Геометрическое введение в многообразия Накаджимы

Ваня Яковлев матфак ВШЭ

6 Мая, 2020

Аннотация

Лекция посвящена гиперкелеровой геометрии. Будут даны все определения, разобрана конструкция гиперкелеровой редукции и рассмотрен пример многообразий Накаджимы.

Пререквизиты дифференциальная геометрия, комплексный анализ, главные G-расслоения, группы и алгебры Ли, теория представлений, коммутативная алгебра.

《마》《圊》《토》《토》 · 토 · • 9Q

1/51

6 Мая. 2020

Неформальная мотивация

Мы исследуем теорию Дональдсона-Томаса на $X = C \times X$ для кривой C и поверхности S $DT(X) = DT(C \times S),$

Модули \mathcal{M}_X пучков без кручения на X содержат подмногообразие семейств пучков $Map_{holo}(C, \mathcal{M}_S).$

Пространство \mathcal{M}_S поддается исследованию, например, для случая комплексной плоскости $S = \mathbb{C}^2 \Rightarrow \mathcal{M}_S = Hilb(\mathbb{C}^2).$

Существует естественный класс ALE поверхностей, обобщающих комплексную плоскость. По теореме Кронхеймера, они исчерпываются разрешениями Клейновых особенностей

$$\widehat{\mathbb{C}^2/\Gamma},\ \Gamma\subset SI(2,\mathbb{C})$$
 конечная группа.

Это дает описание ALE поверхностей как многообразий оснащенных представлений

$$S = R(Q_S) := Rep(Q_S).$$

АLE поверхности это двумерный пример сразу двух важных для нас структур гиперкелерова многообразия и симплектического разрешения особенностей. Эти структуры переносятся с поверхности S на пространство инстантонов \mathcal{I}_S и на \mathcal{M}_S :

S - ALE \Rightarrow S, \mathcal{I}_S , \mathcal{M}_S гиперкелерово симплектическое разрешение.

Более того, \mathcal{I}_{S} и \mathcal{M}_{S} тоже описываются как многообразие оснащенных представлений колчанов. В случае инстантонов, это утверждение обобщает ADHM-соответствие

> S - ALE $\Rightarrow \mathcal{M}_S$, \mathcal{I}_S пространства оснащенных представлений. 4 D > 4 B > 4 B > 4 B >

VSHS 2/51

Неформальная мотивация

Таким образом, изучение пространств модулей \mathcal{M}_S пучков на поверхностях S естественно приводит к рассмотрению гиперкелеровых симплектических разрешений особенностей, более того все они являются пространствами представлений оснащенных колчанов

Q - колчан с прошлого слайда $\Rightarrow R_Q$ гиперкелерово симплектическое разрешение.

Накаджима исследовал некоторый широкий класс оснащенных колчанов Q, содержащий колчаны из предыдущих примеров. Многообразия Накаджимы R_Q снабжаются канонической структурой гиперкелеровой симплектического разрешения особенностей

Q - колчан Накаджимы $\Rightarrow R_Q$ - гиперкелерово многообразие.

Многообразия Накаджимы включают, помимо модулей пучков и инстантонов на поверхностях, важный класс кокасательных пространств к многообразиям флагов в типе A

$$T^*(F_{n_1,\ldots,n_k})=R_{Q_{n_1,\ldots,n_k}}.$$

Теория Громова-Виттена R_{Q_S} описывает голоморфные отображения C в R_{Q_S} , то есть

$$DT(X) = DT(C \times S) \longleftrightarrow GW(R_{Q_S}).$$

Наличие струтуры гиперкелерова симплектического разрешения особенностей накладывает сильные ограничения на геометрию многообразия. О подсчете голоморфных кривых на многообразиях Накаджимы получены различные результаты (Окуньков+), в том числе об

- эквивариантной теории Громова-Виттена,
- эквиваринатной квантовой К-теории,
- теории разностных квантовых уравнений,
- и программе зеркальной симметрии.

Сегодня мы займемся гиперкелеровой геометрией многообразий Накаджимы, 📱 🔻 🔊 🤄 🥏

3 / 51

Ваня Яковлев VSHS 3/51 6 Мая, 2020

Часть I Гиперкелерова геометрия

- 📵 Действия групп на келеровых многообразиях
 - 1 Келеровы многообразия и потенциал
 - 2 Гамильтоновы симплектоморфизмы
 - 3 Орбиты коприсоединенного действия
- 💿 Келерова структура на факторе
 - 1 Келерова редукция
 - 2 Геометрическая теория инвариантов
 - 3 Теорема Кемпа-Несс
 - 4 Колчаны и их представления
- Пиперкелеровы многообразия
 - 1 Голоморфно-симплектические многообразия
 - 2 Гиперкелерова редукция
 - 3 Симплектические разрешения особенностей
- Многообразия Накаджимы
 - 1 Схемы Гильберта поверхностей
 - 2 Инстантоны на поверхностях
 - 3 Колчаны Накаджимы

Предполагается, что будет еще вторая часть доклада, посвященная эквивариантной теории Громова-Виттена на многобразиях Накаджимы и связи с теорией Дональдсона-Томаса.

