
Critical Points of Functions

Skoltech Lecture course Fall 2020
Problem Set I

Discriminants of families of functions

The evolute Σ of a plane smooth curve C ⊂ R2 is de�ned as an envelope of the family of
its normal lines, that is, it is de�ned by the condition that all normal lines are tangent to Σ.
Equivalently, it can be de�ned as the curve of curvature centers, that is the curve of centers of
osculating circles (circles having tangency of order more that one with the curves).

Recall that the discriminant of a family of functions is the locus of parameter values for which
the corresponding function of the family has a degenerate critical point.

De�ne Sq(x) = ‖x− q‖2, x ∈ C, q ∈ R2. We consider S as a family of functions on C depending
on the point q ∈ R2.

1. Prove that Σ is the discriminant of the family S. More explicitly, we have

� S ′q(x) = 0 i� q belongs to the normal line to C at the point x;

� S ′q(x) = S ′′q (x) = 0 i� q is the curvature center;

� S ′q(x) = S ′′q (x) = S ′′′q (x) = 0 i�, in addition, x is a local extremum of curvature. The
evolute has a (generically, semicubical) cusp at q in this case.

2. Compute in draw the evolute of
(a) parabola y = x2;

(b) ellipse x2

a2
+ y2

b2
= 1.

(Hint: please use the result of the previous problem.)

3. Compute and draw the discriminant of the following 2-parameter family of polynomials:

Fa,b(x) = x4 + a x2 + b x.

4. Compute and draw the discriminant of the following 3-parameter family of polynomials:

Fa,b,c(x) = x5 + a x3 + b x2 + c x.

For each stratum of the discriminant, identify the qualitative behaviour of the corresponding
polynomial.

The surface of the previous problem has the name swallowtail.
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Local algebra and Milnor number

The Milnor number of the singularity f : (Cn, 0)→ (C, 0) is the dimension of its local algebra

µ = dim
C[[x1, . . . , xn]]

( ∂f
∂x1
, . . . , ∂f

∂xn
)
.

The Milnor number is �nite i� the origin 0 ∈ Cn is an isolated critical point of f .

1. Compute Milnor numbers of the following singularities:
(a) Ak: f(x) = xk+1;
(b) Dk: f(x, y) = yk−1 + x2 y;
(c) E6: f(x, y) = x3 + y4;
(d) F7: f(x, y) = x3 + xy3;
(e) E8: f(x, y) = x3 + y5;
(f) J10: f(x, y) = x3 + y6 + a x2y2, 4a3 + 27 6= 0;
(g) X9: f(x, y) = x4 + y4 + a x2y2, a2 6= 4;
(e) P8: f(x, y, z) = x3 + y3 + z3 + a x y z, a3 + 27 6= 0;
(f) f(x, y) = x4 + x2y2 + y5.

Consider a tuple of positive rational numbers α1, . . . , αn, N . A function f(x1, . . . , xn) is said
to be quasihomogeneous of degree N with respect to the weights α1, . . . , αn of the variables
x1, . . . , xn, respectively, if for any t > 0 we have f(tα1x1, . . . , t

αnxn) = tNf(x1, . . . , xn).
Equivalently, the Taylor expansion of f at the origin involves those monomials xk11 . . . xknn only
whose vector of exponents (k1, . . . , kn) belongs to the hyperplane α1k1 + · · ·+αnkn = N . There
are �nitely many such monomials, therefore, a quasihimogeneous function is a polynomial.

Theorem. The Milnor number of an isolated quasihomogeneous singularity is uniquely

determined by the homogeneity weights α1, . . . , αn, N .

2. Assuming the statement of Theorem above is true, �nd an explicit formula for the Milnor
number of an isolated quasihomogeneous singularity. Check this formula for the singularities of
Problem 1.
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Versal deformations

1. Find a basis of local algebras and write down versal deformations of simple complex critical
point function singularities.

The classi�cation of simple real critical point singularities is obtained from the complex one by
insertion of signs ± in the normal forms in certain cases. For example, the complex singularity
D4 has two nonequivalent real forms D±4 : y

3±x2y. The corresponding reduced (i.e. not involving
constant terms) versal deformations are

y3 ± x2y + a y2 + b y + c x.

2. Compute and draw the discriminants of the above tree-parameter family of functions.

The singular surfaces of the previous problem for the singularities D+
4 and D−4 are caller

purse and pyramid, respectively. These singularities (along with the swallowtail) are typical
singularities of discriminants of tree-parameter families of functions (in any number of
variables).

Consider a smooth surface M ⊂ R3. Its focal set is the discriminant of the following family of
functions: Sq(x) = ‖x − q‖2, x ∈ M , g ∈ R3. We consider S as a family of functions on M
depending on the point q ∈ R3. Similarly to the evolute of a plain curve, the focal set of a
surface re�ects its di�erential geometry.

