Review of the ADHM construction

Artem Stoyan

30 July, 2020

1 Introduction

Here we review the ADHM construction, that is the construction of the $S U(n)$ bundle over S^{4} with (anti-)self-dual connection and given instanton number k. The construction is motivated by the twistor map $\pi: \mathbb{C} P^{3} \rightarrow$ S^{4} which can be viewed as the way to consider simultaneously all possible complex structures on the tangent fibers to a sphere. This interpretation allows to address the (anti-)self-dual forms as the forms with special complex coordinates dependence.

2 Basic example: $S U(2) k=1$ instanton

The first example to be considered is $S U(2)$ instanton with instanton number $k=1$. This instanton appears in tautological bundle over S^{4}. The most natural formalism to describe it is quaternions since

$$
\begin{equation*}
S^{4} \simeq \mathbb{H} P^{1}=\left\{(x: y) \in \mathbb{H}^{2}:(\lambda x: \lambda y) \sim(x: y)\right\} \tag{1}
\end{equation*}
$$

Tautological bundle naturally arises as a bundle over $\mathbb{H} P^{1}$ where the slice over a point is the line that represents this point in \mathbb{H}^{2}. It is fully described by the following data

$$
\begin{align*}
& \varphi_{0}(x, t)=\frac{(t x, t)}{\sqrt{1+|x|^{2}}} \text { over }(x: 1) \in U_{0} \\
& \varphi_{\infty}(x, t)=\frac{(t, t x)}{\sqrt{1+|x|^{2}}} \text { over }(1: x) \in U_{\infty} \tag{2}
\end{align*}
$$

The maps $\varphi_{0}(x, t), \varphi_{1}(x, t)$ introduce the local coordinates on the corresponding open sets. To find the transition function between them we pick a point of the bundle that has the coordinates (x, t) under φ_{0} and compute its coordinates under φ_{1}. The x coordinate is clearly gets inverted and the t coordinate follows from the relation

$$
\begin{equation*}
\frac{(t x, t)}{\sqrt{1+|x|^{2}}}=\frac{\left(t x, t x x^{-1}\right)}{|x| \sqrt{1+\left|x^{-1}\right|^{2}}} \tag{3}
\end{equation*}
$$

Therefore the transition function is

$$
\begin{equation*}
g=g_{0 \infty}=\frac{x}{|x|} \tag{4}
\end{equation*}
$$

Note that it acts from the right on a section. The next step is to specify the connection which we now do ad hoc for the needs of the example.

$$
\begin{equation*}
\mathcal{A}=\Im\left\{\frac{x d \bar{x}}{1+|x|^{2}}\right\}=\frac{1}{2} \frac{x d \bar{x}-d x \bar{x}}{1+|x|^{2}}, x \in U_{0} \tag{5}
\end{equation*}
$$

Note that it has been transposed to stick to the traditional notation where the connection acts from the left. To verify that this is indeed a globally defined connection we do the gauge transformation:

$$
\begin{array}{r}
g^{-1} \Im\left\{\frac{x d \bar{x}}{1+|x|^{2}}\right\} g+g^{-1} d g=\Im\left\{x^{-1} \frac{-d x \bar{x}}{1+|x|^{2}} x+x^{-1} d x\right\}= \\
\Im\left\{\frac{x^{-1} d x}{1+|x|^{2}}\right\}=\Im\left\{\frac{x^{-1} d\left(\bar{x}^{-1}\right)}{1+|x|^{-2}}\right\}, x^{-1} \in U_{\infty} \tag{6}
\end{array}
$$

So the connection in the vicinity of ∞ is not only correctly defined but also given by the same formula. It remains to compute the curvature which is straightforward:

$$
\begin{equation*}
F=d \mathcal{A}+\mathcal{A} \wedge \mathcal{A}=\frac{d x \wedge d \bar{x}}{\left(1+|x|^{2}\right)^{2}} \tag{7}
\end{equation*}
$$