 Ваня Яковлев
 VSHS
 4/51
 6 Мая. 2020
 4/51

1. Действия групп на келеровых многообразиях

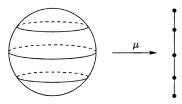


Рис. 5.1. Действие S^1 на S^2

1.1. Келеровы многообразия

Замечание

Рассмотрим комплексное многообразие M. На касательном расслоении TM действует оператор $J,\ J^2=-Id,\$ заданный в координатах как дифференциал умножения на $\sqrt{-1}$:

$$orall p \in M, orall v \in T_p M \ J(v) := d(\phi^{-1}) \circ (imes \sqrt{-1}) \circ d\phi(v)$$
, где

$$p\in U\subset M$$
 голоморфная карта на $M,\; \phi:U o \mathbb{C}^n:\; \phi(p)=0.$

Оператор $J \in End(TM)$ называется <mark>интегрируемой почти комплексной структурой</mark>, связанной с M. Он не зависит от выбора координатной карты из атласа. Напомним, что

$$f\in \mathcal{O}(M)\Leftrightarrow \bar{\partial}f:=\frac{\partial f}{\partial \bar{z}}d\bar{z}=0\Leftrightarrow df\circ J=\sqrt{-1}df,\ \text{tak kak }J(dz)=\sqrt{-1}dz,\ J(d\bar{z})=-\sqrt{-1}d\bar{z}.$$

Определение

Келеровым многообразием размерности $\dim_{\mathbb{C}} = n$ называется такая тройка (M,J,ω) , что

- М комплексное многообразие, Ј связанная почти-комплексная структура;
- $\omega \in \Omega^2(M,\mathbb{R})$ замкнутая невырожденная: $d\omega = 0, \ \iota.\omega : TM \xrightarrow{\approx} T^*M \Leftrightarrow \omega^{\wedge n} > 0;$
- ullet тензор $ho(\cdot,\cdot):=\omega(J\cdot,\cdot)$ определяет риманову метрику на многообразии M.
- Для $J\in End(TM)$, $J^2=-Id$ и $\omega\in\Omega^2(M)$ с этими соотношениями следующее равносильно

$$J$$
 интегрируемо $\Leftrightarrow \nabla^{LC}_{\rho}(J) = 0.$

Ваня Яковлев VSHS 6/ 51 6 Мая, 2020

Несколько конструкций

Конструкция

Стартуя с келеровых многообразий, мы можем построить новые примеры. В частности

- келерова структура может быть ограничена на открытое подмногообразие;
- келерова структура поднимается на накрытие келерова многообразия;
- произведение келеровых многообразий келерово;
- келерова структура спускается на M/G, если комплексная группа Ли G действует на M собственно, биголоморфными изометриями, так что фактор является многообразием

$$G \times M \to M, \ \forall x \in M : \ G(x) \approx G/H.$$

Замечание

Рассмотрим подмногообразие N келерова многообразия (M,J,ω) . Тогда выполнено

$$J(TN) \subset TN \Leftrightarrow \omega|_N$$
 невырожденно.

Таким образом, ограничение ($\omega|_N,J|_N$) индуцирует келерову структуру на комплексных подмногообразиях келерова многообразия N \subset M. В частности, голоморфное отображение

$$f: M \to B, M_b := f^{-1}(b),$$

задает семейство келеровых многообразий M_b , параметризованное $b \in B-Critv(f)$.

Ваня Яковлев

Плюрисубгармонические функции

Определение

 Φ ункция $F\in\mathcal{C}^\infty(M)$ на комплексном (M,J) называется <mark>плюрисубгарминической</mark>, если

$$\forall p \in M, \ \forall v \in T_pM - \{0\}$$
 выполнено неравенство

$$-dd^{\mathbb{C}}F_{p}(v,Jv)>0,$$
 где $d^{\mathbb{C}}F:=dF\circ J.$

Замечание

В локальных координатах $\{z_1,\dots,z_n\}$ форма $-dd^{\mathbb{C}}F_p(v,Jv)$ записывается в виде матрицы

$$-dd^{\mathbb{C}}F_{p}(v,Jv)=2\sqrt{-1}(\frac{\partial^{2}F}{\partial z_{i}\partial\bar{z}_{i}}dz_{i}\wedge d\bar{z}_{j})_{(i,j)}(v,Jv)=2(\frac{\partial^{2}F}{\partial z_{i}\partial\bar{z}_{i}}dz_{i}\wedge d\bar{z}_{j})_{(i,j)}(v,v).$$

Пример

- ullet На эрмитовом пространстве (V,h) функция $|v|^2:=
 ho(v,v)$ плюрисубгармонична;
- ограничение $F|_N$ плюрисубгармоничной функции $F \in \mathcal{C}^\infty(M)$ с комплексного многообразия (M,J) на комплексное подмногообразие $N \subset M$ плюрисубгармонично,
- любая исчерпывающая плюрисубгармоническая функция происходит из ограничения $|v|^2$ на замкнутое подмногообразие (V,h), т.е. M с такой функцией F аффинно.

Келеров потенциал

Определение

Плюрисубгармоническая функция F на M определяет келерову структуру $(M,J,-\frac{1}{2}dd^{\mathbb{C}}F)$. **Келеров потенциал** (M,J,ω) это исчерпывающая функция $F\in \mathcal{C}^{\infty}(M):-\frac{1}{2}dd^{\mathbb{C}}F=\omega$.

Замечание

На компактном многообразии M невырожденная форма ω не может быть точна, так как

$$\langle [M], [\omega]^n \rangle = \langle [M], [\Omega] \rangle = \int_M \Omega = Vol(M) > 0, \$$
где $\Omega = \omega^{\wedge n}$ индуцированная форма объема.

