Skoltech 2021

Differential Geometry of connections

30.10.2020

Midterm test problems

Please send solutions to kzarian@mccme.ru by 12:00 p.m. 5th November 2021

Consider the surface in the Euclidean space \mathbb{R}^3 given parametrically by the equations

$$x = u - \frac{u^3}{3} + uv^2$$
, $y = v - \frac{v^3}{3} + vu^2$, $z = u^2 - v^2$.

- 1. Compute the first and the second quadratic forms g and h, the principal curvatures k_1 and k_2 , the Gaussian curvature k_1k_2 and the mean curvature $\frac{1}{2}(k_1 + k_2)$.
- 2. Compute the curvature of the metric on the surface and compare it with the Gaussian curvature.
- 3. Compute the area of the domain on the surface defined by the inequality $u^2 + v^2 \leq 1$.
- 4. Compute the transformation of parallel transport on the tangent plane along the circle $u^2 + v^2 = 1$
 - (a) by solving the differential equation of parallel transport;
 - (b) by applying the Gauss-Bonnet formula.

Compare the results of computations.