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1 Introduction

My talk aimed at defining Donaldson-Thomas invariants - the main outcome of the Donaldson-Thomas theory,
and at discussing essential ingredients the definition requires, as was first explained in [Tho01]. The central
idea of the Donaldson-Thomas theory is to equip Hilbert scheme Hilb(X) of subschemes in a projective Calabi-
Yau threefold X with a symmetric obstruction theory. For this one has to study deformation theory of sheaves
on X. Once the symmetric obstruction theory on Hilb(X) is introduced, one defines virtual structure sheaf of
homological degree 0 on Hilb(X). DT invariant of X is then defined as degree of the corresponding cycle on
Hilb(X).

In what follows I won’t specify parameters for Hilb(X) throughout general discussion. Any of them will
work equally well, except one has to consider subschemes of codimenshion at least 2.

1.1 Plan

Plan for the main part of my talk was the following.

(1) Reminder on Ext-groups;

(2) Deformation theory for sheaves;

(3) Virtual structure sheaves;

(4) Numerical DT-invariants and some examples.

2 Main Part

2.1 Ext - functors

This was a reminder on Ext - functors. These are defined as right derived functors of (global) Hom. I reminded
main properties and discussed Yoneda’s interpretation of Ext1. The material is classical. A possible reference
could be [aut], tags 010I and 06XP.

As an example, I described a calculation of Ext’s between line bundles on P1. It involved Serre duality
theorem and relation between Ext’s and coherent cohomology.

2.2 Deformation theory for sheaves

This was an attempt to give example-based overview of the corresponding part of [Tho01].
First, I recalled general ideas and facts deformation theory exploits. Among them were lemmas 2.1 and

2.2, both stated without proofs.

Lemma 2.1. Let Y be a scheme and y : Spec(C)→ Y be it’s point. Then Y is smooth at y iff for every pair
(A,B) of local Artinian algebras and every surjective map B → A with kernel J , such that J2 = 0, every solid
diagam of the form

Spec(C) //

y

$$
Spec(A)

��

// Y

Spec(B)

;;

can be completed by dotted arrow.
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Lemma 2.2. Take a scheme Y . Suppose it can be embedded into a bigger smooth scheme Y:

Y ↪→ Y.

Denote by I the ideal defined by this embedding. There is complex

NLY = (I/I2 // Ω1
Y |Y )

−1 0

defined by this embedding. Then obstructions for Y lie in Ext1OY
(NLY ,OY ).

My core example to illustrate lemmas 2.1 and 2.2, as well as concepts of deformations and obstructions,
was a scheme

Spec(
C[x, y]

(xy)
)

sometimes called coordinate cross.
Along the way I introduced lemmas 2.3 and 2.4 (both are from [Tho01]) - the cornerstones of this section.

Lemma 2.3. Take a point x : Spec(C) → Hilb(X), which is given by an ideal sheaf E0 ∈ Coh(X). Then the
tangent space Tx Hilb(X) is isomorphic to Ext1OX

(E0, E0).
In other words, deformations of E0 to an ideal sheaf over Hilb(X)× Spec(C[t]/t2), flat over Spec(C[t]/t2),

are in 1-to-1 with Ext1OX
(E0, E0).

Lemma 2.4. The obstruction space at the point x is equal to Ext2OX
(E0, E0)

A proof for the lemma 2.3 was provided. The lemma 2.4 was stated without proof.

2.3 Virtual structure sheaves

In this section I stated without proof theorem 2.5 - one of the main results of [Tho01].

Theorem 2.5. Tangent-obstruction theory of Hilb(X) given by Ext1 and Ext2 is perfect. I.e. there is a
complex of vector bundles

P = E0
// E1

0 1

on Hilb(X) such that H0(P ) is tangent sheaf and H1(P ) is the obsturction sheaf.

The notion of a perfect tangent-obstruction theory was exemplified as follows.

• Suppose we are given a scheme Y embedded into a smooth bigger scheme Y. Suppose further that Y
is cut out inside Y by a section s ∈ H0(Y, E) of a vector bundle on Y. Then a morphism of complexes
represented by the diagram

E∨|Y //

s∨

��

Ω1
Y |Y

id

��

NLY = J /J 2 // Ω1
Y |Y

corresponds to a perfect tangent-obstruction theory on Y .
Then I tried to elaborate on the following definition which is central to the Donaldson-Thomas theory.

Definition 2.6. In the situation described just above one can define a virtual structure sheaf Ovir
Y on Y as

depicted below. Consider the Koszul complex

0→ ∧topOY
E∨ → . . .→ ∧1OY

E∨ → OY → 0. (2.7)

Then set
Ovir

Y :=
∑
n≥0

(−1)n[∧nE∨] ∈ K(Y ).

�
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As a motivation for the definition I gave a claim that Ovir
Y is just a K-theoretical counterpart for the

(properly defined, see [Ful98]) intersection class of s(Y) with sE(Y) in Tot(E), where sE : Y → Tot(E) is the
zero section. (This is not hard to see) Among the advantages of Ovir

Y is (propely understood) deformation
invariance which in turn implies deformation invariance for DT invariants. I concluded section mentioning
the fact that a virtual structure sheaf can be defined for any scheme, provided it is equipped with a perfect
tangent-obstruction theory, but it requires a bit more advanced technique.

2.4 Numerical DT invariants and some examples

In this section I moved on to defining DT invariants. First, I stated without proof the theorem 2.8 for which
[CK07] is a possible reference.

Theorem 2.8. Given a scheme Y equipped with a perfect tangent-obstruction theory

P = E0
// E1

0 1 ,

the homology class of the corresponding virtual structure sheaf has dimenshion rk(E0)− rk(E1).

After that I remarked that the homology class corresponding to the virtual structure sheaf of the tangent-
obstruction theory from 2.5 has dimenshion zero. This follows from Serre duality and allows to define DT
invariant to be equal to degree this class.

3 Conclusion

To conclude my talk I did a simple calculation of virtual number of points on a quintic threefold.
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[CK07] Ionuţ Ciocan-Fontanine and Mikhail Kapranov. “Virtual fundamental classes via dg-manifolds”. In:
http: // arxiv. org/ abs/ math/ 0703214v2 (2007).

[aut] The stacks project authors. “The Stacks Project”. In: https: // stacks. math. columbia. edu/ ().

3

http://arxiv.org/abs/math/9806111v4
http://arxiv.org/abs/math/0703214v2
https://stacks.math.columbia.edu/

	1 Introduction
	1.1 Plan

	2 Main Part
	2.1 `39`42`"613A``45`47`"603AExt - functors
	2.2 Deformation theory for sheaves
	2.3 Virtual structure sheaves
	2.4 Numerical DT invariants and some examples

	3 Conclusion