Таким образом, на M нет плюрисубгармонических функций и потенциала. Локально, келеров потенциал всегда существует и единственен с точностью до прибавления функции

$$h \in \mathcal{C}^{\infty}(M)$$
: $\partial \bar{\partial} h = 0$.

Функция h может быть представлена как Re(f) для некоторой голоморфной функции.

Замечание

Все описанные операции на келеровых многообразиях, кроме фактора, сохраняют свойство иметь потенциал. У нас нет хорошего источника компактных келеровых многообразий. Ниже мы опишем конструкцию келеровой редукции и получим много примеров.

Ваня Яковлев VSHS 9/51 6 Мая. 2020

1.2 Автоморфизмы келерова многообразия

Определение

Симплектоморфизм (M,J,ω) это диффеоморфизм многообразия M, сохраняющий $\omega.$

$$Symp(M) := \{ \phi \in Diff(X) | \phi^* \omega = \omega \}.$$

Симплектическое векторное поле это поле, поток которого лежит в симплектоморфизмах

$$X \in \mathfrak{symp}(M) \Leftrightarrow \phi_X^t \in Symp(M).$$

Замечание

Векторное поле $X\in\mathcal{X}(M)$ симплектическое тогда и только тогда, когда $\iota_X\omega$ замкнута:

$$\mathcal{L}_X\omega = d(\iota_X\omega) + \iota_Xd\omega = d\iota_X\omega.$$

Для $H\in\mathcal{C}^\infty(X)$ рассмотрим симплектическое поле X_H , ω -двойственное dH: $\iota_{X_H}\omega=dH$. Оно Ј-перпендикулярно ρ -градиенту H, $\operatorname{grad}_\rho H=-JX_H$ так как $\iota_{-JX_H}\rho=\iota_{X_H}\omega=dH$.

Определение

 X_H называется **гамильтоновым полем** функции Н. Поток $\phi^1_{X_U}$ порождает Ham(M):

$$\operatorname{{\it Ham}}(M):=\langle \phi^1_{X_H}|\ H\in \mathcal{C}^\infty(M)
angle\subset\operatorname{{\it Symp}}(M),\ \operatorname{{\it ham}}(M)\subset\operatorname{{\it symp}}(M).$$

Определение

Редуктивная группа $G = U_{\mathbb{C}}$ это связная комплексная группа Ли, являющаяся комплексификацией компактной вещественной группы Ли U, т.е такая, что $\mathfrak{g} = \mathfrak{u} \otimes \mathbb{C}$. Келерово действие редуктивной группы $G = U_{\mathbb{C}}$ на (M, J, ω) это гомеоморфизм

$$\Psi: G \to Biholom(M)| \Psi(U) \subset Simp(M).$$

Фундаментальное векторное поле это дифференциал ограничения U o Diff(M) в Id:

$$\xi \in \textit{Hom}(\textit{T}_e\textit{U}, \textit{T}_e\textit{Diff}(\textit{M})) = \textit{Hom}(\mathfrak{u}, \mathcal{X}(\textit{M})) = \mathcal{X}(\textit{M}) \otimes \mathfrak{u}^*,$$

$$\forall x \in M, g \in \mathfrak{u} \langle g, \xi_x \rangle := \frac{\partial}{\partial t}|_{t=0}(exp(gt) \cdot x).$$

Поле ξ определяет гомоморфизм алгебр Ли $\mathfrak u o \mathcal X(M)$ относительно скобки Ли. Отображением момента для келерова действия называется $\mu \in \mathcal C^\infty(M,\mathfrak u^*)$, такое, что

$$\operatorname{grad}_{\rho}\mu = -J\xi \Leftrightarrow d\mu = \iota_{\xi}\omega \Leftrightarrow \forall g \in \mathfrak{u}: \ X_{\langle g,\mu \rangle} = \xi(g).$$

Отображение μ эквиваринтно, если оно переставляет Ψ и коприсоединенное действие $Ad^*_{\mathfrak{u}}$

$$\mathcal{L}_{\xi}\mu=\mathsf{ad}_{\mathfrak{u}}^{*}\mu\Leftrightarrow\forall p\in M,\ \forall g\in U:\ \mu(g\cdot p)=\mathsf{Ad}_{g}^{*}(\mu(p)).$$

Действие $Ad^*_\mathfrak{u}$ определено как $Ad^*_\mathfrak{u}(g):=-(D_eA_g)^*$, для A:U o Aut(U), $A_g(h):=ghg^{-1}$.

6 Maя. 2020

11 / 51

Ваня Яковлев VSHS 11/ 51

Критерий существования отображения моментов

Определение

Скобка Пуассона $\{\cdot,\cdot\}$ это скобка Ли на алгебре функций $\mathcal{C}^{\infty}(M)$, определенная как

$$\forall f, h \in \mathcal{C}^{\infty}(M) \{f, h\} := -\omega(X_f, X_h).$$

Экивариантность отображения моментов μ равносильно согласованности со скобкой Ли

$$\{\mu,\mu\} = -\omega(\xi,\xi) = -\mathcal{L}_{\mathcal{E}}\mu = -\mathsf{ad}^*\mu = -\mu(\mathsf{ad}_{\mathfrak{u}}^*) = \mu(\mathsf{ad}_{\mathfrak{u}}).$$

