1, 1, 1, q−

1
2γ
)
, where γ is an arbitrary parameter.

Problem. Prove that the R-matrix Rq(u) satisfies the Yang-Baxter equation (3.6).

Now we can define the R-matrix

R7v(u) =
1

2
lim
q→0

q−
1
4 Rq(u), (3.39)
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which also satisfies the Yang-Baxter equation. Its explicit form is

R7v(u) =


a7v(u) 0 0 0

0 b7v(u) c7v(u) 0
0 c7v(u) b7v(u) 0

d7v(u) 0 0 a7v(u)

 ,

where
a7v(u) = sin π(u+ η), b7v(u) = sin πu, c7v(u) = sin πη,

d7v(u) = 4γ2 sin πη sin π(u+ η) sin πu.

4 Algebraic Bethe ansatz

4.1 Algebraic Bethe ansatz for the 6-vertex model

Let us consider the 6-vertex model with trigonometric R-matrix. The intertwining rela-
tion

Ř(u− u′)(T (u)⊗ T (u′)) = (T (u′)⊗ T (u))Ř(u− u′) (4.1)

or, which is the same,

R(u− u′)T1(u)T2(u
′) = T2(u

′)T1(u)R(u− u′) (4.2)

plays the main role in the theory of integrable models of statistical physics on two-
dimensional lattice as well as of integrable models of solid state physics and quantum
field theory. From the algebraic point of view, it defines the commutation relations
between generators of an infinite-dimensional algebra (quantum affine algebra) generated
by coefficients of the matrix elements of T (u) in the expansion in powers of u. The
Yang-Baxter equation is equivalent to associativity of this algebra. The realization of
the intertwining relation for the 6-vertex model by matrices of Boltzman weights means
a choice of its special finite-dimensional representation. The construction of eigenvectors
of the transfer-matrix by means of algebraic properties of the operators is called algebraic
Bethe ansatz. Below we will describe the main points of this construction in the case
when the R-matrix has the form

Ř(u) =


a(u) 0 0 0
0 c(u) b(u) 0
0 b(u) c(u) 0
0 0 0 a(u)

 (4.3)

with a = sinh(u+ η), b = sinh u, c = sinh η.

The matrix elements of the quantum monodromy matrix

T (u) =

(
A(u) B(u)
C(u) D(u)

)
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are some operators acting in the space H ∼= (C2)⊗N . The relations containing in (4.1)
gives commutation rules of these operators. The equality (4.1) in the detailed matrix
form looks as follows:

a 0 0 0
0 c b 0
0 b c 0
0 0 0 a



A(u)A(v) A(u)B(v) B(u)A(v) B(u)B(v)
A(u)C(v) A(u)D(v) B(u)C(v) B(u)D(v)
C(u)A(v) C(u)B(v) D(u)A(v) D(u)B(v)
C(u)C(v) C(u)D(v) D(u)C(v) D(u)D(v)



=


A(v)A(u) A(v)B(u) B(v)A(u) B(v)B(u)
A(v)C(u) A(v)D(u) B(v)C(u) B(v)D(u)
C(v)A(u) C(v)B(u) D(v)A(u) D(v)B(u)
C(v)C(u) C(v)D(u) D(v)C(u) D(v)D(u)



a 0 0 0
0 c b 0
0 b c 0
0 0 0 a

 ,
where a = a(u− v), b = b(u− v), c = c(u− v). Below we will write explicitly only those
relations which will be used for calculations in what follows.

First, we have [A(u), A(v)] = 0, [B(u), B(v)] = 0, and so on. Second, the commuta-
tion relations

a(u− v)B(u)A(v) = c(u− v)B(v)A(u) + b(u− v)A(v)B(u) (4.4)

a(u− v)B(v)D(u) = c(u− v)B(u)D(v) + b(u− v)D(u)B(v) (4.5)

hold.

Exercise. Write down all commutation relations for the operators A(u), B(u), C(u),
D(u) containing in (4.1).

Problem. Prove that

detq T (u) = A(u+ η)D(u)− B(u+ η)C(u) (4.6)

is the central element of the algebra generated by the matrix elements of the quantum
monodromy matrix, i.e. it commutes with all the generators. This element is called
quantum determinant.

For the rational degeneration of the R-matrix (4.3) (in the limit ϵ → 0 after the
substitution u → ϵu, η → ϵη), when a = u + η, b = u, c = η, the commutation relations
containing in (4.1) can be compactly written in the form

[Tij(u), Tkl(v)] =
η

u− v

(
Tkj(v)Til(u)− Tkj(u)Til(v)

)
(4.7)

for all i, j, k, l = 1, 2.

Let us consider the vector |Ω〉 = |+++ . . .+〉. It is easy to see that it is an eigenvector
for the operators A(u) and D(u) while C(u) annihilates it:

A(u) |Ω〉 = aN(u) |Ω〉 , D(u) |Ω〉 = bN(u) |Ω〉 , C(u) |Ω〉 = 0.

The vector |Ω〉 is called a generating (or vacuum) vector because all other eigenvectors
of the transfer matrix will be obtained by applying the operators B(u) to it.

Recall that the transfer matrix is trace in the auxiliary space V0 ∼= C2 of product of
R-matrices:

T(u) = tr0
(
R01(u)R02(u) . . .R0N(u)

)
.
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The following basic theorem yields an algebraic constructionof eigenvectors and eigen-
values of the transfer matrix.

Theorem. The vectors

|Φ(u1, . . . , un)〉 =
n∏

j=1

B(uj) |Ω〉

are eigenvectors of the transfer matrix (T(u) |Φ〉 = T (u) |Φ〉) provided that uj satisfy the
system of Bethe equations

aN(uj)

bN(uj)
= (−1)n−1

n∏
k=1, ̸=j

a(uj − uk)

a(uk − uj)
(4.8)

or (
sinh(uj + η)

sinh uj

)N

=
n∏

k=1, ̸=j

sinh(uj − uk + η)

sinh(uj − uk − η)
,

and the corresponding eigenvalue T (u) = T (u; u1, . . . , un) is given by the formula

T (u; u1, . . . , un) = aN(u)
n∏

j=1

a(uj − u)

b(uj − u)
+ bN(u)

n∏
j=1

a(u− uj)

b(u− uj)

or

T (u; u1, . . . , un) = sinhN(u+ η)
n∏

j=1

sinh(u− uj − η)

sinh(u− uj)
+ sinhN u

n∏
j=1

sinh(u− uj + η)

sinh(u− uj)
.

Proof. Let us rewrite the commutation relations (4.4), (4.5) in a more convenient form:

A(u)B(v) =
a(v − u)

b(v − u)
B(v)A(u)− c(v − u)

b(v − u)
B(u)A(v),

D(u)B(v) =
a(u− v)

b(u− v)
B(v)D(u)− c(u− v)

b(u− v)
B(u)D(v).

With the help of these relations, one can transform the expression

(A(u) +D(u))
n∏

j=1

B(uj) |Ω〉 ,

moving A(u) and D(u) through B(uj) to the right until it meets the vacuum vector
|Ω〉 which is an eigenvector for them. In doing so, one obtains 2n terms which can be
combined in the expressions of the form

T (u)
n∏

k=1

B(uk) |Ω〉 and Λj(u)B(u)
n∏

k=1, ̸=j

B(uk) |Ω〉 (4.9)

with some coefficients T (u) and Λj(u). The first of them is obtained if in the process
of commutation one takes into account only first terms in the right hand sides of the
commutation relations. Indeed, if one takes the second term at some step, then the
operator B(u) appears which can not disappear after that. Therefore, T (u) is given by the
expression for the eigenvalue written above. However, we can not yet say that our vector
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is an eigenvector because there are “bad terms” – vectors of the form B(u)
n∏

k=1, ̸=j

B(uk) |Ω〉

with the coefficients Λj(u). The coefficient Λj(u) can be found explicitly by the following
trick. Taking advantage of the commutativity of the operators B, one can put B(uj) to
the first place and, moving first A(u) +D(u) through B(uj) use the second terms in the
commutation relations and then, moving A(u) or D(u) further to the right, use only the
first terms. The result is

Λj(u) = − c

b(uj − u)

aN(uj) n∏
k=1, ̸=j

a(uk − uj)

b(uk − uj)
− bN(uj)

n∏
k=1, ̸=j

a(uj − uk)

b(uj − uk)

 . (4.10)

The “bad terms” vanish if Λj(u) = 0 for all j = 1, . . . , n. Clearly, these conditions are
equivalent to the Bethe equations.

4.2 Models of general form with trigonometric R-matrix

The algebraic method described above not only provides an elegant method to solve the
6-vertex model but also allows one to extend the family of integrable models.

4.2.1 Inhomogeneous models

To begin with, we represent the R-matrix on the j-th site in the form

Lj(u) =


sinh

(
u+ η

2
σ(j)
z

)
sinh ησ

(j)
−

sinh ησ
(j)
+ sinh

(
u− η

2
σ(j)
z

)
 (4.11)

and call it the quantum L-operator (the terminology goes back to the inverse scattering
method). It is obvious that Lj(u) = Rj0(u − η

2
) and T (u) = L1(u)L2(u) . . . LN(u), where

we have redefined T (u) by a shift of the argument. The quantum L-operator can be
regarded as an “elementary” quantum monodromy matrix (for the model on one site).
Therefore, it is clear that the L-operator satisfies the basic intertwining relation

Ř(u− v)(L(u)⊗ L(v)) = (L(v)⊗ L(u))Ř(u− v) (4.12)

with the R-matrix

Ř(u) =


sinh(u+ η) 0 0 0

0 sinh η sinh u 0
0 sinh u sinh η 0
0 0 0 sinh(u+ η)

 .

The elements of the L-operator act to the vector |+〉 as follows:

L(u) |+〉 =

 sinh
(
u+ η

2

)
⋆

0 sinh
(
u− η

2

)  . |+〉 (4.13)

The star stands for an inessential for us nonzero element.
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The generalization which allows one to introduce a wide class of models solved by
the same method is based on the remark that the intertwining relation (4.1) for quan-
tum monodromy matrices remains valid if to make arbitrary site-depending shifts of the
spectral parameter in each L-operator in the product along the chain:

T (u) = L1(u− ξ1) L2(u− ξ2) . . . LN(u− ξN). (4.14)

(Clearly, the intertwining relation (4.1) for T (u), T (v) and commutativity of the traces
holds only if the parametars ξi are the same for the both matrices.) Such T -matrix is
called the quantum monodromy matrix of an inhomogeneous chain while the quantities
ξi are called inhomogeneities at the sites. Together with η, they are parameters of the
model. We have thus constructed a large family of models whose transfer matrices
allow for diagonalization by means of the same algebraic Bethe ansatz method. From
mathematical point of view, the inhomogeneous models are probably even better then the
homogeneous 6-vertex model or the XXZ chain (because their parameters are “in general
position”). From physical point of view, however, they are not so good because usually
they do not have a local Hamiltonian which could be included into the commutative
family of operators.

An important condition of applicability of the algebraic Bethe ansatz is the existence
of a vacuum vector |Ω〉 which is an eigenvector for A(u), D(u) and such that C(u) |Ω〉 = 0.
In other words, we have:

T (u) |Ω〉 =
(
A(u) B(u)
C(u) D(u)

)
|Ω〉 =

(
a(u) ⋆
0 d(u)

)
|Ω〉

with some functions a(u), d(u). The property (4.13) means that in our generalized model
the vacuum vector is |Ω〉 = |+++ . . .+〉, then

a(u) =
N∏
j=1

sinh
(
u− ξj +

η

2

)
, d(u) =

N∏
j=1

sinh
(
u− ξj −

η

2

)
.

We will call functions of this form trigonometric polynomials (of degree N).

It is possible to generalize the model even further and to take entire functions a(u) and
d(u) with period 2πi (vacuum eigenvalues of the operators A(u) and D(u)) as functional
parameters of the model. We call such a model the generalized XXZ model. For the
generalized model with a vacuum vector there exists a general algebraic procedure of
diagonalization of the commutative family of operators tr T (u) = A(u) +D(u).

Theorem. The vectors

|Φ(u1, . . . , un)〉 =
n∏

j=1

B(uj) |Ω〉

are eigenvectors of the transfer matrix (T(u) |Φ〉 = T (u) |Φ〉) provided that the parameters
uj satisfy the system of Bethe equations

a(uj)

d(uj)
=

n∏
k=1, ̸=j

sinh(uj − uk + η)

sinh(uj − uk − η)
, (4.15)

and the eigenvalue T (u) = T (u; u1, . . . , un) is given by the formula

T (u; u1, . . . , un) = a(u)
n∏

j=1

sinh(u− uj − η)

sinh(u− uj)
+ d(u)

n∏
j=1

sinh(u− uj + η)

sinh(u− uj)
. (4.16)

The proof is basically the same as in the case of the homogeneous 6-vertex model.
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4.2.2 The Baxter Q-operator and TQ-relation

Note that the system of Bethe equations is equivalent to the condition that the eigenvalue
of the transfer matrix T (u) = T (u; u1, . . . , un) (4.16) does not have poles at the points
u = ui. This remark allows one to suggest an alternative way to obtain the Bethe
equations. Namely, from the fact that the transfer matrices commute for all u it follows
that they can be diagonalized by an u-independent transformation and so, since all their
matrix elements are trigonometric polynomials of degree N , all their eigenvalues have to
be of the same form. Therefore, one should require the right hand side of (4.16) to be a
regular function in the finite part of the complex plane. Vanishing of the residues at the
points ui yields the system of Bethe equations (4.15).