3. Prove:

� x is a critical point of Sq(x) = 0 i� q belongs to the normal line to M at the point x;

� x is a degenerate critical point of Sq i�, in addition to the above property, the distance
between q and x is inverse to one of the two principal curvatures of M at x;

� the function Sq has singularity D±4 at x i�, in addition to the above property, x is an
umbilical point of M , that is, the two principle curvatures are equal at this point.

4. Study (and draw) the focal set of an ellipsoid. How many umbilical points does ellipsoid have?
What are their types (D+

4 or D−4 )?



Critical Points of Functions

Skoltech Lecture course Fall 2020
Problem Set IV

Simple singularities and �nite subgroups of SU(2)

Du Val singularities are isolated surface singularities of the form f(x, y, z) = 0 where f is a
simple critical point function singularity stabilized to the case of functions in 3 variables. Here
is the list:

Ak : xk+1 + y z = 0, k ≥ 1

Dk : yk−1 + x2 y + z2 = 0, k ≥ 4;

E6 : x3 + y4 + z2 = 0;

E7 : x3 + xy3 + z2 = 0;

E8 : x3 + y5 + z2 = 0.

The ADE classi�cation of simple singularities is related mysteriously to other classi�cations
in mathematics. One of those classi�cations are �nite subgroups of SO(3). They include the
cyclic group (as the group of symmetries of an oriented regular polygon), the dihedral group
(as the group of symmetries of the two-sided regular polygon), and three exceptional groups
(as the groups of symmetries of the tetrahedron, octahedron, and icosahedron, respectively). In
order to relate these groups to the singularities of functions, consider the two-sheeted covering
SU(2) → SO(3) and denote by Γ ⊂ SU(2) the full preimage of the corresponding group. The
group Γ being the subgroup of SU(2) acts on the complex plane and the quotient surface C2/Γ
is singular with the corresponding Du Val singularity at the origin.

More explicitly, let u, v be the coordinates in C2. Then, in all cases, the ring of Γ-invariant
polynomials in u and v has three generators. Denote these polynomials by x(u, v), y(u, v), and
z(u, v). These polynomials are not algebraically independent. They obey a polynomial relation
of the form f(x, y, z) = 0 from the list of Du Val singularities.

1. Let Γ ⊂ SU(2) be generated by the transformation (u, v) 7→ (ξu, ξ−1v) where ξ = e
2πi
n is the

nth primitive root of unity. Find the generators of the ring of Γ-invariant polynomials and the
relation between these generators.

2. Let Γ ⊂ SU(2) be generated by two transformation (u, v) 7→ (v,−u) and (u, v) 7→ (ξu, ξ−1v)

where ξ = e
2πi
2n is the primitive root of unity of degree 2n (the degree is necessarily even since

Γ contains −Id which is the square of the �rst transformation). Find the generators of the ring
of Γ-invariant polynomials and the relation between these generators.
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Minimal resolutions and Dynkin diagrams

1. Describe explicitly the minimal sequence of blowups resolving each of the DuVal singularity.
Show (case by case) that all components of the exceptional divisor of this resolution are rational
(i.e. holomorphically equivalent to CP 1) and their number is equal to the corresponding Milnor
number. Find the incidence graphs of these components (the vertices of this graph correspond
to components of the exceptional divisor and the vertices are connected by an edge i� the
corresponding components do intersect).

The graphs of the previous problem are known as Dynkin diagrams. They appear also in the
classi�cation of simple Lie algebras, root systems, and the corresponding re�ection groups:

Ak : q q q . . . q q q
Dk : q q q . . . q q��

HH

qq
E6 : q q q q qq

E7 : q q q q q qq

E8 : q q q q q q qq
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Adjacencies

We say that the singularity f is adjacent to the singularity g (notation: g ← f) is there exists a
one-parameter family of functions Ft such that the germ of F0 at the origin is right equivalent
to f and the germ of Ft at the origin is right equivalent to g for each value of t 6= 0.

1. Consider the family of functions Ft(x, y) = x3 +(y2 + t x)2. For t = 0 the singularity type of this
function at the origin is obviously E6. Find the singularity type of Ft at the origin for t 6= 0.
Which adjacency is realized by this family?

Adjacencyies of simple singularities are shown on the following diagram.

A1 A2
oo A3

oo A4
oo A5

oo A6
oo A7

oo A8
oo · · ·oo

D4

``

D5

aa

oo D6

aa

oo D7

aa

oo D8

aa

oo · · ·oo

E6

aa

XX

E7

aa

XX

oo E8

aa

XX

oo

2. Prove (case by case) the existence of adjacencies shown on the diagram by presenting explicitly
the corresponding deformations of adjacent singularities. (The most complicated and rather
nontrivial cases are Ak−1 ← Dk and Ak−1 ← Ek.)