Замечание

Заметим, что μ это поднятие $\xi:\mathfrak{u}\to\mathfrak{symp}(M)$ в $\mathcal{C}^\infty(M)$ в комплекск алгебр Ли

$$0 \to (H^0(M,\mathbb{R}), \mathit{triv}) \to (\mathcal{C}^\infty(M), \{\cdot, \cdot\}) \xrightarrow{H \mapsto X_H} (\mathfrak{symp}(M), [\cdot, \cdot]) \xrightarrow{X \to [\iota_X \omega]} (H^1(M,\mathbb{R}), \mathit{triv}) \to 0.$$

Существование поднятия равносильно [$\iota_{\xi}\omega$] = 0, это зануление 1-коцикла $\mathfrak u$ в $H^1(M)$. Препятствие к согласованности со скобкой это 2-коцикл $\mathfrak u$ в $H^0(M)$, Таким образом

$$[H^1(\mathfrak{u},H^1(M,\mathcal{R}))=H^2(\mathfrak{u},H^0(M,\mathcal{R}))=0]\Rightarrow [\exists \mu\in\mathcal{C}^\infty(M,\mathfrak{u}):\ d\mu=\iota_\xi\omega,\ \mathcal{L}_\xi\mu=\mathsf{ad}_\mathfrak{u}^*\mu].$$

Следовательно, отображение моментов существует на любом односвязном M. Его можно выбрать эквивариантным, если $H^i(\mathfrak{u})=0$ $i\leq 1$, например для полупростой группы Ли U. (Экививариантное) отображение моментов определено с точностью до (центра) \mathfrak{u}^* .

Гамильтоновы поля для многообразий с потенциалом

Замечание

Пусть $G=U_{\mathbb C}$ действует биголоморфизмами на многообразии с келеровым потенциалом

$$(M, J, \omega), \ \omega = -(1/2)dd^{\mathbb{C}}F.$$

U сохраняет ω тогда и только тогда, когда $L:=\mathcal{L}_{\mathcal{E}}F\in\mathcal{C}^{\infty}(M,\mathfrak{u}^*)$ плюригармонична:

$$\mathcal{L}_{\mathcal{E}}\omega = -(1/2)dd^{\mathbb{C}}L \mid \xi \in \mathfrak{symp}(M) \otimes \mathfrak{u}^* \Leftrightarrow \mathcal{L}_{\mathcal{E}}(\omega) = 0 \Leftrightarrow -dd^{\mathbb{C}}L = 0.$$

Мы можем усреднить F по действию U, чтобы получить новый U-инвариантный потенциал для ω . Тогда L равна 0 и $\mu:=(1/2)\mathcal{L}_{J\xi}F$ это эквивариантное отображение моментов

$$2\iota_{\xi}\omega = -\iota_{\xi}(dd^{\mathbb{C}}F) = -\mathcal{L}_{\xi}(d^{\mathbb{C}}F) + d(\iota_{\xi}d^{\mathbb{C}}F) = -d^{\mathbb{C}}(\mathcal{L}_{\xi}F) + d(\iota_{J\xi}dF) = -d^{\mathbb{C}}L + 2d\mu \Rightarrow \iota_{\xi}\omega = d\mu$$

Пример

Для унитарного действия на эрмитовом пространстве отображение моментов пишется явно

$$\Psi:U o U(V,h),\;\omega=-rac{1}{2}dd^{\mathbb{C}}|v|^{2},\;L=0\Rightarrow\mu=-rac{1}{2}\iota_{\xi}\omega,\;$$
 так как

$$\forall g \in \mathfrak{u}: \ \langle g, \mu \rangle(v) = \mathcal{L}_{\langle g, \xi \rangle} \mu(v) = \frac{1}{2} \mathcal{L}_{Jg} |v|^2 = \frac{1}{2} \rho(J \langle g, \xi_v \rangle v, v) = \frac{1}{2} \omega(v, \langle g, \xi_v \rangle) = -\frac{1}{2} \omega(gv, v).$$

1.3 Действие U на T^*U

Конструкция

Для компактной группы Ли U с формой Киллинга tr рассмотрим структуру группы на T^*U

$$\widehat{U} := T^*U = U \ltimes \mathfrak{u}^* = (U \times \mathfrak{u}, \ (g_1, X_1) \circ (g_2, X_2) = (g_1 \cdot g_2, \ Ad^*(g_2^{-1})X_1 + X_2).$$

Каноническая форма heta на $\widehat{U}=T^*U$ в тривиализации $T\widehat{U}=\widehat{U} imes(\mathfrak{u}\oplus\mathfrak{u}^*)$ имеет вид

$$\forall g \in U, \ v \in T_g^*U, \ l \in T_{(g,v)}(T^*U), \ \theta_{(g,v)}(l) := \pi^*v_{(g,v)}(l) = \langle D\pi_{(g,v)}(l), v \rangle,$$
$$\forall X \in \mathfrak{u}^*, \ (Y,Z) \in \mathfrak{u} \oplus \mathfrak{u}^*, \ \theta_{(g,X)}(Y,Z) = \langle Y,X \rangle.$$

Форма tr определяет почти-комплексную структуру на \widehat{U} , заданную $\mathfrak{u} \oplus \mathfrak{u}^* = \mathfrak{u}_{\mathbb{C}}$. Она интегрируема, так как согласована с вложением $\widehat{U} \subset G := U_{\mathbb{C}}$. На \widehat{U} задана функция

$$F \in \mathcal{C}^{\infty}(\widehat{U}): \ F(g,X) := tr(X,X), \ -\frac{1}{2}d^{\mathbb{C}}F = \theta.$$

F плюрисубгармонична, так как $\omega = d\theta$ -каноническая симплектическая форма. G действует на \widehat{U} слева биголоморфизмами, с фундаментальным полем ξ и отображением моментов μ

$$\xi \in \mathcal{X}(\widehat{U}) \otimes \mathfrak{u}^*, \ \xi_{(g,X)}(Y) = Y \oplus 0 \Rightarrow \langle Y, \mu(g,X) \rangle = \frac{1}{2} \mathcal{L}_{J\xi(Y)} F(g,X) = \langle Y, X \rangle.$$

Таким образом действие келерово с эквивариантным отображением момента $\mu(g,X)=X$. Для U=(V,+) как группы по сложению вычисление продолжает работать и $\mu(q,p)=p$.