Let us denote

Q(u) =
n∏

j=1

sinh(u− uj),

then equation (4.16) can be written in the form

T (u)Q(u) = a(u)Q(u− η) + d(u)Q(u+ η), (4.17)

and the Bethe equations are
a(uj)

d(uj)
= − Q(uj + η)

Q(uj − η)
.

It appears that it is possible to construct an operator Q(u) such that a) it commutes
with all transfer matrices, i.e. [T(u),Q(v)] = 0 for all u, v and b) its eigenvalues on
Bethe vectors |Φ(u1, . . . , un)〉 are equal to Q(u). The relation (4.17) can be written in
the operator form:

T(u)Q(u) = a(u)Q(u− η) + d(u)Q(u+ η).

It is called the TQ-relation, and Q(u) is called the Baxter Q-operator.

4.2.3 Limit to the XXX type models and the algebra sl2.

Let us renormalize u → ηu and tend η → 0. This is the limit to the XXX spin chain.
The trigonometric R-matrix becomes rational (polynomial):

R(u) =


u+1 0 0 0
0 u 1 0
0 1 u 0
0 0 0 u+1

 = uI+ P. (4.18)

Note that it is GL(2)-invariant in the following sense:

g ⊗ gR(u) = R(u)g ⊗ g (4.19)

for any non-degenerate matrix g =

(
a b
c d

)
∈ GL(2). The L-operator acquires the form

L(u) =

(
u+ 1

2
σz σ−

σ+ u− 1
2
σz

)
.

65



The generating function of integrals of motion for the XXX spin chain is constructed
as T(u) = tr

(
L1(u) . . . LN(u)

)
. As in the XXZ-case, the model admits an integrable

inhomogeneous generalization. The GL(2)-invariance allows one to introduce integrable
models with non-periodic (twisted) boundary conditions by insertion of an arbitrary
group element g ∈ GL(2) under the trace, and the more general commutative family is

T(u) = tr
(
g L1(u− u1) . . . LN(u− uN)

)
. (4.20)

A more general L-operator which intertwines by the rational R-matrix (i.e., satisfies
the RLL = LLR relation) can be found in the form

L(u) =

(
u+ 1

2
S S−

S+ u− 1
2
S

)
. (4.21)

Here S, S± are some yet undetermined operators. The substitution to the RLL = LLR
relation gives the algebra

[S, S±] = ±2S±, [S+, S−] = S. (4.22)

These are commutation relations of the Lie algebra sl2 (one can think of it as embedded
into the universal enveloping algebra U(sl2)). This L-operator acts in the tensor product
C2 ⊗ V , where V is the representation space of some representation of this algebra.
Accordingly, the quantum space of the model with the transfer matrix (4.20) and the

L-operator (4.21) is H =
N⊗
i=1

Vi, where Vi
∼= V .

Representations of the algebra U(sl2) can be realized by differential operators in the
space of functions of a complex variable z:

S− = ∂z, S = z∂z − ℓ, S+ = −z2∂z + 2ℓz. (4.23)

In general this representation is irreducible and infinite-dimensional. If, however, 2ℓ+1 ∈
Z+, it becomes reducible and it splits off (2ℓ+ 1)-dimensional irreducible representation
of spin ℓ (integer or half-integer), which is realized in the space of polynomials of degree
2ℓ. In particular, at ℓ = 1

2
we have the representation S = σz, S± = σ±.

Let us give an example of the L-operator with an infinite-dimensional quantum space.
Introduce bosonic creation and annihilation operators on the lattice ψ†

n, ψn with the
commutation relations [ψn, ψ

†
m] = ∆−1δmn, where ∆ is the lattice spacing and take the

operators S, S± in the form

S(n) = − 4

c∆

(
1 +

c∆2

2
ψ†
nψn

)

S
(n)
+ = 2i

(
1 +

c∆2

4
ψ†
nψn

)
ψn

S
(n)
− =

2i

c
ψ†
n.

(4.24)

Problem. Check that these operators satisfy the algebra sl2 (4.22).
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The L-operator of the lattice version of the Bose gas model (quantum nonlinear
Schrodinger equation or QNLS in short) with the constant c on nth site of the lattice
has the form

LQNLS
n (λ) = −1

2
c∆σzLn(iλ/c)

=


1− 1

2
iλ∆+ 1

2
c∆2ψ†

nψn −i∆ψ†
n

ic∆
(
1 + 1

4
c∆2ψ†

nψn

)
ψn 1 + 1

2
iλ∆+ 1

2
c∆2ψ†

nψn

 , (4.25)

where Ln is the L-operator (4.21) on the nth site with the operators S, S± as in (4.24).
The quantum space of this L-operator is the Fock space spanned by vectors which are
obtained by action of the creation operators ψ†

n to the vacuum state |0〉 (ψn |0〉 = 0).

In the continuum limit ∆ → 0, N → ∞ (here N is the number of sites in the lattice),
in such a way that L = N∆ is fixed. It can be shown that the Hamiltonian of the QNLS
equation (2.55) is contained in the expansion of the transfer matrix in inverse powers of
λ.

4.2.4 The XXZ type models and the q-deformation of the algebra sl2.

By analogy with the rational vase, a more general L-operator which intertwines by the
trigonometric R-matrix can be found in the form

L(u) =


sinh

(
u+ η

2
S
)

sinh η S−

sinh η S+ sinh
(
u− η

2
S
)
 . (4.26)

The substitution into RLL = LLR leads to the following algebra:

[S, S±] = ±2S±, [S+, S−] =
sinh(ηS)

sinh η
.

These relations define the algebra Uq(sl2), a q-deformation of U(sl2). Set q = eη and
introduce the generators

A = qS/2, D = q−S/2, B = S+, C = S−,

then the defining relations are written in the form

AB = qBA, BD = qDB, DC = qCD, CA = qAC, [B, C] =
A2 − D2

q − q−1
. (4.27)

The Casimir element (the central element) is given by

Ω =
q−1A2 + qD2 − 2

(q − q−1)2
+ BC =

sinh2(η
2
(S− 1))

sinh2 η
+ S+S−. (4.28)

If q is in general position (not equal to a root of unity), then the representations of the
algebra Uq(sl2) are smooth deformations of the representations of U(sl2). The generators
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can be realized by difference operators in the space of functions of a complex variable z.
Introduce q-shift operators T±f(z) = f(q±1z), then

A = q−ℓT+, D = qℓT−,

B =
z

q−1 − q

(
q−2ℓT+ − q2ℓT−

)
,

C =
z−1

q−1 − q

(
T− − T+

)
.

(4.29)

As in the case of U(sl2), at 2ℓ + 1 ∈ Z+ this representation becomes reducible and it
splits off (2ℓ + 1)-dimensional irreducible representation of spin ℓ realized in the space
of polynomials of degree 2ℓ. At ℓ = 1

2
we have two-dimensional representation S = σz,

S± = σ±.

4.2.5 The trigonometric R-matrix and the quantized algebra of functions on
the group GL(2)

Instead of symmetric R-matrix (3.9) one can work with the asymmetric one

R̄(u) =


sinh(u+ η) 0 0 0

0 sinh u eu sinh η 0
0 e−u sinh η sinh u 0
0 0 0 sinh(u+ η)

 . (4.30)

Problem. Prove that this R-matrix satisfies the Yang-Baxter equation.

It turns out that there exists a solution to the intertwining relation

R̄12(u− v)T1(u)T2(v) = T2(v)T1(u)R̄12(u− v),

which does not depend on the spectral parameter. It has the form T (u) = ĝ, where ĝ is
the matrix with non-commutative matrix elements

ĝ =

(
â b̂

ĉ d̂

)
,

satisfying the algebra

âb̂ = qb̂â, âĉ = qĉâ, b̂d̂ = qd̂b̂, ĉd̂ = qd̂ĉ, [b̂, ĉ] = 0, [â, d̂] = (q − q−1)b̂ĉ. (4.31)

Here q = eη, and the intertwining relation acquires the form

R̄12(u− v)ĝ1ĝ2 = ĝ2ĝ1R̄12(u− v). (4.32)

This relation generalizes the property of the GL(2)-invariance (4.19) of the rational R-
matrix. The algebra with generators and relations (4.31) is known as GLq(2), the quan-
tized algebra of functions on the group GL(2).
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4.3 Algebraic Bethe ansatz for the 8-vertex model

The R-matrix (3.27) can be also represented in the form of the L-operator

L(u) =

 W0(u)σ0 +W3(u)σ3 W1(u)σ1 − iW2(u)σ2

W1(u)σ1 + iW2(u)σ2 W0(u)σ0 −W3(u)σ3

 =

 â(u) b̂(u)

ĉ(u) d̂(u)

 (4.33)

which is the 2 × 2 matrix whose matrix elements are operators in C2. Clearly, it is the
same R-matrix (3.27) written as a block matrix. Usually in the literature the L-operator
differs from the R-matrix by a shift of the spectral parameter u→ u−η/2 but we do not
make this shift here. The Yang-Baxter equation for R is the RLL = LLR relation for L

R12(u− v)L1(u)L2(v) = L2(v)L1(u)R12(u− v), (4.34)

where L1(u) = L(u)⊗ 1, L2(v) = 1⊗ L(v).

The quantum monodromy matrix of the inhomogeneous 8-vertex model is

T (u) = L1(u− ξ1)L2(u− ξ2) . . . LN(u− ξN) =

(
A(u) B(u)
C(u) D(u)

)
, (4.35)

where ξi are inhomogeneity parameters. Here Lj(u) is given by the formula (4.33), where
the sigma-matrices σ(j)

a act in the j-th copy of C2 associated with the j-th site of the
lattice. We consider the case of even N = 2n, otherwise solvability of the model is
problematic. Equations (3.29) imply the following properties of the quantum monodromy
matrix:

T (u+ 1) = σ3T (u)σ3 =

(
A(u) −B(u)

−C(u) D(u)

)

T (u+ τ) = e−πic(u)σ1T (u)σ1 = e−πic(u)

(
D(u) C(u)
B(u) A(u)

)
,

(4.36)

where

c(u) = N(2u+ η + τ)− 2
N∑
k=1

ξk. (4.37)

The quantum monodromy matrix satisfies the RTT = TTR relation (4.2) (or (4.1)).
This relation implies that the transfer matrices

T(u) = tr0
(
R01(u− ξ1)R02(u− ξ2) . . .R0N(u− ξN)

)
= tr

(
L1(u− ξ1)L2(u− ξ2) . . . LN(u− ξN)

)
= tr T (u) = A(u) +D(u)

(4.38)

commute for different values of the spectral parameter u. The transfer matrix is an

operator in the space H =
N⊗
i=1

Vi, Vi ∼= C2.
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4.3.1 Vacuum vectors

The L-operator of the 8-vertex model does not have a vacuum vector, i.e. a vector
annihilated by the operator ĉ(u), because the matrix ĉ(u) is non-degenerate for almost
all u. This fact makes it impossible to apply directly the algebraic Bethe ansatz method
used for the solution of the 6-vertex model. The starting point of the algebraic Bethe
ansatz for the 8-vertex model is the rule of the action of the R-matrix (3.27) to some
special vectors. Note that when one acts by the R-matrix to the tensor product of
two vectors, one in general obtains a linear combination of pure tensor products. The
situation when one gets just one pure tensor product term,

R(u)

(
x
1

)
⊗
(
x′

1

)
= ρ

(
y
1

)
⊗
(
y′

1

)
, (4.39)

is exceptional. This property was called by Baxter “passing of a pair of vectors through
the vertex” and it played a very important role in his solution of the 8-vertex model. As
we will see below, the vectors that satisfy this property are parametrized by points of an
elliptic curve. Indeed, applying (from the left) to the both sides of relation (4.39) the
covector (−1, y) in the first space, we conclude that the operator

(−1, y)

(
â(u) b̂(u)

ĉ(u) d̂(u)

)(
x
1

)
= −xâ− b̂+ xyĉ+ yd̂

has an eigenvector with zero eigenvalue (a vacuum vector). This means that the deter-
minant of this operator (a 2 × 2 matrix) vanishes:

det

(
yb− xa xyc− d
xyd− c ya− xb

)
= 0,

or
Γ(x2y2 + 1) + 2∆xy − x2 − y2 = 0, (4.40)

where Γ and ∆ are given by (3.22). We see that the components of the vectors x, y should
lie on the elliptic curve (4.40). For what follows it is extremely convenient to introduce
a uniformization parameter on this elliptic curve.