It is self-dual:

$$
\begin{align*}
d x \wedge d \bar{x}=-2 i\left(d x_{1} \wedge d x_{2}\right. & \left.+d x_{3} \wedge d x_{4}\right)-2 j\left(d x_{1} \wedge d x_{3}-d x_{2} \wedge d x_{4}\right) \\
& -2 k\left(d x_{1} \wedge d x_{4}+d x_{2} \wedge d x_{3}\right) \tag{8}
\end{align*}
$$

The instanton number follows from the following integral

$$
\begin{equation*}
k=-\frac{1}{8 \pi^{2}} \int_{S^{4}} \operatorname{tr}(F \wedge F)=\frac{\mathrm{Vol} S^{3}}{8 \pi^{2}} \int_{0}^{\infty} \frac{48 r^{3} d r}{\left(1+r^{2}\right)^{4}}=1 \tag{9}
\end{equation*}
$$

3 Unitary bundles over $\mathbb{C} P^{3}$ and S^{4}

We now turn to the general $S U(n) k$-instanton. First, we construct a unitary bundle over $\mathbb{C} P^{3}$ which turns out to be closely related to the original problem. In the construction we use the following

- $\sigma: \mathbb{C} P^{3} \rightarrow \mathbb{C} P^{3}, \sigma\left(z_{1}: z_{2}: z_{3}: z_{4}\right)=\left(-\bar{z}_{2}: \bar{z}_{1}:-\bar{z}_{4}: \bar{z}_{3}\right)$

The map σ is anti-involution which distinguishes the lines in $\mathbb{C} P^{3}$ which are preserved by it. These lines are called real lines (although they are actually 2 -spheres as real manifolds). The real lines are the fibers of the projection

$$
\begin{align*}
\pi: \mathbb{C} P^{3} & \rightarrow S^{4} \simeq \mathbb{H} P^{1} \\
\pi\left(z_{1}: z_{2}: z_{3}: z_{4}\right) & =\left(z_{1}+z_{2} j: z_{3}+z_{4} j\right) \tag{10}
\end{align*}
$$

The real line through a point z is the line through the pair of points $(z, \sigma z)$.

- W - complex vector space, $\operatorname{dim}_{\mathbb{C}} W=k$
- V - complex vector space, $\operatorname{dim}_{\mathbb{C}} V=2 k+n$
- \langle,$\rangle - Hermitian form on V$
- $A(z)=z_{i} A^{i}: W \rightarrow V$ - full rank map, $\langle A(z), A(\sigma z)\rangle=0$ for all z

Now the construction of the bundle is straightforward:

$$
\begin{equation*}
E(z)=(A(z) \oplus A(\sigma z))^{\perp} \tag{11}
\end{equation*}
$$

It is a unitary bundle over $\mathbb{C} P^{3}$, $\operatorname{rank} E=n$. By construction, E is trivial over the lines $(z, \sigma z) \subset \mathbb{C} P^{3}$.

As we already pointed out, $\phi: E \rightarrow \mathbb{C} P^{3}$ is trivial above the fibers of the projection $\pi: \mathbb{C} P^{3} \rightarrow S^{4}$. It follows that there exist $\tilde{\pi}, \hat{\phi}$ such that the following diagram commutes

The bundle \hat{E} is a unitary bundle over S^{4}. It remains to derive the anti-selfdual connection.

4 Anti-self-dual forms and holomorphicity

In this section we discuss the following statement: the anti-self-dual forms on S^{4} are the forms that have type $(1,1)$ for all compatible complex structures.

A type of a 2 -form is understood in terms of the complex coordinates and is represented by a pair
(\# holomorphic 1-forms, \# anti-holomorphic 1-forms)

This statement actually boils down to the representation theory of $U(2) \subset$ $S O(4)$. Taking into account that the statement is local we replace S^{4} with \mathbb{R}^{4}. The space $\Omega=\Lambda^{2} \mathbb{R}^{4}$ of 2 -forms on \mathbb{R}^{4} has dimension 6 . As a representation of $S O(4)$ it decomposes into the sum of self-dual and anti-self-dual forms

$$
\begin{equation*}
\Omega=\Omega^{+} \oplus \Omega^{-} \tag{13}
\end{equation*}
$$