Ваня Яковлев

Орбиты коприсоединенного действия

Обозначения

Для $g \in \mathfrak{u}^*$ орбита коприсоединенного действия \mathcal{O}_g есть фактор $\mu^{-1}(\mathcal{O}_g)$ по U

$$\mathcal{O}_g := Ad^*(U)(g) \approx \mu^{-1}(\mathcal{O}_g)/U.$$

Конструкция

Форма tr определяет связность Эресмана на главном U-расслоении $\pi: \mu^{-1}(\mathcal{O}_{\mathfrak{g}}) \to \mathcal{O}_{\mathfrak{g}}$

$$\forall x \in \mu^{-1}(\mathcal{O}_g) \ T_x(\mu^{-1}(\mathcal{O}_g)) = T_x(U \cdot x) \oplus (T_x(U \cdot x))^{\perp tr} \xrightarrow{\mathcal{D}\pi} \mathfrak{u} \oplus T_{\mu(x)}\mathcal{O}_g.$$

Аналогично, метрика, заданная формой tr, позволяет расщепить $T\widehat{U}|_{\mu^{-1}(\mathcal{O}_{\sigma})}$ в сумму

$$T\widehat{\mathcal{U}}|_{\mu^{-1}(\mathcal{O}_g)} = (T(\mu^{-1}(\mathcal{O}_g)))^{\perp tr} \oplus T(\mu^{-1}(\mathcal{O}_g)) = N_{\widehat{\mathcal{U}}/\mu^{-1}(\mathcal{O}_g)} \oplus T(\mu^{-1}(\mathcal{O}_g)).$$

Нормальное расслоение $\mu^{-1}(\mathcal{O}_g)$ в \widehat{U} совпадает с $\operatorname{grad}_{\operatorname{tr}}\mu(\operatorname{\mathfrak{stab}}_g)$, следовательно

$$\mathfrak{u}\oplus\mathfrak{u}^*pprox \mathfrak{u}\oplus J(\mathfrak{stab}_{f g})\oplus T\mathcal{O}_{f g}.$$

Таким образом, мы вложили $T\mathcal{O}_g$ в $\mathfrak{u}\oplus\mathfrak{u}^*$ ортогонально подпространству $\mathfrak{u}\oplus J(\mathfrak{stab}_g)$. Мы получили изоморфизм $T\mathcal{O}_{g} \approx \mathfrak{u}^{*}/J(\mathfrak{stab}_{g})$, который приходит из главного $Stab_{g}$ расслоения

 $Stab_{g} \rightarrow U \rightarrow \mathcal{O}_{g}$.

Форма Кириллова-Константа-Сурье

Определение

Формой Кириллова-Костанта-Сурье на орбите \mathcal{O}_g называется $\omega_{\mathcal{O}_g} \in \Omega^2(\mathcal{O}_g,\mathbb{R})$

$$\forall h \in \mathcal{O}_g \ \forall f_1, f_2 \in T_h \mathcal{O}_g \ \omega_{\mathcal{O}_g,h}(f_1, f_2) = tr([f_1, f_2], h).$$

Предложение

Форма $\omega_{\mathcal{O}_g}$ замкнута и невырождена (см. конспект курса Гамильтонова редукция).

Замечание

Образ вложения $T\mathcal{O}_g o\mathfrak{u}\oplus\mathfrak{u}^*$, заданного разложением на пространстве $T\widehat{U}|_{\mu^{-\mathbf{1}}(\mathcal{O}_g)}$

$$\mathfrak{u}\oplus\mathfrak{u}^*\approx\mathfrak{u}\oplus \textit{J}(\mathfrak{stab}_{\it g})\oplus\textit{TO}_{\it g}$$

не сохраняется оператором J (кроме тривиального случая Ad^* -инвариантного g). Ниже мы обобщим нашу конструкцию на произвольные келеровы действия, то есть снабдим фактор

$$Z_g = \mu^{-1}(g)/U, \ Ad^*g = g$$

(который может быть чем-то интересным) структурой келерова многообразия.

←□ → ←□ → ← 분 → 분 → へ ○

2. Келерова структура на факторе

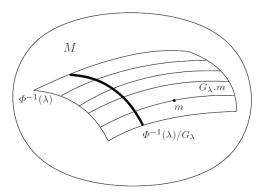


Fig. 5.1. The orbits of the stabilizer group G_{λ} in the preimage $\Phi^{-1}(\lambda)$.

Ваня Яковлев VSHS 17/51 6 Мая, 2020 17/51

2.1 Келерова редукция

Замечание (Гильемин-Стернберг)

Для келерова действия $G=U_{\mathbb C}$ на (M,J,ω) с эквивариантным отображением момента μ и $x\in M$ обозначим U-стабилизатор x за $Stab_x$. Тогда выполнено $Im(d\mu_x)=Ann(\mathfrak{stab}_x)\subset \mathfrak{u}^*$.