Let us introduce the family of vectors

|ϕ(s)〉 =
(
θ1(s|2τ)
θ4(s|2τ)

)
, (4.41)

where s is a complex parameter uniformizing the elliptic curve. The covector orthogonal
to |ϕ(s)〉 is

〈ϕ⊥(s)| =
(
−θ4(s|2τ), θ1(s|2τ)

)
= ie−πi(s+ τ

2
)〈ϕ(s+ τ + 1)|

and the scalar product 〈ϕ⊥(t)|ϕ(s)〉 is given by

〈ϕ⊥(t)|ϕ(s)〉 = θ1
(
1
2
(t− s)

∣∣∣τ) θ2 (1
2
(t+ s)

∣∣∣τ)

= 2
θ1(

1
2
(t− s)|2τ)θ4(12 (t− s)|2τ)θ2(12 (t+ s)|2τ)θ3(12 (t+ s)|2τ)

θ2(0|2τ)θ3(0|2τ)
.

(4.42)
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Using the identities for the theta-functions, one can prove the following important
identity:

R(u) |ϕ(s+η)〉 ⊗ |ϕ(s− u)〉 = θ1(u+ η|τ) |ϕ(s)〉 ⊗ |ϕ(s−u+η)〉 (4.43)

or, indicating explicitly the spaces where the vectors live:

R12(u) |ϕ(s+η)〉1 |ϕ(s− u)〉2 = θ1(u+ η|τ) |ϕ(s)〉1 |ϕ(s−u+η)〉2 . (4.44)

This is nothing else than relation (4.39) written in the uniformizing parameter of the
elliptic curve. Here the first space is associated with the horizontal leg of the R-matrix
and the second space is associated with the vertical leg.

There are other useful versions of identity (4.44). Changing u → −u, η → −η in
(4.44) and using (3.32), we write it in the form

R12(u) |ϕ(s−η)〉1 |ϕ(s+ u)〉2 = θ1(u+ η|τ) |ϕ(s)〉1 |ϕ(s+u−η)〉2 . (4.45)

Shifting s → s + τ + 1 and transposing in the both spaces, we also get the transposed
version of equation (4.44):

〈ϕ⊥(s+ η)|1〈ϕ
⊥(s− u)|2R12(u) = θ1(u+ η|τ) 〈ϕ⊥(s)|1〈ϕ

⊥(s− u+ η)|2. (4.46)

Shifting u → u − ξ and then s → s + u in (4.43) and taking the scalar product of
both sides with the covector 〈ϕ⊥(s+ u)|, we get:

〈ϕ⊥(s+ u)|1R12(u− ξ)|ϕ(s+u+η)〉1 |ϕ(s+ ξ)〉2 = 0, (4.47)

where ξ is an additional arbitrary parameter. Here the operator

〈ϕ⊥(s+ u)|1R12(u− ξ)|ϕ(s+u+η)〉1

acts in the vertical space (the space number 2). Taking the scalar product of (4.43) with
the covector 〈ϕ⊥(t)|, we obtain, after the shifts u→ u− ξ, s→ s+ u, t→ t− u:

〈ϕ⊥(t− u)|1R12(u− ξ)|ϕ(s+u+η)〉1
〈ϕ⊥(t− u)|ϕ(s+ u)〉

|ϕ(s+ ξ)〉2 = θ1(u−ξ+η|τ) |ϕ(s+ξ+η〉2 . (4.48)

Shifting the arguments in (4.44) and changing η → −η, using the property (3.32) and
transposing in the first space, we can obtain the following important corollary:

〈ϕ⊥(s)|1R12(u)|ϕ(s− u)〉2 = θ1(u|τ)〈ϕ⊥(s+ η)|1|ϕ(s− u− η)〉2 (4.49)

or, what is the same but with an additional parameter ξ,

〈ϕ⊥(s+ u)|1R12(u− ξ)|ϕ(s+ ξ)〉2 = θ1(u− ξ|τ)〈ϕ⊥(s+ u+ η)|1|ϕ(s+ ξ − η)〉2. (4.50)

Here 〈. . .|1 |. . .〉2 is not a scalar product but the tensor product of the vector and covector
(which live in difference spaces). Taking the scalar product with the vector |ϕ(t− u+ η)〉1
in the first space, we can write this identity in the following form:

〈ϕ⊥(s+ u)|1R12(u− ξ)|ϕ(t− u+ η)〉1
〈ϕ⊥(s+ u+ η)|ϕ(t− u+ η)〉

|ϕ(s+ ξ)〉2 = θ1(u− ξ|τ) |ϕ(s+ ξ − η)〉2 . (4.51)
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Let us now give a more general identity for the intertwining vectors which can be
proved basically in the same way as (4.44):

R12(u) |ϕ(s+ η)〉1 |ϕ(t− u)〉2

=
θ1(η|τ)θ2(12 (s+ t)− u|τ)

θ2(
1
2
(s+ t)|τ)

|ϕ(t)〉1 |ϕ(s+ u+ η)〉2

+
θ1(u|τ)θ2(12 (s+ t) + η|τ)

θ2(
1
2
(s+ t)|τ)

|ϕ(s)〉1 |ϕ(t− u− η)〉2.

(4.52)

It provides a rule of how the R-matrix acts to tensor products of two arbitrary vectors.
At t = s (4.52) coincides with (4.44) (this can be seen after using an identity for the
theta-functions). Substituting u→ −u, η → −η, we also obtain:

R12(u) |ϕ(s− η)〉1 |ϕ(t+ u)〉2

=
θ1(η|τ)θ2(12 (s+ t) + u|τ)

θ2(
1
2
(s+ t)|τ)

|ϕ(t)〉1 |ϕ(s− u− η)〉2

+
θ1(u|τ)θ2(12 (s+ t)− η|τ)

θ2(
1
2
(s+ t)|τ)

|ϕ(s)〉1 |ϕ(t+ u+ η)〉2.

(4.53)

The next step is to consider a gauge transformation of the L-operator

L′k(u, ξk) =M−1
k+l−1(u)Lk(u− ξk)Mk+l(u) =

 â′k(u) b̂′k(u)

ĉ′k(u) d̂′k(u)

 , (4.54)

where l ∈ Z is an integer parameter. The matrix Mk(u) is given by

Mk(u) =

(
θ1(sk + u|2τ) γkθ1(tk − u|2τ)
θ4(sk + u|2τ) γkθ4(tk − u|2τ)

)
, (4.55)

where sk = s+ kη, tk = t+ kη, s, t ∈ C are arbitrary parameters and

γk =
1

θ2(τk|2τ)θ3(τk|2τ)
, τk =

1

2
(sk + tk). (4.56)

Note that the columns of this matrix are the intertwining vectors. The inverse matrix is

M−1
k (u) =

1

detMk(u)

(
γkθ4(tk − u|2τ) −γkθ1(tk − u|2τ)
−θ4(sk + u|2τ) θ1(sk + u|2τ)

)
, (4.57)

where
detMk(u) = −γk〈ϕ⊥(tk − u)|ϕ(sk + u)〉

= γkθ1(
1
2
(s− t)+u|τ)θ2(τk|τ)

= 2
θ1(

1
2
(s− t)+u|2τ)θ4(12 (s− t)+u|2τ)

θ2(0|2τ)θ3(0|2τ)
≡ µ(u).

(4.58)
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It is important that detMk(u) = µ(u) does not depend on k.

The gauge-transformed L-operator (4.54) has a local u-independent vacuum vector

∣∣∣ωl
k

〉
=

(
θ1(sk+l−1 + ξk|2τ)
θ4(sk+l−1 + ξk|2τ)

)
= |ϕ(sk+l−1 + ξk)〉k ∈ Vk (4.59)

which is annihilated by the left lower element ĉ′k(u):

ĉ′k(u)
∣∣∣ωl

k

〉
= 0 (4.60)

(recall that ĉ′k(u) depends also on s and l). This directly follows from equation (4.47)
(one should put s = sk+l−1 in the latter). In their turn, equations (4.48) and (4.51)
(where one should put s = sk+l−1, t = tk+l−1) tell us how the operators a′k(u), d

′
k(u) act

to the vacuum vector:

â′k(u)
∣∣∣ωl

k

〉
= θ1(u−ξk+η|τ)

∣∣∣ωl+1
k

〉
,

d̂′k(u)
∣∣∣ωl

k

〉
= θ1(u− ξk|τ)

∣∣∣ωl−1
k

〉
.

(4.61)

Unlike the situation in the 6-vertex model, the vacuum vector is not an eigenvector for
these operators but transforms in a simple way.

The gauge-transformed quantum monodromy matrix is

T ′(u) = L′1(u− ξ1)L
′
2(u− ξ2) . . . L

′
N(u− ξN)

=M−1
l (u)T (u)MN+l(u) =

(
Al(u) Bl(u)
C l(u) Dl(u)

)
.

The global vacuum vectors are defined as∣∣∣Ωl
〉
=
∣∣∣ωl

1

〉
⊗
∣∣∣ωl

2

〉
⊗ . . .⊗

∣∣∣ωl
N

〉
.

According to (4.60), (4.61), the action of the operators Al(u), Dl(u) and C l(u) on the
global vacuum vector is given by

C l(u)
∣∣∣Ωl
〉
= 0,

Al(u)
∣∣∣Ωl
〉
=

N∏
i=1

θ1(u−ξi+η|τ)
∣∣∣Ωl+1

〉
,

Dl(u)
∣∣∣Ωl
〉
=

N∏
i=1

θ1(u−ξi|τ)
∣∣∣Ωl−1

〉
.

(4.62)

4.3.2 The permutation relations

Let us introduce the generalized monodromy matrices

Tk,l(u) =M−1
k (u)T (u)Ml(u) =

(
Ak,l(u) Bk,l(u)
Ck,l(u) Dk,l(u)

)
. (4.63)
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Note that in this new notation T ′(u) = Tl,l+N(u). We have:

Ak,l(u) =
〈ϕ⊥(tk − u)|T (u)|ϕ(sl + u)〉

〈ϕ⊥(tk − u)|ϕ(sk + u)〉
,

Bk,l(u) = γl
〈ϕ⊥(tk − u)|T (u)|ϕ(tl − u)〉

〈ϕ⊥(tk − u)|ϕ(sk + u)〉
,

Ck,l(u) = − 1

γk

〈ϕ⊥(sk + u)|T (u)|ϕ(sl + u)〉
〈ϕ⊥(tk − u)|ϕ(sk + u)〉

,

Dk,l(u) = − γl
γk

〈ϕ⊥(sk + u)|T (u)|ϕ(tl − u)〉
〈ϕ⊥(tk − u)|ϕ(sk + u)〉

.

(4.64)

It follows from equations (4.36) that the generalized monodromy matrix has the following
properties:

Tk,l(u+ 1) = Tk,l(u),

Tk,l(u+ τ) = e−πic(u)

(
eπisk 0
0 −e−πitk

)
Tk,l(u)

(
e−πisl 0
0 −eπitl

)

= e−πic(u)

 eπi(sk−sl)Ak,l(u) −eπi(sk+tl)Bk,l(u)

−e−πi(sl+tk)Ck,l(u) eπi(tl−tk)Dk,l(u)

 ,
(4.65)

where c(u) is defined in (4.37).

For the calculations below it is convenient to introduce the auxiliary notation for the
vectors

X l(u) = |ϕ(sl + u)〉 , Y l(u) = |ϕ(tl − u)〉 ,

X̃k(u) = 〈ϕ⊥(sk + u)|, Ỹ k(u) = 〈ϕ⊥(tk − u)|,

then
Ak,l(u) = − γk

µ(u)
Ỹ k(u)T (u)X l(u),

Bk,l(u) = − γkγl
µ(u)

Ỹ k(u)T (u)Y l(u),

Ck,l(u) =
1

µ(u)
X̃k(u)T (u)X l(u),

Dk,l(u) =
γl
µ(u)

X̃k(u)T (u)Y l(u).

In this notation, equations (4.44), (4.45), (4.52), (4.53) look as follows:

R12(u− v)X l+1
1 (u)X l

2(v) = θ1(u− v + η|τ)X l
1(u)X

l+1
2 (v), (4.66)

R12(u− v)Y l−1
1 (u)Y l

2 (v) = θ1(u− v + η|τ)Y l
1 (u)Y

l−1
2 (v), (4.67)
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R12(u− v)Y l+1
1 (u)X l

2(v) = f+
l (u− v)Y l

1 (u)X
l−1
2 (v) + gl(v − u)X l

1(u)Y
l+1
2 (v), (4.68)

R12(u− v)Xk
1 (u)Y

k−1
2 (v) = f−

k (u− v)Xk+1
1 (u)Y k

2 (v) + gk(u− v)Y k−1
1 (u)Xk

2 (v), (4.69)

R12(u− v)Y l
1 (u)X

l+1
2 (v) = f+

l (u− v)Y l−1
1 (u)X l

2(v) + gl(v − u)X l+1
1 (u)Y l

2 (v), (4.70)

R12(u− v)Xk−1
1 (u)Y k

2 (v) = f−
k (u− v)Xk

1 (u)Y
k+1
2 (v) + gk(u− v)Y k

1 (u)X
k−1
2 (v), (4.71)

where

f±
k (u) =

θ1(u|τ)θ2(τk±1|τ)
θ2(τk|τ)

, gk(u) =
θ1(η|τ)θ2(τk + u|τ)

θ2(τk|τ)
.

Similar relations hold for the covectors X̃ l(u), Ỹ l(u); they are obtained by transposition
in both spaces.