It cannot be decomposed further since there is no $S O(4)$-invariant 2-form.
The subgroup $U(2) \subset S O(4)$ can be realized as the centralizer of the "standard" complex structure $J_{0} \in S O(4), J_{0}^{2}=-1$ (any other complex structure corresponds to a different embedding ${ }^{1}$). In other words, $U(2)$ are those $S O(4)$ transformations which are complex-linear for the given complex structure on \mathbb{R}^{4}. The relation between complex structures and complex coordinates is straightforward. Namely, a given complex structure $J \in S O(4)$, $J^{2}=-1$ is conjugate via $C \in S O(4)$ to the standard one:

$$
\begin{gather*}
J=C^{-1} J_{0} C \tag{14}\\
J_{0}=\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right), C=\left(\begin{array}{cccc}
a & b & -c & -d \\
-b & a & -d & c \\
c & d & a & b \\
d & -c & -b & a
\end{array}\right), \tag{15}
\end{gather*}
$$

[^0]where $a^{2}+b^{2}+c^{2}+d^{2}=1$. The matrix C is defined up to $U(2)$ transformation since J_{0} commutes with $U(2)$. Once C is fixed one introduces the complex coordinates in \mathbb{R}^{4} by the following formulas (which just state that J_{0} corresponds to the standard complex coordinates)
\[

$$
\begin{align*}
& z_{1}=y_{1}+i y_{2} \tag{16}\\
& z_{2}=y_{3}+i y_{4},
\end{align*}
$$
\]

where

$$
\left(\begin{array}{l}
y_{1} \tag{17}\\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right)=\left(\begin{array}{cccc}
a & b & -c & -d \\
-b & a & -d & c \\
c & d & a & b \\
d & -c & -b & a
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)
$$

Excluding y 's we get

$$
\begin{align*}
& x_{1}+i x_{2}=(a+i b) z_{1}+(c+i d) \bar{z}_{2} \\
& x_{3}+i x_{4}=-(c+i d) \bar{z}_{1}+(a+i b) z_{2} \tag{18}
\end{align*}
$$

Now we consider Ω, as a representation of $U(2)$

$$
\begin{equation*}
\Omega=\Omega^{(2,0)} \oplus \Omega^{(1,1)} \oplus \Omega^{(0,2)}=\Omega^{(2,0)} \oplus \Omega_{0}^{(1,1)} \oplus\left\langle\omega_{0}\right\rangle \oplus \Omega^{(0,2)} \tag{19}
\end{equation*}
$$

The 2 -form $\omega_{0}=d z_{1} \wedge d \bar{z}_{1}+d z_{2} \wedge d \bar{z}_{2}$ where z_{1}, z_{2} are complex coordinates introduced by a complex structure. The representation $\Omega_{0}^{(1,1)}$ is irreducible (which is evident since there is an element of weight $2, d z_{1} \wedge d \bar{z}_{2}$) and thus coincides with Ω^{+}or Ω^{-}. The form ω_{0} is self-dual. Therefore

$$
\begin{equation*}
\Omega_{0}^{(1,1)}=\Omega^{-} \tag{20}
\end{equation*}
$$

The conclusion is that anti-self-dual forms are precisely those that have type $(1,1)$ for all compatible complex structures.

5 Anti-self-dual connection

Clearly, there is orthogonal projection $\hat{P}: S^{4} \times V \rightarrow \hat{E}$. The connection $\hat{\mathcal{A}}$ in \hat{E} is naturally constructed via orthogonal projection of the trivial connection in $S^{4} \times V$. Its pullback $\mathcal{A}=\tilde{\phi}^{*}(\hat{\mathcal{A}})$ is also given by orthogonal projection of the trivial connection.