Доказательство.

$$\forall v \in \mathcal{T}_{X}M, \ \langle \mathfrak{stab}_{X}, d\mu_{X}(v) \rangle = \omega(\langle \mathfrak{stab}_{X}, \xi_{X} \rangle, v) = 0 \ \Rightarrow Im(d\mu_{X}) \subset Ann(\mathfrak{stab}_{X});$$
$$d\mu_{X}(v)(\mathfrak{u}) = \omega(\xi_{X}(\mathfrak{u}), v) = \omega(\mathcal{T}_{X}(U \cdot X), v) \Rightarrow \ker(d\mu_{X}) = (\mathcal{T}_{X}(U \cdot X))^{\perp \omega};$$

 $\dim Im(d\mu_X) = \dim T_X M/\ker(d\mu_X) = \dim T_X M/T_X(U \cdot X))^{\perp \omega} = \dim(T_X(U \cdot X)) = \dim(Ann(\mathfrak{stab}_X)).$

$$oxed{ ext{E}}$$
Если действие U на $Z_{\mathcal{O}_g}:=\mu^{-1}(\mathcal{O}_g)$ локально-свободно, то $Z_{\mathcal{O}_g}$ - гладкое многообразие:

$$\forall x \in Z_{\mathcal{O}_{\mathcal{E}}} : \mathfrak{stab}_{x} = \{0\} \Rightarrow \mu(x) \notin Critv(\mu).$$

Определение

Келерова редукциея (M,J,ω) по G c эквивариантным отображением момента μ это

$$M_{\text{red}} = M//_{\mathcal{O}_{\sigma}}U := Z_{\mathcal{O}_{\sigma}}/U, \ Z_{\mathcal{O}_{\sigma}} = \mu^{-1}(\mathcal{O}_{g}).$$

Если действие U на $Z_{\mathcal{O}_g}$ свободно, то $Z_{\mathcal{O}_g}$ и M_{red} являются гладкими многообразиями.

Форма Марсдена-Вайнштейна

Конструкция

Пусть действие U на $Z_{\mathcal{O}_g}$ свободно. Тогда M_{red} гладко и задано главное U-расслоение

$$U o Z_{\mathcal{O}_g} o M_{red}$$
.

B точке $x \in Z_{\mathcal{O}_g}$ последовательность $T_x(U \cdot x) o T_x Z_{\mathcal{O}_g} o T_{[x]} M_{red}$ точна, так что

$$T_{[x]}M_{red} pprox T_x Z_{\mathcal{O}_g}/(T_x(U\cdot x)) pprox T_{\mu(x)}\mathcal{O}_g \oplus \ker d\mu_x/(T_x(U\cdot x)) =$$

$$pprox T_{u(x)}\mathcal{O}_{\mathfrak{E}} \oplus (T_{x}(U \cdot x))^{\perp \omega}/(T_{x}(U \cdot x)).$$

Воспользуемся этим, чтобы определить замкнутую 2-форму Марсдена-Вайнштейна $\omega_{\rm red}$ на

$$\forall (\xi_1, [\eta_1]), (\xi_2, [\eta_2]) \in T_{[x]}(Z_g/U), \ \omega_{red, [x]}([\xi], [\eta]) := \omega_{\mathcal{O}_g, \mu(x)}(\xi_1, \xi_2) + \omega_x(\eta_1, \eta_2).$$

Замечание (Марсден-Вайнштейн-Майер)

Покажем невырожденность 2-форма $\omega_{\rm red}$ на $M_{\rm red}$. Так как $\omega_{\mathcal{O}_g}$ невырожденно, достаточно разобраться с индуцированным корректно определенным, кососимметричным спариванием

$$\widehat{\omega_x} \in \Lambda^2(W^{\perp \omega_x}/W)$$
, где $W = T_x(U \cdot x)$.

Любой элемент из ядра $\iota_*\omega_x|_{W^\perp}$ лежит в $(W^\perp)^\perp=W$, так что $\widehat{\omega_x}$ невырождено.

Комплексная структура на M_{red}

Предложение (Хитчин, Карлхеде, Линдстрем, Рочек)

Для Ad^* -инвариантного элемента $g \in \mathfrak{u}^*$ ограничение J с M на $M_{red} = M//_g U$ определяет комплексную структуру J_{red} , для которой $(M,J,\omega)_{red}$ является келеровым многообразием.

Доказательство.

Риманова метрика ho определяет связность Эресмана на расслоении $\pi: \mathsf{Z}_\mathsf{g} o \mathsf{M}_\mathsf{red}$, т.е.

$$\forall x \in Z_g : T_x Z_g = T_x (U \cdot x) \oplus (T_x (U \cdot x))^{\perp \rho} \xrightarrow{\mathcal{D}\pi} \mathfrak{u} \oplus T_x M_{red}.$$

Нормальное расслоение $N_{M/Z_g}pprox (T_{Z_g})^{\perp
ho}$ порождено $\operatorname{grad}_
ho\mu(\mathfrak{u})=-J\xi(\mathfrak{u}).$ Таким образом

$$\forall x \in Z_g: \ T_x M \approx J \mathfrak{u} \oplus \mathfrak{u} \oplus T_x M_{red} = \mathfrak{u} \otimes \mathbb{C} \oplus T_x M_{red}.$$

Следовательно J индуцирует почти-комплексную структуру J_{red} на M_{red} . Она интегрируема, так как выполнено $\nabla^{LC}_{\rho_{red}}(J_{red}) = \nabla^{LC}_{\rho}(J)|_{T_x M_{red}} = 0$, следовательно $(M,J,\omega)_{red}$ келерово. \square

Мы построили келеров фактор (M,J,ω) по действию G! Так как поднятие каждой функции с M_{red} на M коммутирует с μ , (на филосовском уровне) это обобщение теоремы Нетер.