Multiplying both sides of the RTT = TTR relation (4.2) by the vectors Y l−1
1 (u)Y l

2 (v)
from the right and Ỹ k−1

1 (u)Ỹ k
2 (v) from the left and using (4.67), one obtains the permu-

tation relation
Bk+1,l(u)Bk,l+1(v) = Bk+1,l(v)Bk,l+1(u). (4.72)

The commutation relations between A- and B-operators are obtained by multiplying
both sides of (4.2) by the vectors Y l+1

1 (u)X l
2(v) from the right and Ỹ k−1

1 (u)Ỹ k
2 (v) from

the left and using the transposed version of (4.67) and (4.68):

θ1(u− v + η|τ)Bk,l+1(u)Ak−1,l(v)

= θ1(u− v|τ)Ak,l−1(v)Bk−1,l(u) + gl(v − u)Bk,l+1(v)Ak−1,l(u).
(4.73)

Multiplying (4.2) by the vectors Y l
1 (u)Y

l+1
2 (v) from the right and X̃k

1 (u)Ỹ
k−1
2 (v) from the

left and using the transposed version of (4.69), one obtains

θ1(u− v + η|τ)Bk−1,l(v)Dk,l+1(u)

= θ1(u− v|τ)Dk+1,l(u)Bk,l+1(v) + gk(u− v)Bk−1,l(u)Dk,l+1(v).
(4.74)

These are the operator permutation relations which we need in what follows in the gen-
eralized algebraic Bethe ansatz procedure. The other commutation relations can be
obtained in a similar way.

4.3.3 The generalized algebraic Bethe ansatz

Let us consider the vector

|Ψl(u1, . . . , un)〉 = Bl−1,l+1(u1)Bl−2,l+2(u2) . . . Bl−n,l+n(un)|Ωl−n〉. (4.75)

We recall that n is fixed and is equal to N/2. The commutation relation (4.72) implies
that this vector is a symmetric function of the parameters u1, . . . , un. We are going to act
to this vector by the transfer matrix T(u) = Al,l(u) +Dl,l(u). To this end, let us rewrite
equations (4.73), (4.74) in a more convenient form suitable for moving the operators A
and D to the right through B:

Ak,l(u)Bk−1,l+1(v) = α(u− v)Bk,l+2(v)Ak−1,l+1(u) + βl+1(u− v)Bk,l+2(u)Ak−1,l+1(v),
(4.76)
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Dk,l(u)Bk−1,l+1(v) = α(v − u)Bk−2,l(v)Dk−1,l+1(u)− βk−1(u− v)Bk−2,l(u)Dk−1,l+1(v),
(4.77)

where

α(u) =
θ1(u− η|τ)
θ1(u|τ)

, βk(u) =
θ1(η|τ) θ2(τk + u|τ)
θ1(u|τ) θ2(τk|τ)

. (4.78)

The action of the operators Al,l(u), Dl,l(u) to the vector (4.75) can be found, with the
help of the standard algebraic Bethe ansatz argument, using the permutation relations
(4.76), (4.77) and the property (4.62). The result is:

Al,l(u)|Ψl(u1, . . . , un)〉 = TA(u)|Ψl+1(u1, . . . , un)〉

+
n∑

j=1

Λl
A,j(u)|Ψl+1(u1, . . . , uj−1, u, uj+1, . . . , un)〉,

Dl,l(u)|Ψl(u1, . . . , un)〉 = TD(u)|Ψl−1(u1, . . . , un)〉

+
n∑

j=1

Λl
D,j(u)|Ψl−1(u1, . . . , uj−1, u, uj+1, . . . , un)〉,

where

TA(u) =
N∏
i=1

θ1(u− ξi + η|τ)
n∏

k=1

θ1(u− uk − η|τ)
θ1(u− uk|τ)

,

TD(u) =
N∏
i=1

θ1(u− ξi|τ)
n∏

k=1

θ1(u− uk + η|τ)
θ1(u− uk|τ)

,

Λl
A,j(u) =

θ1(η|τ)
θ′1(0|τ)

Φ
(
u−uj, τl+1+

1

2

) N∏
i=1

θ1(uj − ξi + η|τ)
n∏

k=1, ̸=j

θ1(uj − uk − η|τ)
θ1(uj − uk|τ)

,

Λl
D,j(u) = −θ1(η|τ)

θ′1(0|τ)
Φ
(
u−uj, τl−1+

1

2

) N∏
i=1

θ1(uj − ξi|τ)
n∏

k=1, ̸=j

θ1(uj − uk + η|τ)
θ1(uj − uk|τ)

.

In the last two formulas we have introduced the function

Φ(u, v) =
θ′1(0|τ) θ1(u+ v|τ)
θ1(u|τ) θ1(v|τ)

. (4.79)

It has a simple pole at u = 0 with residue 1.

Consider now the Fourier transform of the vector |Ψl〉:

|Ψν(u1, . . . , un)〉 =
∑
l∈Z

e−ilπην |Ψl(u1, . . . , un)〉. (4.80)

The action of the transfer matrix T(u) = Al,l(u) +Dl,l(u) on this vector is given by

T(u)|Ψν(u1, . . . , un)〉 = T (u)|Ψν(u1, . . . , un)〉

+
∑
l∈Z

n∑
j=1

e−ilπην
(
eiπηνΛl−1

A,j (u) + e−iπηνΛl+1
D,j(u)

)
|Ψl(u1, . . . , uj−1, u, uj+1, . . . , un)〉,

(4.81)
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where

T (u) = eiπην
N∏
i=1

θ1(u− ξi + η|τ)
n∏

k=1

θ1(u− uk − η|τ)
θ1(u− uk|τ)

+ e−iπην
N∏
i=1

θ1(u− ξi|τ)
n∏

k=1

θ1(u− uk + η|τ)
θ1(u− uk|τ)

.

Note that one can rewrite (4.81) in the form

T(u) |Ψν(u1, . . . , un)〉 = T (u) |Ψν(u1, . . . , un)〉

−
∑
l∈Z

n∑
j=1

e−ilπηνΦ
(
u− uj, τl +

1

2

)(
res
u=uj

T (u)
) ∣∣∣Ψl(u1, . . . , uj−1, u, uj+1, . . . , un)

〉
.

(4.82)

In this form, it is clear that the r.h.s. is regular at u = uj as it should be.

The eigenvalue of the transfer matrix should be a regular function of u. The conditions
res
u=uj

T (u) = 0 are simultaneously the conditions of cancellation of the “unwanted terms”

in (4.82). These conditions have the form of the Bethe equations

e2iπην
N∏
i=1

θ1(uj − ξi + η|τ)
θ1(uj − ξi|τ)

=
n∏

k=1, ̸=j

θ1(uj − uk + η|τ)
θ1(uj − uk − η|τ)

. (4.83)

If these equations are satisfied, then the vector |Ψ(u1, . . . , un)〉 is an eigenvector of the
transfer matrix provided that ν is such that the series (4.80) converges and is non-zero.
Presumably, this holds for some particular values of ν and ν = 0 is among them.

An important remark about the meaning of the Fourier transformation used in the
construction of Bethe vectors is in order. The case when it can be given a precise meaning
is the case of rational η = 2P/Q with coprime integers P,Q. In this case the vectors |Ψl〉
are Q-periodic in l and the infinite sum in the Fourier transformation can be substituted
by a finite sum from 0 to Q− 1.

4.4 The Sklyanin algebra

Recall that the elliptic R-matrix has the form (3.25)

R(u) =
3∑

a=0

Wa(u)σa ⊗ σa , Wa(u) =
θ5−a(u+

η
2
|τ)

θ5−a(
η
2
|τ)

, (4.84)

where the index is understood modulo 4 and we omit the inessential common multiplier
θ1(η|τ). Let us find the elliptic L-operator intertwined by this R-matrix in the form

L(u) =
3∑

a=0

Wa(u) σa ⊗ Sa =

 W0(u)S0 +W3(u)S3 W1(u)S1 − iW2(u)S2

W1(u)S1 + iW2(u)S2 W0(u)S0 −W3(u)S3

 , (4.85)
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where S0, S1, S2, S3 are some yet unknown operators. The substitution into the RLL =
LLR relation leads to the following six quadratic relations for them:

[S0, S3] = iJ12[S1, S2]+, [S1, S2] = i[S0, S3]+,

[S0, S1] = iJ23[S2, S3]+, [S2, S3] = i[S0, S1]+,

[S0, S2] = iJ31[S3, S1]+, [S3, S1] = i[S0, S2]+,

(4.86)

or, in a compact form,

[S0, Sα]− = iJβγ [Sβ, Sγ]+, [Sα, Sβ]− = i[S0, Sγ]+. (4.87)

Here and below [ , ]+ is the anticommutator and {α, β, γ} stands for any cyclic permu-
tation of indices {1, 2, 3}. The structure constants Jαβ have the form

Jαβ = (−1)α−β

(
θ1(

η
2
|τ) θ5−γ(

η
2
|τ)

θ5−α(
η
2
|τ)θ5−β(

η
2
|τ)

)2

(4.88)

or

Jαβ =
Jβ − Jα
Jγ

, Jα =
θ5−α(0|τ)θ5−α(η|τ)

θ25−α(
η
2
|τ)

. (4.89)

Note that the structure constants satisfy the relation

J12 + J23 + J31 + J12J23J31 = 0. (4.90)

The commutation relations (4.87) can be also written as

2iS0Sα = (1− Jβγ)SβSγ − (1 + Jβγ)SγSβ,

2iSαS0 = (1 + Jβγ)SβSγ − (1− Jβγ)SγSβ.
(4.91)

The algebra with these generators and relations is called the Sklyanin algebra (introduced
by E.Sklyanin in 1982).

Problem. Substitute the L-operator (4.85) into the RLL = LLR relation and obtain
the commutation relations (4.86). (Warning: this is a hard calculation using numerous
identities for the theta-functions.)

The Sklyanin algebra has two central elements (Casimir elements)

Ω1 = S2
0 + S2

1 + S2
2 + S2

3, Ω2 = J1S
2
1 + J2S

2
2 + J3S

2
3. (4.92)

Problem. Using the commutation relations of the Sklyanin algebra, prove that
[Ω1, Sa] = [Ω2, Sa] = 0 for all a = 0, . . . , 3. (Hint: by transforming SαS0Sα and S0SαS0 in
two ways obtain linear relations between cubic monomials in the generators.)

When τ → +i∞, the Sklyanin algebra degenerates into Uq(gl2), the q-deformation of
U(gl2) with the commutation relations (4.27) and q = eπiη. In this limit

J12 = 0, J23 = −J31 = −
sin2 πη

2

cos2 πη
2

.
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Redefining the generators as

A = cos πη
2
S0 + i sin πη

2
S3,

D = cos πη
2
S0 − i sin πη

2
S3,

B = S1 + iS2,

C = S1 − iS2,

one can see that A,B,C,D satisfy the algebra (4.27).

If η 6= r1+r2τ with rational r1, r2, representations of the Sklyanin algebra are smooth
deformations of representations of the algebra U(gl2).

5 Scalar products of Bethe vectors

Although most of the results discussed in this section remain true (with necessary mo-
difications) also in more general cases, we for simplicity will restrict ourselves by models
based on the standard rational GL(2)-invariant R-matrix

R(u) =


u+η 0 0 0
0 u η 0
0 η u 0
0 0 0 u+η

 = uI+ ηP.

The quantum monodromy matrix of the inhomigeneous model is of the form

T (u) = R01(u− ξ1)R02(u− ξ2) . . .R0N(u− ξN) =

 A(u) B(u)

C(u) D(u)

 ,
where ξi are inhomogeneoties. The transfer matrix is T(u) = tr0 T (u) = A(u) + D(u).
The operators A(u) and D(u) act to the vacuum vector |Ω〉 = (|+〉)⊗N in the following
way:

A(u) |Ω〉 = ϕ(u+ η) |Ω〉 , D(u) |Ω〉 = ϕ(u) |Ω〉 .

Here ϕ(u) is the polynomial

ϕ(u) =
N∏
j=1

(u− ξj). (5.1)

5.1 Scalar products: historical remarks

Following the algebraic approach, we consider Bethe vectors

|u1, u2, . . . , um〉 = B(u1)B(u2) . . . B(um) |Ω〉 ∈ H ∼= (C2)N , (5.2)

where uj are arbitrary parameters. For brevity, in what follows we will sometimes write
|u1, . . . , um〉 = |{ui}m〉. According to the terminology adapted in the literature, such a
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vector |u1, u2, . . . , um〉 is called off-shell Bethe vector. If the parameters uj are constrained
by Bethe equations (and thus the vector |u1, u2, . . . , um〉 is an eigenvector of the transfer
matrix), it is called on-shell Bethe vector.

It is easy to see that (B(u))† = C(u). Therefore, recalling the definition of the scalar
product of vectors from the space H, we can represent the scalar product of vectors of
the type (5.2) in the form

〈vm, . . . , v1|u1, . . . , um〉 = 〈Ω|C(vm) . . . C(v1)B(u1) . . . B(um) |Ω〉 . (5.3)

Clearly, the number of operators B in the scalar product (5.3) should be the same as the
number of operators C, otherwise the scalar product vanishes.

Problem. Find the scalar products (5.3) at m = 1 and m = 2.