Explicitly, we have an orthonormal basis of sections

$$
\begin{equation*}
E(z)=\left(E_{1}(z), \ldots, E_{n}(z)\right) \tag{21}
\end{equation*}
$$

The orthogonal projector is given by $P=E E^{*}$. Suppose we have a column of coordinates $f(z)=\left(f_{1}(z), \ldots f_{n}(z)\right)^{T}$ which represents a section. We now compute the covariant derivative

$$
\begin{equation*}
(d+\mathcal{A})(E f)=E E^{*} d(E f)=E\left(d+E^{*} d E\right) f \Longrightarrow \mathcal{A}=E^{*} d E \tag{22}
\end{equation*}
$$

The resulting connection is $S U(n)$ connection indeed:

$$
\begin{equation*}
\mathcal{A}^{*}=d E^{*} E=-E^{*} d E=-\mathcal{A} \tag{23}
\end{equation*}
$$

The curvature F of \mathcal{A} is

$$
\begin{equation*}
F=d \mathcal{A}+\mathcal{A} \wedge \mathcal{A}=d E^{*} \wedge d E+E^{*} d E \wedge E^{*} d E \tag{24}
\end{equation*}
$$

It's not hard to see that F has type (1, 1). First, we rewrite (24) in terms of the orthogonal projector

$$
\begin{equation*}
F=-E^{*} d\left(1-E E^{*}\right) \wedge d E=-E^{*} d(1-P) \wedge d E \tag{25}
\end{equation*}
$$

By construction of the bundle E we have

$$
\begin{equation*}
(1-P) d E=A(z) X+A(\sigma z) Y \tag{26}
\end{equation*}
$$

for some matrix-valued 1-forms X, Y. Now we use (26) and the orthogonality conditions: $A(z), A(\sigma z), E$ are all pairwise orthogonal.

$$
\begin{align*}
A^{*}(z) A(z) X & =A^{*}(z) d E=-d A^{*}(z) E \Longrightarrow X \text { is }(0,1) \text { form } \tag{27}\\
A^{*}(\sigma z) A(\sigma z) Y & =A^{*}(\sigma z) d E=-d A^{*}(\sigma z) E \Longrightarrow Y \text { is }(1,0) \text { form } \tag{28}
\end{align*}
$$

Using again the orthogonality of E to $A(z), A(\sigma z)$, we deduce from (25), (26) that F is of type $(1,1)$.

Remember that \mathcal{A} is a connection in E and what we are primarily interested in is the corresponding connection $\hat{\mathcal{A}}$ in \hat{E}. To extract some information about $\hat{\mathcal{A}}$ we return to the map $\pi: \mathbb{C} P^{3} \rightarrow S^{4}$ and consider its restriction to an open set:

$$
\begin{align*}
& \pi\left(z_{1}: z_{2}: z_{3}: z_{4}\right)=\left(z_{1}+z_{2} j: z_{3}+z_{4} j\right) \sim \\
& \quad \sim\left(\frac{\bar{z}_{3} z_{1}+z_{4} \bar{z}_{2}+\left(-z_{4} \bar{z}_{1}+\bar{z}_{3} z_{2}\right) j}{\left|z_{3}\right|^{2}+\left|z_{4}\right|^{2}}: 1\right) \tag{29}
\end{align*}
$$

At this point z_{1}, z_{2} can be considered as local complex coordinates on \mathbb{R}^{4}, while z_{3}, z_{4} parameterize complex structures, cf. (18). Therefore if $\pi^{*} \hat{F}$ has type $(1,1)$ then \hat{F} has type $(1,1)$ for all compatible complex structures, so by (20) \hat{F} is anti-self-dual.

6 ADHM equations

It remains to derive the equations on the matrix A that was used in the construction of the bundle.

$$
\begin{equation*}
A=z_{1} A_{1}+z_{2} A_{2}+z_{3} A_{3}+z_{4} A_{4} \tag{30}
\end{equation*}
$$

$A^{*}(\sigma z) A(z)=0$ is equivalent to

$$
\begin{align*}
A_{1}^{\dagger} A_{1}-A_{2}^{\dagger} A_{2} & =0 \\
A_{3}^{\dagger} A_{3}-A_{4}^{\dagger} A_{4} & =0 \\
A_{1}^{\dagger} A_{3}-A_{4}^{\dagger} A_{2} & =0 \tag{31}\\
A_{1}^{\dagger} A_{4}+A_{3}^{\dagger} A_{2} & =0 \\
A_{1}^{\dagger} A_{2} & =0 \\
A_{3}^{\dagger} A_{4} & =0
\end{align*}
$$