Замечание

Обобщение этого утверждения на $M//_{\mathcal{O}_g}U$ не верно для орбиты \mathcal{O}_g , если $\dim \mathcal{O}_g \neq 0$.

2.2 GIT фактор

Определение

Пусть M аффинное алгебраическое многообразие с алгебраическим действием группы G

$$M = Spec(M[X]).$$

Замыкание любой G-орбиты $\overline{\mathcal{O}_x}$ содержит единственную замкнутую орбиту. Замкнутые орбиты параметризованы категорным фактором $M/G:=Spec\mathbb{C}[M]^G$ так что

$$\pi: M \to M/G, \ \pi(x) = \pi(y) \Leftrightarrow \overline{\mathcal{O}_x} \cap \overline{\mathcal{O}_y} \neq \emptyset.$$

Любой G-инвариантный морфизм $\phi:M\to N$ пропускается через эту проекцию $\phi=\widehat{\phi}\circ\pi.$ GIT-фактор Мамфорда, отвечающий характеру $\chi:G\to\mathbb{C}^*$ это многообразие

$$M/_\chi^{GIT}G=Proj(\mathbb{C}[M imes\mathbb{C}]^G)=Proj(S),$$
 где $S:=igoplus H^0(L^k)^G,\ k\geq 0,$

 $a\ L$ это тривиальное линейное расслоение над $M\ c\ G$ -эквивариантной структурой, заданной

$$L = M \times \mathbb{C} \to M \ \forall (x, \lambda) \in L : \ g \cdot (x, \lambda) := (g \cdot x, \chi(g) \cdot \lambda).$$

Пример

Многообразие M можно эквивариантно вложить в векторное пространство V, на котором группа действует линейно. А именно, существует эквивариантная сюрьекция на $\mathbb{C}[M]$ из любого G-инвариантного подпространства $\mathbb{C}[M]$, порождающего всю алгебру.

Описание фактора

Замечание

Для линеаризаци действия G на M с помощью тривиального характера $\chi=1$ имеем

$$S = \mathbb{C}[M]^G \otimes \mathbb{C}[z] \Rightarrow M/_{\chi=1}^{GIT} G = M/G.$$

C другой стороны, для произвольного действия и сюрьективного характера χ имеем

$$S=\mathbb{C}[M]^K$$
, где $K:=\ker\chi\Rightarrow M/_\chi^{GIT}G=(M/K)/_{id}^{GIT}\mathbb{C}^*$.

Замечание

Рассмотрим самый важный случай $G = \mathbb{C}^*$, $\chi = id$. Мы можем геометрически описать $M/\overset{c}{\sqcup} T\mathbb{C}^*$ следующим образом. Рассмотрим категорный фактор $\hat{M}:=M imes \mathbb{C}/\mathbb{C}^*$ по действию, заданному линеаризацией. Действие \mathbb{C}^* вдоль слоев L переносится на $\hat{\mathsf{M}}$. Тогда

$$M/_{id}^{GIT}\mathbb{C}^*=(\hat{M}-\hat{M}^{\mathbb{C}^*})/\mathbb{C}^*,$$
 где $\hat{M}^{\mathbb{C}^*}$ - неподвижные точки.

Пример

 Π усть действие \mathbb{C}^* притягивающее, то есть стягивает M на множество неподвижных своих точек $N = M^{\mathbb{C}^*}$. Тогда многообразие $Proj(\mathbb{C}[M])$ описывается как $(M-N)/\mathbb{C}^*$. Например,

$$\mathbb{C}^{n+1}/_{id}^{GIT}\mathbb{C}^* = \mathbb{CP}^n$$
.

Стабильные орбиты

Определение

Точка $x \in M$ называется χ -полустабильной для действия G, если $\exists f \in S_{d>0}: f(x) \neq 0$. Полустабильная точка $x \in M$ называется χ -полистабильной, если \mathcal{O}_x замкнута в M^{ss} .

Замечание

Для точки $x \in M$ и характера χ -полустабильность можно охарактеризовать как:

$$x \in M^{ss} \Leftrightarrow \overline{\mathcal{O}_{(x,1)}} \cap (M \times \{0\}) = \emptyset,$$

$$x \in M^{ps} \Leftrightarrow \mathcal{O}_{(x,1)}$$
 замкнуто.

В частности, точка х полустабильна тогда и только тогда, когда единственная замкнутая орбита $\pi(x)$ в замыкании $\pi(x) \subset \overline{\mathcal{O}_{(x,1)}}$ сама является полистабильной.

Предложение (Критерий Гильберта-Мамфорда)

Точка x полустабильна если она полустабильна для всех однопрарметрических подгрупп

$$orall \lambda:\mathbb{C}^* o G$$
 если $[\exists y=\lim_{t o 0}\lambda(t)x]$ то $[m=deg(\chi\circ\lambda)\geq 0]$, где $\chi\circ\lambda(t)=t^m.$

Следовательно, χ -полустабильность это условие на характер, заданный ограничением $\chi|_{U}$.