The scalar products of Bethe vectors are necessary for calculation of such important
physical quantities as form-factors and correlation functions and so the calculation of
scalar products is an important problem of the theory. Attempts to calculate the scalar
products directly with the help of the RTT = TTR relations show that this is a difficult
combinatorial problem.

The history of the problem is as follows. The first result is Gaudin’s hypothesis
(1972) about the norms of eigenvectors of the Hamiltonian of the bose-gas with point-
like interaction. This hypothesis (proved in 1982 by Korepin in the framework of the
quantum inverse scattering method for a sufficiently wide class of models) states that the
squared norm of eigenvectors of the transfer matrix (on-shell Bethe vectors) is given by
determinant of an m×m matrix whose explicit form is restored from the form of Bethe
equations. Later, in 1989 Slavnov proved a determinant formula for scalar product of
two Bethe vectors one of which is on-shell and another one is an arbitrary vector of the
form (5.2). The original method to obtain this result is a complicated combinatorial
analysis of the structure of scalar products and application of recurrence relations for
them. In 1998, Kitanine, Maillet and Terras obtained this result by a different method
(which was also sufficiently involved) and showed that the matrix elements of the matrix
participating in the determinant representation of scalar products are expressed through
derivatives of eigenvalues of the transfer matrix. Finally, quite recently, in 2019, Belliard
and Slavnov suggested a very simple method to find the scalar products, which avoids
any combinatorial difficulties. This method explains why the scalar products of on-shell
and off-shell Bethe vectors have determinant representations. It is so simple that it is
hard to believe that nobody discovered it during 35 years. Below we closely follow the
original paper by Belliard and Slavnov [12].

5.2 Action of the transfer matrix to Bethe vectors

In what follows we assume that the vector |v1, . . . , vm〉 in the scalar product (5.3) is
on-shell, i.e., {vj} satisfy the Bethe equations

N∏
k=1

vj − ξk + η

vj − ξk
=

m∏
l=1, ̸=j

vj − vl + η

vj − vl − η
, (5.4)
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while the set {ui} is arbitrary with the only condition that all numbers ui are distinct.
The eigenvalue T (u) of the transfer matrix on the vector |v1, . . . , vm〉,

T(u) |v1, . . . , vm〉 = T (u; v1, . . . , vm) |v1, . . . , vm〉 ,

is given by the formula

T (u) = T (u; v1, . . . , vm) =
N∏
k=1

(u−ξk+η)
m∏
l=1

u− vl − η

u− vl
+

N∏
k=1

(u−ξk)
m∏
l=1

u− vl + η

u− vl
. (5.5)

As we know, residues of this expression as a function of u at the points vj vanish (these
conditions are equivalent to Bethe equations). We can extend the definition of the func-
tion T (u) = T (u; u1, . . . , um) with the help of this formula to an arbitrary set of numbers
{uj}; then T (u; u1, . . . , um) in general is not an eiganvalue of the transfer matrix and
residues at the points uj are nonzero. Clearly, it is possible to represent the formula for
the function T (u; u1, . . . , um) in the form

T (u; u1, . . . , um) = T (u; {ui}m) =
P (u; u1, . . . , um)

m∏
j=1

(u− uj)
, (5.6)

where P (u; u1, . . . , um) is a polynomial of u and a symmetric polynomial of uj’s of the
form

P (u; u1, . . . , um) = ϕ(u+ η)
m∏
l=1

(u− ul − η) + ϕ(u)
m∏
l=1

(u− ul + η) (5.7)

(the polynomial ϕ(u) is defined in (5.1)). Note that the polynomial P can be expanded

in the basis of elementary symmetric polynomials e
(m)
k (u1, . . . , um):

P (u; u1, . . . , um) =
m∑
k=0

Ak(u)e
(m)
k (u1, . . . , um). (5.8)

The elementary symmetric polynomials are e
(m)
0 = 1, e

(m)
1 =

m∑
j=1

uj, e
(m)
2 =

m∑
i<j

uiuj, . . .,

e(m)
m =

m∏
j=1

uj, e
(m)
k = 0 at k > m. The general formula is

e
(m)
k (u1, . . . , um) =

1

(m− k)!

dm−k

dtm−k

m∏
i=1

(t+ ui)

∣∣∣∣∣
t=0

. (5.9)

The functions Ak(u) in (5.8) can be regarded as functional parameters defining a concrete
model (they replace the numerical parameters ξj).

Recalling the arguments of the algebraic Bethe ansatz method, we can write:

T(u)
∣∣∣{ui}m〉 = T (u; {ui}m)

∣∣∣{ui}m〉+ m∑
j=1

Λj(u, {ui}m)
∣∣∣{ui}m \ uj, u

〉
, (5.10)
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where
∣∣∣{ui}m \ uj, u

〉
means that in this vector the parameter uj is replaced by u. As it

follows from the algebraic Bethe ansats, the coefficient Λj has the form

Λj(u, {ui}m) = − 1

u− uj
res
u=uj

T (u; u1, . . . , um)

=
η

u− uj

ϕ(uj + η)
∏

k=1, ̸=j

uj − uk − η

uj − uk
− ϕ(uj)

∏
k=1, ̸=j

uj − uk + η

uj − uk

.
(5.11)

Note that equation (5.10) with the first equality in (5.11) means that the vector-function
T(u)|u1, . . . , um〉 does not have poles at u = ui, as it must be because the transfer matrix
is a polynomial in u.

5.3 Derivation of a system of linear equations for scalar prod-
ucts

The main idea of the method developed by Belliard and Slavnov is to show that the
scalar products of Bethe vectors satisfy a system of linear equations. After the necessary
preparations made above, we can proceed to the derivation of it. Let u1, u2, . . . , um+1 =
{ui}m+1 be a set of m + 1 arbitrary parameters. Consider the matrix element of the
transfer matrix

Sj =
〈
{vi}m

∣∣∣T(uj)∣∣∣{ui}m+1 \ uj
〉
, j = 1, . . . ,m+ 1 (5.12)

between the eigenvector
〈
{vi}m

∣∣∣ (an on-shell Bethe vector) and an arbitrary off-shell

Bethe vector
∣∣∣{ui}m+1 \ uj

〉
, which belongs, as

∣∣∣{vi}m〉, to the sector with m reversed
spins, and which has the set of parameters with excluded uj. We can calculate Sj in

two different ways: either acting by the transfer matrix to the left (
〈
{vi}m

∣∣∣T(uj) =

T (uj; {vi}m)
〈
{vi}m

∣∣∣), or acting to the right with the help of equation (5.10), which we
write here in short as

T(uj)
∣∣∣{ui}m+1 \ uj

〉
=

m+1∑
k=1

Λjk

∣∣∣{ui}m+1 \ uk
〉
.

Here Λjj = T (uj; {ui}m+1 \ uj) and Λjk = Λk(uj; {ui}m+1 \ uj) at j 6= k. Comparing
equations (5.6) and (5.11), we find:

Λjk =
P (uk; {ui}m+1 \ uj)

m+1∏
l=1, ̸=k

(uk − ul)
= res

u=uk

T (u; {ui}m+1 \ uj)
u− uj

for all j, k. (5.13)

Consider the scalar products

Xj =
〈
{vi}m

∣∣∣{ui}m+1 \ uj
〉
, j = 1, . . . ,m+ 1. (5.14)

Calculating the matrix elements (5.12) in the two ways, as above, we get the equalities

n+1∑
k=1

ΛjkXk = T (uj; {vi}m)Xj,
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which constitute a system of homogeneous linear equations for m+ 1 variables Xj:

m+1∑
k=1

MjkXk = 0, j = 1, . . .m+ 1, (5.15)

where the matrix M of size (m+ 1)× (m+ 1) has the form

Mjk = Λjk − T (uj; {vi}m)δjk

=
P (uk; {ui}m+1 \ uj)

m+1∏
l=1, ̸=k

(uk − ul)
− δjk

P (uk; {vi}m)
m∏
l=1

(uk − vl)
.

(5.16)

This is the system of linear equations for the scalar products.

5.4 Solvability of the system of linear equations for scalar pro-
ducts

The system (5.15) has nontrivial solutions if rank of the matrix M is strictly less than
m + 1, i.e., detM = 0. In this case the solutions are given by minors of the matrix M ,
hence the origin of the determinant representations for scalar products becomes clear.

In order to show that detM = 0 we take advantage of the fact that the matrix M
can be multiplied from the left by any non-degenerate matrix V : M → M̃ = VM ; and
the solution remains the same. Let us extend the set {vi}m = {v1, . . . , vm} to the set of
m+1 elements {vi}m+1 = {v1, . . . , vm, v}, where vm+1 = v is a free parameter and choose
the matrix V in the form

Vij =
uj − vj
uj − vi

m+1∏
l=1, ̸=j

uj − vl
uj − ul

, i, j = 1, . . . ,m+ 1. (5.17)

It is the Cauchy matrix Cij = 1/(vi−uj) multiplied from the right by a diagonal matrix.
Using the well known expression for determinant of the Cauchy matrix, we find:

detV =
∏
i<j

vi − vj
ui − uj

=
∆({v})
∆({u})

,

where ∆ is the Vandermonde determinant, so the matrix V is non-degenerate.

For the matrix M̃ = VM we get, using (5.16):

M̃ik =
( m+1∏
l=1, ̸=k

(uk − ul)
)−1

m+1∑
j=1

uj − vj
uj − vi

m+1∏
s=1, ̸=j

uj − vs
uj − us

P (uk; {un}m+1 \ uj)

− uk − v

uk − vi
P (uk; {vn}m)

 .
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Let us use the expansion of the polynomial P in the basis of the elementary symmetric
functions (5.8) and the representation (5.9) for them. We have the identity

m+1∑
j=1

m+1∏
s=1, ̸=i

(uj − vs)

m+1∏
r=1, ̸=j

(uj − ur)
P (uk; {un}m+1 \ uj) = P (uk; {vn}m+1 \ vi).

Indeed, since

0 =
1

2πi

∮
|u|=R→∞

m+1∏
s=1, ̸=i

(u− vs)

m+1∏
r=1

(u− ur)

du

t+ u
=

m+1∑
j=1

m+1∏
s=1, ̸=i

(uj − vs)

m+1∏
r=1, ̸=j

(uj − ur)

1

t+ uj
−

m+1∏
s=1, ̸=i

(t+ vs)

m+1∏
r=1

(t+ ur)

(the vanishing integral in the left hand side is represented as sum of residues), we have:

m+1∑
j=1

m+1∏
s=1, ̸=i

(uj − vs)

m+1∏
r=1, ̸=j

(uj − ur)

m+1∏
l=1, ̸=j

(t+ ul) =
m+1∏

s=1, ̸=i

(t+ vs),

and, therefore,

m+1∑
j=1

m+1∏
s=1, ̸=i

(uj − vs)

m+1∏
r=1, ̸=j

(uj − ur)
e
(m)
k ({un}m+1 \ uj) = e

(m)
k ({vn}m+1 \ vi), k = 0, 1, . . . ,m.

For the matrix M̃ we thus obtain the expression

M̃ik =
( m+1∏
l=1, ̸=k

(uk − ul)
)−1

(
P (uk; {vn}m+1 \ vi)−

uk − v

uk − vi
P (uk; {vn}m)

)

=

m+1∏
s=1, ̸=i

(uk − vs)

m+1∏
l=1, ̸=k

(uk − ul)

(
T (uk; {vn}m+1 \ vi)− T (uk; {vn}m)

) (5.18)

from which it is seen that the last ((m + 1)-th) row of the matrix M̃ consists of zeros.
Therefore, detM = det M̃ = 0 and the system (5.15) has nontrivial solutions.

Let us note that in [12] a more general transformation of the matrixM was considered:
M → M̃ = WM , where

Wij =
uj − wj

uj − wi

m+1∏
l=1, ̸=j

uj − wl

uj − ul
, i, j = 1, . . . ,m+ 1. (5.19)

Here {wi}m+1 is an arbitrary set of parameters; the matrix V is a particular case of W
at wi = vi, i = 1 . . . ,m, wm+1 = v. Performing the same calculations as above, we get

M̃ik =

m+1∏
s=1, ̸=i

(uk − ws)

m+1∏
l=1, ̸=k

(uk − ul)

(
T (uk; {wn}m+1 \ wi)− T (uk; {vn}m)

)
. (5.20)
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The expression (5.18) can be transformed further. First we note, performing a simple
direct calculation with the help of equation (5.5), that

T (u; {vn}m+1 \ vi)− T (u; {vn}m)

=
η(v − vi)

(v − u)(vi − u)

−ϕ(u+ η)
m∏

l=1, ̸=i

u− vl − η

u− vl
+ ϕ(u)

m∏
l=1, ̸=i

u− vl + η

u− vl


= (v − vi)

u− vi
u− v

∂T (u; {vn}m)
∂vi

.

Therefore,

M̃ik = (v − vi)

m∏
s=1

(uk − vs)

m+1∏
l=1, ̸=k

(uk − ul)
Tik, (5.21)

where the matrix Tik = ∂T (uk)/∂vi has the form

Tik =
η

uk − vi

(
− ϕ(uk + η)

uk − vi − η

m∏
l=1

uk − vl − η

uk − vl
+

ϕ(uk)

uk − vi + η

m∏
l=1

uk − vl + η

uk − vl

)
. (5.22)

Let us assume that rank of the matrix M̃ equalsm (this is the case of general position)
and consider the system of m equations equivalent to (5.15):

m+1∑
k=1

∂T (uk)

∂vi
X̃k = 0, i = 1, . . . ,m,

where

X̃k = Xk

m∏
s=1

(uk − vs)

m+1∏
l=1, ̸=k

(uk − ul)
.

