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1 Introduction

Here we review the ADHM construction, that is the construction of the
SU(n) bundle over S4 with (anti-)self-dual connection and given instanton
number k. The construction is motivated by the twistor map π : CP 3 →
S4 which can be viewed as the way to consider simultaneously all possible
complex structures on the tangent fibers to a sphere. This interpretation
allows to address the (anti-)self-dual forms as the forms with special complex
coordinates dependence.

2 Basic example: SU(2) k = 1 instanton

The first example to be considered is SU(2) instanton with instanton number
k = 1. This instanton appears in tautological bundle over S4. The most
natural formalism to describe it is quaternions since

S4 ' HP 1 = {(x : y) ∈ H2 : (λx : λy) ∼ (x : y)} (1)

Tautological bundle naturally arises as a bundle over HP 1 where the slice
over a point is the line that represents this point in H2. It is fully described
by the following data

ϕ0(x, t) =
(tx, t)√
1 + |x|2

over (x : 1) ∈ U0

ϕ∞(x, t) =
(t, tx)√
1 + |x|2

over (1 : x) ∈ U∞
(2)
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The maps ϕ0(x, t), ϕ1(x, t) introduce the local coordinates on the correspond-
ing open sets. To find the transition function between them we pick a point
of the bundle that has the coordinates (x, t) under ϕ0 and compute its coordi-
nates under ϕ1. The x coordinate is clearly gets inverted and the t coordinate
follows from the relation

(tx, t)√
1 + |x|2

=
(tx, txx−1)

|x|
√

1 + |x−1|2
(3)

Therefore the transition function is

g = g0∞ =
x

|x|
(4)

Note that it acts from the right on a section. The next step is to specify the
connection which we now do ad hoc for the needs of the example.

A = =
{ xdx̄

1 + |x|2
}

=
1

2

xdx̄− dxx̄
1 + |x|2

, x ∈ U0 (5)

Note that it has been transposed to stick to the traditional notation where
the connection acts from the left. To verify that this is indeed a globally
defined connection we do the gauge transformation:

g−1=
{ xdx̄

1 + |x|2
}
g + g−1dg = =

{
x−1

−dxx̄
1 + |x|2

x+ x−1dx
}

=

=
{ x−1dx

1 + |x|2
}

= =
{x−1d(x̄−1)

1 + |x|−2
}
, x−1 ∈ U∞

(6)

So the connection in the vicinity of ∞ is not only correctly defined but also
given by the same formula. It remains to compute the curvature which is
straightforward:

F = dA+A ∧A =
dx ∧ dx̄

(1 + |x|2)2
(7)

It is self-dual:

dx ∧ dx̄ = −2i(dx1 ∧ dx2 + dx3 ∧ dx4)− 2j(dx1 ∧ dx3 − dx2 ∧ dx4)
− 2k(dx1 ∧ dx4 + dx2 ∧ dx3)

(8)

The instanton number follows from the following integral

k = − 1

8π2

∫
S4

tr(F ∧ F ) =
Vol S3

8π2

∫ ∞
0

48r3dr

(1 + r2)4
= 1 (9)
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3 Unitary bundles over CP 3 and S4

We now turn to the general SU(n) k-instanton. First, we construct a unitary
bundle over CP 3 which turns out to be closely related to the original problem.
In the construction we use the following

• σ : CP 3 → CP 3, σ(z1 : z2 : z3 : z4) = (−z̄2 : z̄1 : −z̄4 : z̄3)

The map σ is anti-involution which distinguishes the lines in CP 3 which
are preserved by it. These lines are called real lines (although they are
actually 2-spheres as real manifolds). The real lines are the fibers of
the projection

π : CP 3 → S4 ' HP 1

π(z1 : z2 : z3 : z4) = (z1 + z2j : z3 + z4j)
(10)

The real line through a point z is the line through the pair of points
(z, σz).

• W - complex vector space, dimCW = k

• V - complex vector space, dimC V = 2k + n

• 〈 , 〉 - Hermitian form on V

• A(z) = ziA
i : W → V - full rank map, 〈A(z), A(σz)〉 = 0 for all z

Now the construction of the bundle is straightforward:

E(z) = (A(z)⊕ A(σz))⊥ (11)

It is a unitary bundle over CP 3, rankE = n. By construction, E is trivial
over the lines (z, σz) ⊂ CP 3.