Теорема Мамфорда

Предложение (Мамфорд)

Рассмотрим аффинное многообразие M с алгебраическим действием G и характер χ . Тогда

- ullet GIT-фактор $M/_\chi^{\sf GIT}$ G является категорным фактором $M_\chi^{\sf ss}$;
- его точки параметризуют множество полистабильных орбит;
- подмножество орбит M^s/G , имеющих конечный стабилизатор, открыто;
- более того, многообразие M^s/G гладкое.

Замечание

Эту теорема дает конструкцию GIT-фактора, совсем не апеллирующую к алгебраической геометрии. Действительно, $M/_{\chi}^{\text{GIT}} G$ это просто множество полистабильных орбит

$$x \in M^{ps} \Leftrightarrow \mathcal{O}_{(x,1)}$$
 компактно, $M/_{\chi}^{GIT}G = M^{ps}/G$.

24/51

. Tогда не очевидным становится существование комплексной структуры на M^{s}/G .

◆ロト ◆団ト ◆重ト ◆重ト ■ めなべ

6 Мая. 2020

24 / 51

Ваня Яковлев VSHS

2.3 Теорема Кемпа-Несс

Предложение (Кемп-Несс)

Для келерова действия на (M,J,ω) , уважающего потенциал $F:~\mathcal{L}_{\xi}F=0$ и характера χ

$$\mu := 1/2\mathcal{L}_{J\xi}F, \ \zeta := (i/2)d_e\chi|_{\mathfrak{u}} \in \mathfrak{u}^*.$$

Тогда χ -полистабильность может быть охарактеризована следующим образом

$$\exists g \in G: \ \mu(g \cdot x) = -\zeta \Rightarrow x \in M_{\chi}^{ps} \Rightarrow \exists ! g \in G/U: \ \mu(g \cdot x) = -\zeta.$$

Следствие

Из теоремы Мамфорда и теоремы Кемпа-Несс следует существование биголоморфизма

$$M/_{\chi}^{GIT}G \approx M_{\chi}^{ps}/G \approx M//_{\zeta}G.$$

Это позволяет построить алгебраическую структуру на $M//_{\zeta}G$ и келерову на $M/_{\chi}^{\mathsf{GIT}}G$.

Замечание

Группа G действует на L келерово, уважая потенциал $\widehat{F}(x,\lambda):=F(x)+|\lambda^2|$, c отображением моментов $\widehat{\mu}:=\mu+\zeta$. Таким образом, теорема Кемпа-Несс утверждает, что

 $\widehat{\mu}^{-1}(0)\cap\mathcal{O}_{(x,1)}
eq\emptyset\Rightarrow\mathcal{O}_{(x,1)}$ замкнута $\Rightarrow\widehat{\mu}^{-1}(0)\cap\mathcal{O}_{(x,1)}=\mathsf{g}\mathsf{U}\mathsf{x}.$

Ваня Яковлев

Функция Кемпа-Несс

Определение

Функция Кемпа-Несс $p_x \in \mathcal{C}^{\infty}(G/U)$ точки $x \in M^{ss}$ определяется как $p_x(g) := \widehat{F}(g \cdot (x,1))$.

Предложение

Критическая точка функции Кемпа-Несс определяет пересечение орбиты с $\widehat{\mu}^{-1}(0)$:

$$g \in Crit(p_x) \Leftrightarrow \widehat{\mu}(g \cdot (x,1)) = 0.$$

Кроме того, единственная возможная $Stab_{(x,1)}$ орбита $Crit(p_x)$ это глобальный минимум.

Доказательство.

Единица является критической точкой $e \in Crut(p_x)$ тогда и только тогда, когда $\widehat{\mu}(x,1) = 0$:

$$D_e p_x = \mathcal{L}_{J\mathcal{E}} \widehat{F}(x,1) = \widehat{\mu}.$$

Теперь мы получили утверждение $\forall g \in Crit(p_x)$, так как $p_x(g) = p_{g \cdot x}(e)$. Заметим, что

$$\forall \xi \in J\mathfrak{u} - \mathfrak{stab}_{(x,1)}, \ \partial_{\xi}^2 p_x > 0, \$$
так как J плюрисубгармонична

т.е. p_x выпукла вверх на дополнении до $\mathfrak{stab}_{(x,1)}$, так что единственной ее критической точкой может быть глобальный минимум. Два глобальных минимума можно соединить

Доказательство теоремы Кемпа-Несс

Предложение

Орбита $\mathcal{O}_{(x,1)}\subset L$ группы G замкнута тогда и только тогда, когда p_x достигает минимума.

Доказательство в одну сторону.

Функция p_x спускается на $\mathcal{O}_{(x,1)}$. Если орбита замкнута, то p_x достигает минимума, так как функция $\hat{F} \geq F$ ограничена снизу (по определению, потенциал исчерпывающий).

Lemma

Пусть p_{x} достигает минимума в е. Тогда функция $\widetilde{p_{\mathsf{x}}}: Stab_{(\mathsf{x},1)} \backslash G/U \to \mathbb{R}$ собственная.

Вывод доказательства в другую сторону из леммы.

Пусть g - минимум p_x . Тогда $\widetilde{p_{g\cdot x}}$ собственна. Рассмотрим $g_i(x,1) \to (y,\lambda) \in L$. Тогда $\widetilde{p_{g\cdot x}}(g_i)$ ограничена, следовательно g_i лежат на компакте в $\mathcal{O}_{(x,1)}$ и тоже имеет предел.