Using the Cramer’s rule, one can construct its solution via minors of the matrix Tik as
follows:

Xk = (−1)kc

m+1∏
l=1, ̸=k

(uk − ul)

m∏
s=1

(uk − vs)
det
j ̸=k

(
∂T (uj)

∂vi

)
m×m

,

where the multiplier c does not depend on k. It is easy to verify that we have

Xk

det
j ̸=k

(
1

uj−vi

)
m×m

det
j ̸=k

(
∂T (uj)

∂vi

)
m×m

= Xn

det
j ̸=n

(
1

uj−vi

)
m×m

det
j ̸=n

(
∂T (uj)

∂vi

)
m×m

for all k, n = 1, . . . ,m + 1. The left hand side does not depend on uk (but possibly
depends on all other variables uj) while the right hand side does not depend on un. From
this it follows that the left hand side does not in fact depend on all uj’s, and we can write

Xk = Φ({vi}m)
det
j ̸=k

(∂T (uj)/∂vi)

det
j ̸=k

(
1

uj−vi

) , (5.23)
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where Φ is some yet undetermined symmetric function of {vi}. It can be found if one
calculates the scalar product for some special values of uj and compares with equation

(5.23) (see below in the next section). This calculation yields Φ =
m∏
l=1

ϕ(vl). Therefore,

for the scalar products we obtain:

〈Ω|C(vm) . . . C(v1)B(u1) . . . B(um) |Ω〉 =
det

1≤i,j≤m
Tij

det
1≤i,j≤m

(
1

ui−vj

) m∏
l=1

ϕ(vl)

=

m∏
r,s=1

(ur − vs)∏
k<k′

(uk − uk′)(vk′ − vk)

m∏
l=1

N∏
a=1

(vl − ξa) det
1≤i,j≤m

(
∂T (uj)

∂vi

)
.

(5.24)

Let us recall that this representation is valid only under the condition that the parameters
vi satisfy the Bethe equations (5.4).

5.5 Scalar products and partition function of the 6-vertex mo-
del with domain wall boundary conditions

In this section we present, without derivation, some important results related to the
theory of scalar products.

A combinatorial analysis which uses the commutation relations for the operators
A,B,C,D allows one to obtain the following formula for scalar products of Bethe vectors
of general form:

〈Ω|
m∏

α=1

C(vα)
m∏

β=1

B(uβ) |Ω〉

=
m∑
k=0

∑
{v}m = {vI}m−k ∪ {vII}k
{u}m = {uI}m−k ∪ {uII}k

∏
i∈{vII}

ϕ(vi)
∏

i∈{uI}
ϕ(ui)

∏
i∈{uII}

ϕ(ui + η)
∏

i∈{vI}
ϕ(ui + η)

×Kk

(
{vII}k

∣∣∣{uII}k)Km−k

(
{uI}m−k

∣∣∣{vI}m−k

) ∏
i ∈ {vII}k
j ∈ {vI}m−k

f(vi, vj)
∏

a ∈ {uI}m−k

b ∈ {uII}k

f(ua, ub)

(5.25)

(we again assume that the numbers vα, uβ are all distinct). Here the sum goes over all
partitions of the sets {v}m and {u}m to non-intersecting subsets {v}m = {vI}m−k∪{vII}k
and {u}m = {uI}m−k ∪ {uII}k with the number of elements k and m − k, where k runs
from 0 to m,

f(u, v) =
u− v + η

u− v
,

and Km

(
{v}m

∣∣∣{u}m) is the partition function of the rational 6-vertex model on the inho-
mogeneous m×m square lattice with domain wall boundary conditions. More precisely,
in this model the Boltzmann weight in the vertex (i, j) (the intersection of ith vertical

86



line and jth horizontal line counting from the left bottom angle) is given by the R-matrix

R̃(vj − ui) =
R(vj − ui)

vj − ui
.

The boundary conditions are such that the arrows in the bottom row look up, in the upper
row look down, in the leftmost column look to the left and in the rightmost column look
to the right. For such partition function the following determinant representation (found
by Izergin in 1987) is known:

Km

(
{v}m

∣∣∣{u}m) =
m∏

k,l=1
(vk − ul + η)∏

k<l
(vl − vk)(uk − ul)

det
m×m

(
η

(vi − uj)(vi − uj + η)

)
. (5.26)

At present, equation (5.25) together with (5.26) provides the most complete description
of scalar products of general Bethe vectors.

Now, let us put ui = ξi for i = 1, . . . ,m, then ϕ(ui) = ϕ(ξi) = 0. In the sum (5.25)
only one nonzero term remains which corresponds to empty sets {uI} and {vI} (k = m),
and the formula becomes

〈Ω|
m∏

α=1

C(vα)
m∏

β=1

B(ξβ) |Ω〉 =
m∏
i=1

ϕ(vi)
m∏
j=1

ϕ(ξj + η)Km

(
{v}m

∣∣∣{ξ}m). (5.27)

Comparing with (5.23) in the case ϕ(ui) = ϕ(ξi) = 0, we get Φ =
m∏
l=1

ϕ(vl), so that (5.24)

in this case coincides with (5.27).

5.6 Orthogonality of on-shell Bethe vectors and their norm

At last, let us discuss an important particular case when both vectors in the scalar
product are on-shell. If they are different, the standard simple argument shows that they
must be orthogonal. Indeed, consider the matrix element

〈Ω|
m∏

α=1

C(vα)T(u)
m∏

β=1

B(uβ) |Ω〉.

Acting by the transfer matrix to the left and to the right, we get:

(
T (u; u1, . . . , um)− T (u; v1, . . . , vm)

)
〈Ω|

m∏
α=1

C(vα)
m∏

β=1

B(uβ) |Ω〉 = 0,

and if T (u; u1, . . . , um) 6= T (u; v1, . . . , vm), the scalar product is equal to zero. Let us
show how this follows from formula (5.24).

We should show that if the parameters {ui}m satisfy the Bethe equations

ϕ(uj + η)

ϕ(uj)
=

m∏
l=1, ̸=j

uj − ul + η

uj − ul − η
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and do not coincide with {vi}m (for simplicity, we assume that no one of ui coincides
with no one of vi), the matrix Tij in (5.24) becomes degenerate: det Tij = 0. Substituting
the Bethe equations for ui in it, we have:

Tik = ηϕ(uk)
m∏
s=1

uk − vs + η

uk − vs
T̃ik,

where

T̃ik =
1

(uk − vi)(uk − vi + η)
+

yk
(uk − vi)(uk − vi − η)

(5.28)

with

yk =
m∏
l=1

(uk − ul + η)(uk − vl − η)

(uk − ul − η)(uk − vl + η)
.

Obviously, we should show that det T̃ik = 0. We will show that, indeed, the matrix T̃ik
has a row-eigenvector with zero eigenvalue, i.e., its rows are linearly dependent. Set

xj =

m∏
l=1

(vj − ul)

m∏
s=1, ̸=j

(vj − vs)
;

we claim that
m∑
j=1

xjT̃jk = 0 (see [11], page 111). We have:

m∑
j=1

xjT̃jk = U+
k + ykU

−
k , U±

k =
m∑
j=1

xj
(uk − vj)(uk − vj ± η)

. (5.29)

Consider the vanishing contour integral

0 =
1

2πi

∮
|z|=R→∞

η dz

(uk − z)(uk − z ± η)

m∏
s=1

z − us
z − vs

.

Using the residue calculus, we arrive at the identity

±
m∏
s=1

uk − us ± η

uk − vs ± η
+

m∑
j=1

η

(uk − vj)(uk − vj ± η)

m∏
l=1

(vj − ul)

m∏
s=1, ̸=j

(vj − vs)
= 0

or

ηU±
k = ∓

m∏
s=1

uk − us ± η

uk − vs ± η
.

Plugging this into (5.29), we see that our linear combination is indeed equal to zero.

In order to find the squared norm of the Bethe vector

N 2(v1, . . . , vm) = 〈Ω|
m∏
l=1

C(vl)
m∏
s=1

B(vs) |Ω〉 ,

one should put uk = vk + ϵk in (5.24) and tend ϵk → 0 (recalling that {vi}m satisfy
the Bethe equations). In the off-diagonal elements of the matrix Tij one can simply put
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ϵk = 0, while in the diagonal elements an indeterminacy appears (zero in the numerator
and zero in the denominator) which should be resolved by l’Hopital’s rule. As a result,
one obtains:

N 2(v1, . . . , vm) = ηm
m∏
l=1

ϕ2(vl)
∏
r ̸=s

vr − vs + η

vr − vs
det
m×m

tik, (5.30)

where the matrix tik is given by

tik = −δik
(
∂vk log

ϕ(vk + η)

ϕ(vk)
+

m∑
l=1

2η

(vk − vl)2 − η2

)
+

2η

(vk − vi)2 − η2
. (5.31)

Note that tik = ∂Bk/∂vi, where

Bk = log
ϕ(vk)

ϕ(vk + η)
+

m∑
l=1, ̸=k

log
vk − vl + η

vk − vl − η
(5.32)

is the logarithm of the left hand sides of the Bethe equations in the form

ϕ(vk)

ϕ(vk + η)

m∏
l=1, ̸=k

vk − vl + η

vk − vl − η
= 1

(the Bethe equations state that Bk = 2πiqk with integer qk) and, therefore, tik coincides
with the Hessian of the Yang function at the minimum.

6 Generalized spin chains, master T -operator and

quantum-classical duality

6.1 GL(n)-invariant R-matrices and generalized spin chains

So far we considered R-matrices of size 4×4. It turns out that there are solutions of the
Yang-Baxter equation of size n2×n2 with n ≥ 2 for any n ≥ 2. They are linear operators
in the space Cn ⊗Cn. For simplicity we will restrict ourselves by considering R-matrices
with rational dependence on the spectral parameter (but their trigonometric and elliptic
generalizations do exist). These R-matrices have the form

R(x) = xI+ ηP, (6.1)

where P is the permutation operator in Cn ⊗Cn, and η is a parameter (in the R-matrix
(4.18) η = 1). In this section the spectral parameter is denoted by x. It can be checked
that this R-matrix is GL(n)-invariant:

g ⊗ gR(x) = R(x)g ⊗ g or g1g2R12(x) = R12(x)g1g2 (6.2)

for any matrix g ∈ GL(n). The permutation operator P is expressed through the ele-
mentary n×n matrices eab (with 1 at the place ab and 0 otherwise) as follows:

P =
∑
a,b

eab ⊗ eba.
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In this section we discuss integrable systems based on the GL(n)-invariant R-matrices.
Such integrable systems are called generalized spin chains (or vertex models). In the way
similar to the case of spin chains based on GL(2), one can construct a family of commuting
transfer matrices for them. For example, one can consider inhomogeneous GL(n) spin
chain with the transfer matrix

T(x) = tr0
(
R01(x− x1)R02(x− x2) . . .R0N(x− xN)

)
,

where each R-matrix has the form Rij(x) = xI + ηPij (see (6.1)). The Yang-Baxter
equation for Rij(x) guarantees that

[T(x), T(x′)] = 0.

One can also consider the chain with quasiperiodic (twisted) boundary conditions insert-
ing under the trace a group element g ∈ GL(n) (twist), which for simplicity we assume
to be diagonal (g = diag(g1, g2, . . . , gn)):

T(x) = tr0
(
R01(x− x1)R02(x− x2) . . .R0N(x− xN)g0

)
(6.3)

Here g0 means that g acts in the auxiliary space (number 0). The GL(n)-invariance
(6.2) implies that these transfer matrices commute at different values of the spectral
parameter. In the homogeneous chain with periodic boundary conditions (at xj = 0,
g = I) there exists a local Hamiltonian which is the logarithmic derivative of T(x) at 0.
As in the GL(2) case it is proportional to the sum

∑
j Pj,j+1 of permutation operators

of neighboring sites. In inhomogeneous chains local Hamiltonians commuting with the
transfer matrix in general do not exist.

Matrix elements of the transfer matrix (6.3) are polynomials in x of degree N . Let us

normalize the transfer matrix in a different way, dividing it by the polynomial
N∏
j=1

(x−xj):

T(x) =
T(x)

N∏
j=1

(x− xj)
.

Obviously, the transfer matrix T(x) is given by

T(x) = tr0
(
R̃01(x− x1)R̃02(x− x2) . . . R̃0N(x− xN)g0

)
, (6.4)

where
R̃(x) = I+

η

x
P

is the R-matrix which differs from the R(x) by a scalar factor.

The transfer matrix T(x) has simple poles at the points xj. One can introduce
Hamiltonians Hj of the inhomogeneous spin chain as residues at the poles:

T(x) = tr g +
N∑
j=1

ηHj

x− xj
. (6.5)
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These operators commute with each other. However, they are non-local. Their explicit
form is as follows:

Hi = R̃i i−1(xi − xi−1) . . . R̃i1(xi − x1)giR̃iN(xi − xN) . . . R̃i i+1(xi − xi+1).