As we already pointed out, φ : E → CP 3 is trivial above the fibers of
the projection π : CP 3 → S4. It follows that there exist π̃, φ̂ such that the
following diagram commutes

E Ê

CP 3 S4

φ

π̃

φ̂

π

The bundle Ê is a unitary bundle over S4. It remains to derive the anti-self-
dual connection.
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4 Anti-self-dual forms and holomorphicity

In this section we discuss the following statement: the anti-self-dual forms on
S4 are the forms that have type (1, 1) for all compatible complex structures.

A type of a 2-form is understood in terms of the complex coordinates and
is represented by a pair

(# holomorphic 1-forms, # anti-holomorphic 1-forms) (12)

This statement actually boils down to the representation theory of U(2) ⊂
SO(4). Taking into account that the statement is local we replace S4 with R4.
The space Ω = Λ2R4 of 2-forms on R4 has dimension 6. As a representation
of SO(4) it decomposes into the sum of self-dual and anti-self-dual forms

Ω = Ω+ ⊕ Ω− (13)

It cannot be decomposed further since there is no SO(4)-invariant 2-form.
The subgroup U(2) ⊂ SO(4) can be realized as the centralizer of the

”standard” complex structure J0 ∈ SO(4), J2
0 = −1 (any other complex

structure corresponds to a different embedding1). In other words, U(2) are
those SO(4) transformations which are complex-linear for the given complex
structure on R4. The relation between complex structures and complex co-
ordinates is straightforward. Namely, a given complex structure J ∈ SO(4),
J2 = −1 is conjugate via C ∈ SO(4) to the standard one:

J = C−1J0C (14)

J0 =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 , C =


a b −c −d
−b a −d c
c d a b
d −c −b a

 , (15)

1To be precise, there are two non-conjugate ways to embed U(2)→ SO(4), and here we
focus on the conjugacy class represented by J0, so we consider only ”a half” of all possible
SO(4) complex structures on R4. The other conjugacy class can be represented by

J1 =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0


The complex structures J0 and J1 are conjugated via an improper orthogonal transforma-
tion.

4



where a2 + b2 + c2 + d2 = 1. The matrix C is defined up to U(2) transfor-
mation since J0 commutes with U(2). Once C is fixed one introduces the
complex coordinates in R4 by the following formulas (which just state that
J0 corresponds to the standard complex coordinates)

z1 = y1 + iy2

z2 = y3 + iy4,
(16)

where 
y1
y2
y3
y4

 =


a b −c −d
−b a −d c
c d a b
d −c −b a



x1
x2
x3
x4

 (17)

Excluding y’s we get

x1 + ix2 = (a+ ib)z1 + (c+ id)z̄2

x3 + ix4 = −(c+ id)z̄1 + (a+ ib)z2
(18)

Now we consider Ω, as a representation of U(2)

Ω = Ω(2,0) ⊕ Ω(1,1) ⊕ Ω(0,2) = Ω(2,0) ⊕ Ω
(1,1)
0 ⊕ 〈ω0〉 ⊕ Ω(0,2) (19)

The 2-form ω0 = dz1 ∧ dz̄1 + dz2 ∧ dz̄2 where z1, z2 are complex coordinates
introduced by a complex structure. The representation Ω

(1,1)
0 is irreducible

(which is evident since there is an element of weight 2, dz1 ∧ dz̄2) and thus
coincides with Ω+ or Ω−. The form ω0 is self-dual. Therefore

Ω
(1,1)
0 = Ω− (20)

The conclusion is that anti-self-dual forms are precisely those that have type
(1, 1) for all compatible complex structures.

5 Anti-self-dual connection

Clearly, there is orthogonal projection P̂ : S4×V → Ê. The connection Â in
Ê is naturally constructed via orthogonal projection of the trivial connection
in S4 × V . Its pullback A = φ̃∗(Â) is also given by orthogonal projection of
the trivial connection.

