

Course Title (in English)Mapping class groupsCourse Title (in Russian)Группы классов отображенийLead Instructor(s)Gaifullin, AlexanderContact PersonAlexander Gaifullin

Course Description

Contact Person's E-mail

For an oriented surface (2-manifold) S, the group Diff(S) of orientation-preserving diffeomorphisms of S is a huge infinite-dimensional topological group. By definition, the mapping class group of S is the group Mod(S) obtained from the group Diff(S) by taking the quotient by the identity component. Equivalently, Mod(S) is the group consisting of isotopy classes of orientation-preserving diffeomorphisms of S onto itself. Theory of the mapping class groups of surfaces lies on the crossroad of algebraic and hyperbolic geometry, three-dimensional topology, geometric, homological and combinatorial group theory. More precisely, it is related to:

a.gaifullin@skoltech.ru

- Moduli spaces of complex curves (equivalently, of hyperbolic surfaces) via interpretation of the mapping class group as an orbifold fundamental group of the moduli space;
- Topology of three-manifolds via interpretation of a Heegaard splitting as gluing along an element of the mapping class group;
- Braids and hence knots; in fact, usual braid groups are the mapping class groups of a 2-disc with punctures.
- Outer automorphism groups of free groups; this relationship is caused by the fact that the mapping class group acts by outer automorphisms of the fundamental group of the surface, and the fundamental group of the surface is not so far from being free (as it is given by 2g generators and only 1 relation).
- Arithmetic groups such as SL(n,Z) and Sp(2g,Z) via the action of the mapping class group on the homology of the surface.

The course will start from basic facts on surfaces and their mapping class groups. After this introductory part, we will discuss various methods in theory of mapping class groups arising from relationships listed above.

Course Prerequisites / Recommendations

It is recommended that students taking this course have the following basic knowledge:

- in group theory (commutator subgroups, free groups, generators and relations);
- in topology (fundamental group, coverings, homology groups);
- in complex analysis and algebraic geometry (holomorphic functions, smooth complex curves).

Аннотация

Для ориентированой поверхности S группа ее сохраняющих ориентацию диффеоморфизмов - огромная бесконечномерная топологическая группа. Однако, взяв факторгруппу этой топологической группы по связной компоненте единицы, мы получим счетную группу Mod(S), которая и называется группой классов отображений поверхности S.

Теория групп классов отображений имеет глубокие связи с рядом активно развивающихся в настоящее время направлений математики, такими как:

- Теория пространств модулей комплексных кривых (эквивалентно, гиперболических поверхностей); группа классов отображений служит орбифолдной фундаментальной группой соответствующего пространства модулей.
- Топология трехмерных многообразий: разбиения Хегора трехмерных многообразий можно интерпретировать как склейки по элементам групп классов отображений.
- Теория кос и, как следствие, теория узлов; на самом деле обычные группы кос служат простейшими примерами групп классов отображений, а именно, это группы классов отображений диска с проколами.
- Группы внешних автоморфизмов свободных групп; эта связь происходит из того, что группа классов отображений действует внешними автоморфизмами фундаментальной группы поверхности, а фундаментальная группа поверхности не так уж далека от свободной группы (задаётся 2g порождающими и только одним соотношением).
- Арифметические группы, такие как SL(n,Z) и Sp(2g,Z); эта связь происходит из действия групп классов отображений на гомологиях поверхности.

Курс начнется с базовых фактов о поверхностях и их группах отображений. После ввозной части мы обсудим разнообразные методы теории групп классов отображений, возникающие из описанных выше взаимосвязей.

Планируется, что, прослушав курс, студенты будут владеть основными понятиями и методами теории групп классов отображений, уметь производить конкретные вычисления в группах классов отображений, а также уметь пользоваться машинерией групп классов отображений в задачах о пространствах модулей и трехмерных многообразиях.

Course Academic Level Master-level course suitable for PhD students

Number of ECTS credits

6

Topic	Summary of Topic	Lectures (# of hours)	Seminars (# of hours)	Labs (# of hours)
Simple closed curves on surfaces and mapping class groups.	Simple closed curves, minimal position, Dehn twists, relations between them, action of mapping class group on homology, Torelli groups.	3	15	
Mapping class groups and moduli spaces.	Moduli space of hyperbolic surfaces, moduli space of complex curves, their equivalence, hyperbolic methods in theory of mapping class groups.	3	15	
Mapping class groups and Heegaard splittings of 3- manifolds.	Heegaard splittings as results of gluing of two handlebogies along an element of the mapping class group. Homology spheres and elements of Torelli groups. Rokhlin invariant and Birman-Craggs homomorphisms.	2	15	
Actions of mapping class groups on CW complexes.	Curve complex, arc complex, Hatcher-Thurston complex, complex of cycles. Geometric group theory methods and homological methods in study mapping class groups.	3	15	

Assignment Type	Assignment Summary
Final Exam	

Type of Assessment

Graded

Grade Structure

Activity Type	Activity weight, %
Final Exam	100

A: 86

B: 76

C: 66

D: 56

E: 46

F: 0

Attendance Requirements Optional with Exceptions

Course Stream Science, Technology and Engineering (STE)

Course Term (in context of Academic Year)

Term1-2

Course Delivery Frequency Every two years

Students of Which Programs do You Recommend to Consider this Course as an Elective?

Masters Programs	PhD Programs	
Mathematical and Theoretical Physics	Mathematics and Mechanics	

Required Textbooks	ISBN-13 (or ISBN-10)
Farb, B, and Margalit, D. A Primer on Mapping Class Groups, Princeton Mathematical Series, 2011.	9780691147949

Knowledge

After course completion the students are supposed to know foundational results and methods of theory of mapping class groups, including their applications to geometry and topology of moduli spaces an topology of 3-manifolds.

Skill

Skills of working with simple closed curves in surfaces and Dehn twists about them. Skills of exploiting group actions on CW complexes to recover combinatorial and geometric properties of groups.

Experience

Experience of combining methods from various branches of mathematics (group theory, topology, hyperbolic geometry, algebraic geometry, complex analysis) and proving rather non-trivial theorems on this way.

Select Assignment 1 Type	Final Exam
Ociect Assignment 1 Type	I IIIai Laiii

Assessment Criteria for Assignment 1

A: 86% - 100%

B: 76% - 85%

C: 66% - 75%

D: 56% - 65%

E: 46% - 55%

F: 0% - 45%