Comparing the expansions as x→ ∞ of (6.5) and

T(x) = tr0

[(
I+

ηP01

x− x1

)
. . .
(
I+

ηP0N

x− xN

)
g0

]

= tr g · I+ η

x

N∑
i=1

tr0
(
P0ig0

)
+ . . . = tr g · I+ η

x

N∑
i=1

gi + . . . ,

we get the following “sum rule”:

N∑
i=1

Hi =
N∑
i=1

gi.

Let us mention the limit of this construction as η → 0. In this limit the generalized
magnet becomes the Gaudin model. Set g = eηh, then in the limit η → 0 we have
Hi = 1 + ηHG

i +O(η2), where

HG
i = hi +

∑
j ̸=i

Pij

xi − xj

are commuting Gaudin Hamiltonians of the Gaudin model.

The operators

Ma =
N∑
j=1

e(j)aa , a = 1, . . . , n (6.6)

commute with the transfer matrix and with themselves. Therefore, one can find eigen-
vectors of the transfer matrix which are simultaneously eigenvectors of the operators Ma

with eigenvalues Ma.

Let us present the result of diagonalization of the transfer matrix T(x). We give it
here without derivation (see [16] for details). The eigenvalues T (x) of T(x) are given by

T (x) =
n∑

b=1

gb

Nb−1∏
γ=1

x− v(b−1)
γ + η

x− v
(b−1)
γ

Nb∏
β=1

x− v
(b)
β − η

x− v
(b)
β

, (6.7)

where N0 = N , N ≥ N1 ≥ N2 ≥ . . . ≥ Nn−1 ≥ 0 are non-negative integers, Nn = 0,

v(0)γ = xγ and the sets of Bethe roots {v(b)β }Nb
β=1 satisfy the system of nested Bethe ansatz

equations

gb

Nb−1∏
γ=1

v(b)α − v(b−1)
γ + η

v
(b)
α − v

(b−1)
γ

= gb+1

Nb∏
γ ̸=α

v(b)α − v(b)γ + η

v
(b)
α − v

(b)
γ − η

Nb+1∏
β=1

v(b)α − v
(b+1)
β − η

v
(b)
α − v

(b+1)
β

. (6.8)

Here b = 1, . . . , n − 1, α = 1, . . . , Nb. The numbers Na are such that M1 = N − N1,
Ma = Na−1−Na, a = 2, . . . , n, where Ma are eigenvalues of the operators Ma. The total
number of equations in the system is N1+ . . .+Nn−1. As it follows from (6.5), (6.7), the
eigenvalues of the Hamiltonians Hi are given by

Hi = g1
N∏
k ̸=i

xi − xk + η

xi − xk

N1∏
γ=1

xi − v(1)γ − η

xi − v
(1)
γ

. (6.9)
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6.2 Transfer matrices as generalized characters

For GL(n)-invariant models, the algebra of commuting integrals of motion is in fact larger
than the one generated by the x-expansion coefficients of the transfer matrix T(x) (or
the Hamiltonians Hj). It appears that one can introduce more general transfer matrices
commuting with T(x).

To proceed, we need some information about representations of the group GL(n) and
the universal enveloping algebra U(gln) which has generators eab with the commutation
relations

eabea′b′ − ea′b′eab = δa′beab′ − δab′ea′b. (6.10)

Finite-dimensional irreducible representations πλ of U(gln) are characterized by the high-
est weight λ = (λ1, λ2, . . . , λn), where λi+1 ≤ λi are non-negative integer numbers. The
set of numbers λi can be identified with the Young diagram λ, or, equivalently, with the
partition of |λ| = ∑

i λi. Let Vλ be the representation space of πλ. Clearly, π(1)(eab) = eab
and V(1) = Cn (here (1) is the Young diagram consisting from one box, it corresponds to
the vector representation). The fundamental representations correspond to one-column
diagrams of height from 1 to n.

We first introduce more general GL(n)-invariant R-matrices. They act in the tensor
product Vλ ⊗ Cn and have the form

Rλ(x) = xI+ η
∑
a,b

πλ(eab)⊗ eba. (6.11)

The GL(n)-invariance means that

πλ(g)⊗ gRλ(x) = Rλ(x) πλ(g)⊗ g.

The R-matrices Rλ(x) satisfy the Yang-Baxter equation

Rλµ
12 (x− x′)Rλ

13(x)R
µ
23(x

′) = Rµ
23(x

′)Rλ
13(x)R

λµ
12 (x− x′), (6.12)

where Rλµ(x − x′) is some R-matrix acting in the tensor product Vλ ⊗ Vµ. Its explicit
form for arbitrary λ, µ is complicated.

It is possible to construct more general transfer matrices acting in the same quantum
space (Cn)⊗N , taking as the auxiliary space not Cn but the space Vλ of an irreducible
representation πλ of the algebra U(gln). Such transfer matrix is obtained as trace in Vλ
of product of the R-matrices (6.11):

Tλ(x) = trVλ

(
Rλ
01(x− x1)R

λ
02(x− x2) . . .R

λ
0N(x− xN) πλ(g0)

)
. (6.13)

From the Yang-Baxter equation (6.12) and GL(n)-invariance it follows that the transfer
matrices Tλ(x) commute for different x and λ:

[Tλ(x), Tµ(x
′)] = 0.

In particular, if λ is an empty diagram (λ = ∅), we have

T∅(x) =
N∏
i=1

(x− xi) · I.

92



One can introduce normalized transfer matrices dividing by T∅(x):

Tλ(x) =
Tλ(x)

T∅(x)
.

In particular, T(1)(x) = T(x) introduced in (6.4).

At N = 0 we have:
T

(N=0)
λ (x) = trVλ

πλ(g) = χλ(g), (6.14)

where χλ(g) is the character of g in the representation πλ. Also, we have

Tλ(x) = χλ(g) · I+O(1/x), x→ ∞,

so the normalized transfer matrix can be regarded as a generalization of characters.

It is known that the characters are given by Schur polynomials sλ of eigenvalues gi of
the matrix g:

χλ(g) = sλ({gi}) =
detij

(
g
n+λj−j
i

)
detij

(
gn−j
i

) .

Schur polynomials are symmetric functions of gi. It is often convenient to consider
Schur polynomials sλ({ξi}), where {ξi} is a set of variables, as functions of the variables
tk = 1

k

∑
i
ξki . Let us denote it as sλ(t), where t = {t1, t2, t3, . . .}. For example, s∅(t) = 1,

s(1)(t) = t1, s(2)(t) =
1
2
t21 + t2, s(12)(t) =

1
2
t21 − t2 and so on. For any finite diagram λ

the polynomial sλ(t) depends only on a finite number of ti’s. Schur polynomials satisfy
a number of non-trivial identities. We mention here the Cauchy-Littlewood identity∑

λ

sλ(t)sλ(t
′) = exp

(∑
k≥1

ktkt
′
k

)
, (6.15)

where the sum in the left hand side is taken over all Young diagrams including the
empty one. There are also the Jacobi-Trudi identities which express the character (Schur
polynomial) χλ through the characters χ(k) or χ(1k) corresponding to the diagrams which
are respectively a row or a column of length k:

χλ(g) = det
1≤i,j≤λ′

1

χ(λi−i+j)(g), (6.16)

χλ(g) = det
1≤i,j≤λ1

χ
(1

λ′
i
−i+j

)
(g). (6.17)

In these formulas λ′ is the diagram λ transposed with respect to the main diagonal, so
that λ′1, λ

′
2, . . . are lengths of columns of λ.

The analogy between transfer matrices and characters is supported by the fact that
the transfer matrices satisfy the following identities (functional relations), which look
similarly to the Jacobi-Trudi identities:

Tλ(x) = det
1≤i,j≤λ′

1

T(λi−i+j)(x− (j−1)η), (6.18)

Tλ(x) = det
1≤i,j≤λ1

T
(1

λ′
i
−i+j

)
(x+ (j−1)η). (6.19)
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They are called the Cherednik-Bazhanov-Reshetikhin (CBR) identities or quantum Ja-
cobi-Trudi identities.

For transfer matrices corresponding to rectangular Young diagrams λ = (sa) with a
rows of length s, the CBR identities are equivalent to the remarkable functional relation
which has the form of 3-term difference Hirota equation known in the theory of difference
soliton equations. Let us introduce the transfer matrices

Ta
s(x) = T(sa)

(
x− η

2
(s+ a)

)
,

corresponding to rectangular Young diagrams, then the CBR identities imply the func-
tional relation

Ta
s

(
x+ η

2

)
Ta

s

(
x− η

2

)
− Ta

s+1(x)T
a
s−1(x) = Ta+1

s (x)Ta−1
s (x). (6.20)

Problem. Prove the functional relation (6.20).

There is an elegant way to represent the transfer matrices Tλ(x) as special matrix
derivatives of the characters χλ(g) with respect to the matrix g (which is, generally
speaking, already not assumed to be diagonal). Let f(g) be any function on the group
GL(n) (g ∈ GL(n)). Define the matrix derivative (which we call coderivative) as follows:

Df(g) =
∑
a,b

eab
∂

∂ε
f (eεebag)

∣∣∣
ε=0

. (6.21)

According to this definition, if values of f belong to a space V , values of Df(g) belong
to End(Cn)⊗ V . An equivalent definition in components is

Da
b =

∑
c

gac
∂

∂gbc
,

where gab are matrix elements of the matrix g ∈ GL(n) in the vector representation.
Explicitly, we have:

Da
bf(g) =

∂

∂ε
f (eεebag)

∣∣∣
ε=0

.

A direct calculation of the commutator [Da2
b2
, Da1

b1
] shows that

[Da2
b2
, Da1

b1
] = δa1b2D

a2
b1

− δa2b1D
a1
b2
, (6.22)

i.e., the operators Da
b have the same commutation relations as the generators eab of the

algebra U(gln).

In the case when the coderivatives act on functions with values in the tensor product
⊗iVi of the spaces Vi it is convenient to modify the notation by giving index i to the
coderivative:

Dif(g) =
∑
a,b

e
(i)
ab

∂

∂ε
f (eεebag)

∣∣∣
ε=0

,

where e
(i)
ab acts non-trivially in Vi. In this notation we have, for example: D1trg = g1,

D2g1 = P21g1, while the relation (6.22) is written in the form [D2, D1] = P12(D1 −D2).

A careful analysis shows that the transfer matrix Tλ(u) can be expressed as

Tλ(x) = (x− xN + ηDN) . . . (x− x1 + ηD1)χλ(g). (6.23)

With the help of this representation, one can prove the CBR identities.
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6.3 The master T -operator as a tau-function

Let us introduce the generating function for the transfer matrices Tλ(x). It is called the
master T -operator. Let t = {t1, t2, t3, . . .} be an infinite set of complex variables. The
master T -operator has the form

T(x; t) =
∑
λ

sλ(t)Tλ(x), (6.24)

where the sum, as in (6.15), is taken over all Young diagrams including the empty one.
As Tλ(x), it is an operator in (Cn)⊗N . It depends on the elements gi of the twist matrix
g as on parameters. Clearly, the operators T(x; t) commute for all x, t.

In terms of the coderivatives, the master T -operator can be represented in the form

T(x; t) = (x− xN + ηDN) . . . (x− x1 + ηD1) exp
(∑
k≥1

tktrg
k
)

(one should use (6.23) and the Cauchy-Littlewood identity (6.15)).

Obviously, T(x; 0) = T∅(x). Acting to T(x; t) by differential operators in tk at t = 0,
one can reproduce all the transfer matrices Tλ(x). For example,

T(1)(x) = ∂t1T(x; t)
∣∣∣
t=0
, T(2)(x) =

1

2

(
∂2t1 + ∂t2

)
T(x; t)

∣∣∣
t=0
. (6.25)

The general formula is
Tλ(x) = sλ(∂̃)T(x; t)

∣∣∣
t=0
,

where ∂̃ = {∂t1 , 12∂t2 ,
1
3
∂t3 , . . .}. Analyzing the behavior of the master T -operator T(x; t)

as a function of t in a neighborhood of some other points other than t = 0, one can show
that this family contains also the Baxter’s Q-operators.

Let us pass to the most important property o the master T -operator, which establishes
a close connection with the theory of classical integrable nonlinear partial differential
equations. We will use the notation

ξ(t, z) =
∑
k≥1

tkz
k,

t± [z−1] = {t1 ± z−1, t2 ± 1
2
z−2, t3 ± 1

3
z−3, . . .}.

It can be shown that the CBR identities are equivalent to the following bilinear relation
for the master T -operator:

∮
C
zeξ(t−t′,z)T

(
x; t− [z−1]

)
T
(
x− η; t′ + [z−1]

)
dz = 0, (6.26)

which is valid for all x, t, t′. The integration contour C is a big circle around ∞ which
separates the singularities coming from the T-multipliers and the exponential function.