5



Explicitly, we have an orthonormal basis of sections

E(z) = (E1(z), ..., En(z)) (21)

The orthogonal projector is given by P = EE∗. Suppose we have a column
of coordinates f(z) = (f1(z), ...fn(z))T which represents a section. We now
compute the covariant derivative

(d+A)(Ef) = EE∗d(Ef) = E(d+ E∗dE)f =⇒ A = E∗dE (22)

The resulting connection is SU(n) connection indeed:

A∗ = dE∗E = −E∗dE = −A (23)

The curvature F of A is

F = dA+A ∧A = dE∗ ∧ dE + E∗dE ∧ E∗dE (24)

It’s not hard to see that F has type (1, 1). First, we rewrite (24) in terms of
the orthogonal projector

F = −E∗d(1− EE∗) ∧ dE = −E∗d(1− P ) ∧ dE (25)

By construction of the bundle E we have

(1− P )dE = A(z)X + A(σz)Y (26)

for some matrix-valued 1-forms X, Y . Now we use (26) and the orthogonality
conditions: A(z), A(σz), E are all pairwise orthogonal.

A∗(z)A(z)X = A∗(z)dE = −dA∗(z)E =⇒ X is (0, 1) form (27)

A∗(σz)A(σz)Y = A∗(σz)dE = −dA∗(σz)E =⇒ Y is (1, 0) form (28)

Using again the orthogonality of E to A(z), A(σz), we deduce from (25),
(26) that F is of type (1, 1).

Remember that A is a connection in E and what we are primarily inter-
ested in is the corresponding connection Â in Ê. To extract some information
about Â we return to the map π : CP 3 → S4 and consider its restriction to
an open set:

π(z1 : z2 : z3 : z4) = (z1 + z2j : z3 + z4j) ∼

∼
( z̄3z1 + z4z̄2 + (−z4z̄1 + z̄3z2)j

|z3|2 + |z4|2
: 1
) (29)

At this point z1, z2 can be considered as local complex coordinates on R4,
while z3, z4 parameterize complex structures, cf. (18). Therefore if π∗F̂ has
type (1, 1) then F̂ has type (1, 1) for all compatible complex structures, so
by (20) F̂ is anti-self-dual.
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6 ADHM equations

It remains to derive the equations on the matrix A that was used in the
construction of the bundle.

A = z1A1 + z2A2 + z3A3 + z4A4 (30)

A∗(σz)A(z) = 0 is equivalent to

A†1A1 − A†2A2 = 0

A†3A3 − A†4A4 = 0

A†1A3 − A†4A2 = 0

A†1A4 + A†3A2 = 0

A†1A2 = 0

A†3A4 = 0

(31)

Bases changes in W ' Ck, V ' C2k+n induce transformations

Ai → UAiL, U ∈ U(2k + n), L ∈ GL(k) (32)

By A3,4 → A3,4L we simultaneously diagonalize A†3A3 and A†4A4.
Then we use A3,4 → UA3,4 to put the matrices into the block-diagonal

form (it is possible due to A†3A4 = 0)

A3 =

 D1

0k×k
0n×k

 , A4 =

0k×k
D2

0n×k

 (33)

Then we use L again to make D1 = Id. The equations on A3, A4 reduce
to D†2D2 = Id. So apply U again to set D2 = −Id:

A3 =

Idk×k0k×k
0n×k

 , A4 =

 0k×k
−Idk×k

0n×k

 (34)

Then we use

A†1A3 − A†4A2 = 0

A†1A4 + A†3A2 = 0
(35)
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to conclude

A1 =

B†1B†2
I†

 , A2 =

 B2

−B1

J

 (36)

The two remaining equations

A†1A2 = 0

A†1A1 − A†2A2 = 0
(37)

acquire the form (ADHM equations)

[B1, B2] + IJ = 0

[B†1, B1] + [B†2, B2]− II† + J†J = 0
(38)

7 Conclusion

We provided a self-consistent review of ADHM construction. The one point
that can be added concerns the proof of ”F has type (1, 1)”. We preferred to
provide a direct computation although the fact has simple geometric mean-
ing. Namely, if we are given a bundle with holomorphic and unitary struc-
tures (which, of course, are given by different sets of local trivializations) and
a connection that is compatible with both of them, then the curvature of this
connection has type (1, 1). The connection A is by construction compatible
with both structures, so the calculation can actually be omitted.
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