Bases changes in $W \simeq \mathbb{C}^{k}, V \simeq \mathbb{C}^{2 k+n}$ induce transformations

$$
\begin{equation*}
A_{i} \rightarrow U A_{i} L, U \in U(2 k+n), L \in G L(k) \tag{32}
\end{equation*}
$$

By $A_{3,4} \rightarrow A_{3,4} L$ we simultaneously diagonalize $A_{3}^{\dagger} A_{3}$ and $A_{4}^{\dagger} A_{4}$.
Then we use $A_{3,4} \rightarrow U A_{3,4}$ to put the matrices into the block-diagonal form (it is possible due to $A_{3}^{\dagger} A_{4}=0$)

$$
A_{3}=\left[\begin{array}{c}
D_{1} \tag{33}\\
0_{k \times k} \\
0_{n \times k}
\end{array}\right], A_{4}=\left[\begin{array}{c}
0_{k \times k} \\
D_{2} \\
0_{n \times k}
\end{array}\right]
$$

Then we use L again to make $D_{1}=I d$. The equations on A_{3}, A_{4} reduce to $D_{2}^{\dagger} D_{2}=I d$. So apply U again to set $D_{2}=-I d$:

$$
A_{3}=\left[\begin{array}{c}
I d_{k \times k} \tag{34}\\
0_{k \times k} \\
0_{n \times k}
\end{array}\right], A_{4}=\left[\begin{array}{c}
0_{k \times k} \\
-I d_{k \times k} \\
0_{n \times k}
\end{array}\right]
$$

Then we use

$$
\begin{align*}
A_{1}^{\dagger} A_{3}-A_{4}^{\dagger} A_{2} & =0 \tag{35}\\
A_{1}^{\dagger} A_{4}+A_{3}^{\dagger} A_{2} & =0
\end{align*}
$$

to conclude

$$
A_{1}=\left[\begin{array}{c}
B_{1}^{\dagger} \tag{36}\\
B_{2}^{\dagger} \\
I^{\dagger}
\end{array}\right], A_{2}=\left[\begin{array}{c}
B_{2} \\
-B_{1} \\
J
\end{array}\right]
$$

The two remaining equations

$$
\begin{align*}
A_{1}^{\dagger} A_{2} & =0 \\
A_{1}^{\dagger} A_{1}-A_{2}^{\dagger} A_{2} & =0 \tag{37}
\end{align*}
$$

acquire the form (ADHM equations)

$$
\begin{array}{r}
{\left[B_{1}, B_{2}\right]+I J=0} \\
{\left[B_{1}^{\dagger}, B_{1}\right]+\left[B_{2}^{\dagger}, B_{2}\right]-I I^{\dagger}+J^{\dagger} J=0} \tag{38}
\end{array}
$$

7 Conclusion

We provided a self-consistent review of ADHM construction. The one point that can be added concerns the proof of " F has type $(1,1)$ ". We preferred to provide a direct computation although the fact has simple geometric meaning. Namely, if we are given a bundle with holomorphic and unitary structures (which, of course, are given by different sets of local trivializations) and a connection that is compatible with both of them, then the curvature of this connection has type $(1,1)$. The connection \mathcal{A} is by construction compatible with both structures, so the calculation can actually be omitted.

References

[1] M. F. Atiyah, Geometry of Yang-Mills Fields, Edizioni della Normale, 1979

[^0]: ${ }^{1}$ To be precise, there are two non-conjugate ways to embed $U(2) \rightarrow S O(4)$, and here we focus on the conjugacy class represented by J_{0}, so we consider only "a half" of all possible $S O(4)$ complex structures on \mathbb{R}^{4}. The other conjugacy class can be represented by

 $$
 J_{1}=\left(\begin{array}{cccc}
 0 & 0 & -1 & 0 \\
 0 & 0 & 0 & -1 \\
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0
 \end{array}\right)
 $$

 The complex structures J_{0} and J_{1} are conjugated via an improper orthogonal transformation.