The bilinear relation (6.26) allows one to identify the master T -operator (more pre-
cisely, any one of its eigenvalues) with the tau-function of the modified Kadomtsev-
Petviashvili hierarchy (mKP) known in the theory of soliton equations. Note that the
spectral parameter x plays the role of “zeroth time” t0.
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Putting, for example, t′ = t − [z−1
1 ] − [z−1

2 ] and calculating residues in the bilinear
relation, we get the 3-term Hirota equation for the mKP hierarchy:

z2T
(
x+ η; t− [z−1

2 ]
)
T
(
x; t− [z−1

1 ]
)
− z1T

(
x+ η; t− [z−1

1 ]
)
T
(
x; t− [z−1

2 ]
)

= (z1 − z2)T(x+ η; t)T
(
x; t− [z−1

1 ]− [z−1
2 ]
)
.

(6.27)

6.4 Connection with classical models of the Calogero-Moser
type

We can say that any eigenvalue of the master T -operator as a function of the “times”
{tk} and t0 = x is a solution of the mKP hierarchy in the bilinear form (the tau-function).
The latter has many different solutions and we would like to characterize our solutions
more precisely. This can be done if we take into account that T(x; t) commute and can be
simultaneously diagonalized while matrix elements of these operators are polynomials in x
of degree N . Therefore, the eigenvalues (we denote them by T (x; t)) are also polynomials
in x of degree N , i.e., they have the form

T (x; t) = et1trg+t2trg2+...
N∏
k=1

(x− xk(t)) (6.28)

(the exponential factor is restored from the limit x → ∞). Roots of these polynomials
depend on ti and xk(0) = xk.

The first formula in (6.25) tells us that the eigenvalue T (x) of the transfer matrix
T(x) is

T (x) = ∂t1 log T (x; t)
∣∣∣
t=0
.

Plugging here (6.28) and comparing with (6.5), we obtain:

ηHi = −ẋi(0). (6.29)

The dynamics of zeros of polynomial tau-functions is a well known subject in the
theory of integrable nonlinear partial differential equations. From the works of Krichever
and others it follows that this dynamics is described by equations of motion of integrable
many-body systems of the Calogero-Moser type. In particular, the dynamics of zeros of
the tau-function of the mKP hierarchy of the form (6.28) in the time tk coincides with
the dynamics of the Ruijsenaars-Schneider system of particles (a relativistic deformation
of the Calogero-Moser system) with respect to the kth Hamiltonian flow. For example,
the equations of motion in the time t1 have the form

ẍi = −
∑
k ̸=i

2η2ẋiẋk
(xi − xk)((xi − xk)2 − η2)

(6.30)

(dot means the t1-derivative) with the Hamiltonian

H1 =
N∑
i=1

eηpi
∏
k ̸=i

xi − xk + η

xi − xk
, {pi, xk} = δik.
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The system is known to be integrable: there are N independent conserved quantities in
involution Ik, k = 1, . . . , N , and I1 = H1. The parameter η has the meaning of the
inverse velocity of light. In the limit η → 0 one reproduces the Calogero-Moser system
of particles.

From this it follows a nontrivial connection between the generalized inhomogeneous
quantum spin chains solvable by the algebraic Bethe ansatz and classical integrable many-
body systems of the Calogero-Moser type. This connection is called quantum-classical
duality. It is discussed in more detail in the next section.

6.5 Quantum-classical duality

The quantum-classical duality for integrable systems is a remarkable relation between the
spectrum of a generalized inhomogeneous quantum spin chain or its limit to a model of
the Gaudin type and intersection of two Lagrangian submanifolds in the 2N -dimensional
phase space of a classical relativistic N -body integrable system of the Ruijsenaars-
Schneider type or its non-relativistic limit (the Calogero-Moser system). Lagrangian
submanifold is a N -dimensional submanifold in the 2N -dimensional phase space such

that the restriction of the form ω =
N∑
i=1

dpi ∧ dxi is equal to zero. In the relation men-

tioned above, the first Lagrangian manifold is the N -dimensional hyperplane correspond-
ing to fixing all coordinates xj of the classical particles, and the second one is the level
set of the N integrals of motion in involution. Their dimensions are complimentary, and
thus they intersect in a finite number of points. The essence of the quantum-classical
duality is that the values of the particles velocities ẋj at the intersection points provide
spectra of the quantum Hamiltonians of the inhomogeneous spin chain (or the Gaudin
model) with the inhomogeneities xj. Different intersection points correspond to different
eigenstates of the commuting quantum Hamiltonians.

Let us describe the quantum-classical duality in more details. For this, we should
recall that the classical N -body Ruijsenaars-Schneider model admits the Lax represen-
tation of the form of the Lax equation

L̇ = [L,M ] (6.31)

for N×N matrices L,M whose matrix elements are functions of xj and ẋj. The matrix
L is called the Lax matrix, its explicit form is

Lij = Lij

(
{ẋl}N , {xl}N

)
=

ẋi
xi − xj − η

, i, j = 1, . . . , N. (6.32)

Below we do not need the explicit form of the matrix M ; its existence is the only essential
fact. Equations of motion (6.30) are equivalent to the matrix equation (6.31). The Lax
equation implies that the time evolution of the Lax matrix L(0) → L(t) is an isospectral
transformation, i.e., eigenvalues of the Lax matrix (and symmetric functions of them)
are integrals of motion. It is known that they are in involution. For example, H1 = trL
and Hk =

1
k
trLk, k ≥ 2, are higher Hamiltonians of the integrable many-body system.

Consider the Lax matrix (6.32) L(0) with the substitution ẋi(0) = −ηHi, whereHi are
eigenvalues of the quantum Hamiltonians Hi of the generalized twisted inhomogeneous
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spin chain given by (6.9) (see (6.29)):

Lij(0) = Lij

(
{−ηHl}N , {xl}N

)
=

ηHi

xj − xi + η
.

The quantum-classical duality states that then the spectrum of L has the following very
specific form:

SpecL
(
{−ηHi}N , {xi}N

)
=
(
g1, . . . , g1︸ ︷︷ ︸

M1

, g2, . . . , g2︸ ︷︷ ︸
M2

, . . . , gn, . . . , gn︸ ︷︷ ︸
Mn

)
, (6.33)

where Ma are eigenvalues of the operators Ma (6.6) on the eigenstate of the transfer

matrix (we recall that
n∑

a=1

Ma = N).

Before passing to the proof of this statement, let us say a few words about its mean-
ing. It implies, in particular, that it is possible to solve the spectral problem for the
Hamiltonians of the quantum spin chain without addressing the Bethe ansatz at any
step. Instead, one should solve an “inverse spectral problem” for the Lax matrix of the
classical Ruijsenaars-Schneider system of particles. Namely, let {xi}N be inhomogeneity
parameters of the spin chain and g = diag (g1, g2, . . . , gn) its twist matrix. Let the eigen-
values of the Lax matrix be equal to the eigenvalues ga of the twist matrix, with some

multiplicitiesMa such that
n∑

a=1

Ma = N . This fixes values of all the Ruijsenaars-Schneider

Hamiltonians: Hk = 1
k

∑
a
Mag

k
a . Then the spectrum of the non-local spin chain Hamil-

tonians Hj in the sector where eigenvalues of the operators Ma are equal to Ma is given
by the values of Hj such that the matrix Lij =

ηHi

xj−xi+η
has the prescribed spectrum.

This kind of duality suggests an alternative way to calculate joint spectra of com-
muting quantum transfer matrices without any use of the coordinate or algebraic Bethe
ansatz technique, which is a key tool in any exact solution of quantum integrable systems
with non-trivial interaction. There is also no need in such an unavoidable intermediate
step as solving Bethe equations. The spectra of quantum Hamiltonians appear to be
encoded in algebraic properties of the Lax matrix for a very different purely classical
model.

We now pass to the sketch of proof of (6.33). We want to prove that

det
[
L
(
{−ηHi}N , {xi}N

)∣∣∣
BE

− λI
]
=

n∏
a=1

(ga − λ)Ma , (6.34)

where L
(
{−ηHi}N , {xi}N

)
is taken on a solution to the Bethe equations (BE). Let

{yi}M = {y1, . . . , yM} be a set of M auxiliary variables (we assume that M ≤ N).

Let us introduce the N×N matrix L = L
(
{xi}N , {yi}M , g

)
and M×M matrix L̃ =

L̃
(
{yi}M , {xi}N , g

)
by the following formulas:

Lij

(
{xl}N , {yl}M , g

)
=

gη

xi − xj + η

N∏
k ̸=j

xj − xk + η

xj − xk

M∏
γ=1

xj − yγ
xj − yγ + η

(6.35)
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(here i, j = 1, . . . , N),

L̃αβ

(
{yl}M , {xl}N , g

)
=

gη

yα − yβ + η

M∏
γ ̸=β

yβ − yγ − η

yβ − yγ

N∏
k=1

yβ − xk
yβ − xk − η

(6.36)

(here α, β = 1, . . . ,M). The proof is based on the algebraic relation for characteristic
polynomials of the matrices L, L̃:

det
N×N

(
L
(
{xi}N , {yi}M , g

)
− λI

)
= (g − λ)N−M det

M×M

(
L̃
(
{yi}M , {xi}N , g

)
− λI

)
. (6.37)

The proof of (6.37) is rather technical. It can be found in [14]. An important ingredient
of the proof is factorization of the matrices L, L̃ given by the formulas

L
(
{xi}N , {yi}M , g

)
= gD−1

η ({xi}N)V t({xi}N)Ct
η,N(V

t({xi}N))−1Dη({xi}N)D, (6.38)

L̃
(
{yi}M , {xi}N , g

)
= gD0({yi}M)V −1({yi}M)C−η,MV ({yi}M)D−1

0 ({yi}M)D̃. (6.39)

Here

Dij = δij
M∏
γ=1

xj − yγ
xj − yγ + η

, i, j = 1, . . . , N,

D̃αβ = δαβ
N∏
k=1

yβ − xk
yβ − xk − η

, α, β = 1, . . . ,M,

(6.40)

(Dξ({zl}K))ij = δij
K∏
k ̸=i

(zi − zk + ξ), i, j = 1, . . . , K, (6.41)

(V ({zl}K))ij = zi−1
j is the Vandermonde matrix, Cη,K is the triangular matrix of the

form

(Cη,K)ij =


(i− 1)! ηi−j

(j − 1)!(i− j)!
, j ≤ i,

0, j > i,

i, j = 1, . . . , K (6.42)

and upper index t means transposition. Note that det
N×N

D = det
M×M

D̃.

The proof of (6.34) includes n−1 steps and consists of successive application of (6.37)
with taking into account the Bethe equations (6.8) at each step. Set

L
(0)
ij = Lij

(
{−ηHl}N , {xl}N

)
= Lji

(
{xl − η}N , {v(1)γ }N1 , g1

)

=
ηg1

xj − xi + η

∏
k ̸=i

xi − xk + η

xi − xk

N1∏
γ=1

xi − v(1)γ − η

xi − v
(1)
γ

and define (at the first step)

L
(1)
αβ = L̃αβ

(
{v(1)γ }N1 , {xl − η}N , g1

)

=
ηg1

v
(1)
α − v

(1)
β + η

N1∏
γ ̸=β

v
(1)
β − v(1)γ − η

v
(1)
β − v

(1)
γ

N∏
k=1

v
(1)
β − xk + η

v
(1)
β − xk

.
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Equation (6.37) implies that

det
N×N

(
L(0) − λI

)
= (g1 − λ)N−N1 det

N1×N1

(
L(1) − λI

)
. (6.43)

Next, impose Bethe equations (6.8) at b = 1, i.e.,

g1
N∏
k=1

v
(1)
β − xk + η

v
(1)
β − xk

= g2

N1∏
γ ̸=β

v
(1)
β − v(1)γ + η

v
(1)
β − v

(1)
γ − η

N2∏
γ′=1

v
(1)
β − v

(2)
γ′ − η

v
(1)
β − v

(2)
γ′

(6.44)

to obtain

L
(1)
αβ

∣∣∣
BE

=
ηg2

v
(1)
α − v

(1)
β + η

N1∏
γ ̸=β

v
(1)
β − v(1)γ + η

v
(1)
β − v

(1)
γ

N2∏
γ′=1

v
(1)
β − v

(2)
γ′ − η

v
(1)
β − v

(2)
γ′

= Lαβ

(
{v(1)γ − η}N1 , {v(2)γ }N2 , g2

)
.

(6.45)

At the second step we define

L
(2)
αβ = L̃αβ

(
{v(2)γ }N2 , {v(1)γ − η}N1 , g2

)
, α, β = 1, . . . , N2.

Similarly to the previous step, we use (6.37) to obtain

det
N1×N1

(
L(1) − λI

)
= (g2 − λ)N1−N2 det

N2×N2

(
L(2) − λI

)
(6.46)

and use the Bethe equations to conclude that

L(2)
∣∣∣
BE

= L
(
{v(2)γ − η}N2 , {v(3)γ }N3 , g3

)
.

The procedure can be continued until the last step, where

L
(n−1)
αβ

∣∣∣
BE

=
ηgn

v
(n−1)
α − v

(n−1)
β + η

Nn−1∏
γ ̸=β

v
(n−1)
β − v(n−1)

γ + η

v
(n−1)
β − v

(n−1)
γ

,

and, according to (6.37) at M = 0,

det
Nn−1×Nn−1

(
L(n−1) − λI

)
= (gn − λ)Nn−1 .

Therefore, taking into account that Ma = Na−1 −Na, we have proved (6.34).
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