3. Prove (also case by case) that there is no adjacency of the formDk ← Am, Ek ← Am, Ek ← Dm.
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Milnor �ber

1. Prove that the complex hypersurface in Cn given by the equation z21 + · · · + z2n = ε, ε 6= 0, is
di�eomorphic to the total space of the tangent bundle of the sphere Sn−1.

2. Prove that the intersection of the complex hypersurface of the previous problem with the open
unit ball is also di�eomorphic to the total space of the tangent bundle of the sphere Sn−1,
provided that |ε| is small enough. Give the precise bound for ε such that the assertion of this
problem holds true.

3. Compute the monodromy transformation of the Milnor �ber of the Morse singularity z21+· · ·+z2n
and the action of the monodromy transformation in its homology groups.

4. Consider the complex curve V in C2 given by the equation xn + yn = 1. This complex curve
considered as a real manifold is a surface of some genus g with some number of punctures. Find
the genus and the number of punctures.

Any surface with punctures is homotopy equivalent to a wedge product of circles.

5. Find the homotopy type of the surface of the previous problem. Compute its homology group
H1(V ). Compare the rank of this group with the Milnor number of the critical point singularity
f(x, y) = xn + yn.
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Real morsi�cations and computation of the intersection form

To each singularity type with Milnor number µ one can associate two bilinear forms on the
integer lattice Zµ: one is symmetric, and another is skewsymmetric. These are intersection
forms in the middle homology of the Milnor �ber for the stabilization of the corresponding
singularity with odd and even number of variables, respectively. By Picard-Lefshetz theorem,
the intersection form determines uniquely the monodromy group. We will concentrate mostly
in the symmetric case, where the monodromy group is generated by the re�ections in the
hyperplanes orthogonal to vanishing cycles,

a 7→ a− 2
(a,∆)

(∆,∆)
∆

where ∆ is one of the vanishing cycles. Remark that (∆,∆) = −2 6= 0 (here we assume that
n ≡ 3 (mod 4); if n ≡ 1 (mod 4) then the sign is opposite).

Let the critical point function singularity be represented by a polynomial f(x, y) with real
coe�cients. Its real deformation f̃(x, y) is called morsi�cation if it has µ distinct nondegenerate
critical points near the origin, and moreover, (a) all these points are real (b) the critical value
at every saddle point is 0, the critical value at every local maximum is positive, and the critical
value at every local minimum is negative. The method of A'Campo�Gusein-Zade computes the
Dynkin graph encoding the matrix of the symmetric intersection form in a suitable basis of
vanishing cycles from the geometry of the real curve f̃(x, y) = 0. Let us emphasize that we
derive information about the Milnor �ber of the stabilized functin with odd number of variables
from the properties of the original function in two variables.

Namely, we put one vertex of the Dynkin graph to every double point of the curve f̃(x, y) = 0
and one vertex at the middle of each compact domain of its complement. We connect by an
edge a vertex corresponding to each domain to each its corner, and we also draw a broken
edge for each arc of the curve separating bounded domains. For example, here is one of
the possible real morsi�cations of the singularity D5 and the corresponding Dynkin graph.

The real morsi�cation and the Dynkin graph is not unique. For example, it is allowed to apply
to the original curve f̃(x, y) = 0 a sequence of the following kind of moves called admissible.

Every such move leads to just a linear invertible change of basis of vanishing cycles. For example,
here is an alternative real morsi�cation and a di�erent Dynkin graph of the same singularity D5:



1. The Chebyshev polynomials Tn(x) are determined by the relation

Tn(cos(t)) = cos(n t).

Prove that all its n− 1 critical points are real and belong to the segment [−1, 1]. Moreover, all
local maxima have equal critical value 1 and all local minima have equal critical value −1.

2. Show that Tn+1(x) + y2 − 1 is a real morsi�cation of the singularity Ak. Compute the Dynkin
diagram associated with this real morsi�cation.

3. Show that Tn(x)+Tm(y) is a real morsi�cation of the singularity xn+ym. Compute the Dynkin
diagram associated with this real morsi�cation.

4. The computation of the previous problem can be applied, in particular, to the singularities E6

and E8. However, the Dynkin diagrams in these cases do not agree with the standard Dynkin
diagrams E6 and E8. Show that after a suitable sequence of admissible moves of the curve
f̃(x, y) = 0 it can be brought to the form that gives the standard Dynkin diagrams labelled by
the same symbols.

5. Compute real morsi�cations and Dynkin diagrams for the remaining simple singularities Dk

and E7. Show that if the real morsi�cations for these singularities are chosen in a suitable
way (or after applying a suitable sequence of admissible moves), the Dynkin diagram takes the
standard form labelled by the same symbols.


