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1 Introduction

The quantumN -particle Toda chain is a one-dimensional quantum-mechanical system of equal particles
in which the interaction is described by the Hamiltonian [1, 2]

ĤN (α) =
N∑
n=1

p̂2n
2

+
N−1∑
n=1

ex̂n+1−x̂n + αex̂1−x̂N .

p̂n, x̂n are the operators of momentum and coordinate of nth particle. Bond length, bond energy, Planck
constant and mass of a particle are chosen to be the units. α ≥ 0 is a parameter which determines the
interaction between the �periphery� particles. α = 1 gives the periodic and α = 0 the open Toda chain.

Quantum Toda chain is a quantum integrable system, i.e. one can explicitly construct for it a
complete set of observables using the formalism of the Quantum Spectral Transform Method [2].
The common eigenfunctions of this set of observables for N particles can be represented in terms
of eigenfunctions for N − 1 particles. This reduction is called the quantum method of separation of
variables [2]. In order to demonstrate this method by the example of Toda chain, the simplest case of
open chain consisting of two particles is considered.

In section 2 the eigenstates of Hamiltonian are found by the direct solution of Schr�odinger equation.
The solutions are found in terms of Macdonald function. In section 3 L-operator and monodromy
matrix, the notions of Quantum Spectral TransformMethod, are introduced. They are used to construct
the complete set of observables, which is contained in one element of the monodromy matrix. In
section 4 the eigenproblem for this matrix element is solved, Mellin-Barnes and Gauss-Givental integral
representations for the wavefunction of two-particle chain in terms of one-particle wavefunction are
obtained. Both of these representations can be generalized to arbitrary number of particles [3, 4]. In
section 5 the equivalence between solutions from section 2 and section 4 is proven. In section 6 the
completeness and ortogonality of the obtained set of eigenstates is shown. In Conclusion the results are
summed up and reality of the quantum numbers parametrising eigenfunctions in Mellin-Barnes and
Gauss-Givental representations is discussed.

2 Direct solution of Schr�odinger equation

Two-particle Hamiltonian of the open Toda chain in coordinate representation is given by

Ĥ = −1

2
(∂21 + ∂22) + ex1−x2 ,

where ∂k = ∂
∂xk

. By the usage of commutation relations [−i∂k, xl] = −iδkl it can be easily veri�ed that

Ĥ commutes with the total momentum operator P̂ = −i(∂1+∂2). Since in the case under consideration
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the system is of two degrees of freedom, (Ĥ, P̂ ) is a complete set of observables. The system of equations
for their common eigenstates is{ [

−(∂21 + ∂22)/2 + ex1−x2
]

Ψ(x1, x2) = EΨ(x1, x2)
−i(∂1 + ∂2)Ψ(x1, x2) = P Ψ(x1, x2)

.

The change of variables Q = 1
2(x1 + x2), q = 1

2(x1 − x2) leads to the equivalent system:{ [
−(∂2Q + ∂2q )/4 + e2q

]
Ψ(Q, q) = EΨ(Q, q)

−i∂QΨ(Q, q) = P Ψ(Q, q)
. (1)

It follows from the second equation in (1) that

Ψ(Q, q) = eiPQϕ(q). (2)

Substituting (2) into the �rst equation in (1) one can obtain the following equation for ϕ(q):

[−∂2q + 4e2q]ϕ(q) = λ2ϕ(q), (3)

where λ2 = 4E − P 2. (3) can be interpreted as one-dimensional Schr�odinger equation in exponential
potential 4e2q (�gure 1).
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Ðèñ. 1: exponential potential and the plot of ϕ(q).

From the plot of the potential energy it follows that ϕ(q) becomes the free particle wavefunction
when q → −∞, and must tend to zero behind the exponential barrier, i.e. when q → +∞. By the
change of variable z = 2eq (3) can be transformed into[

(z∂z)
2 − (z2 + (iλ)2)

]
ϕ(z) = 0. (4)

(4) is the modi�ed Bessel equation [5], the basis of its solutions consists of Iiλ(z), I−iλ(z), where the
Infeld function Iν is given by

Iν(z) =

∞∑
k=0

(z/2)2k+ν

k!Γ(k + ν + 1)
, ν ∈ C. (5)

However, the only linear combination of Iiλ and I−iλ which full�ls the physical condition of decaying
at z → +∞ (i.e. q → +∞) is the Macdonald function [5]

Kiλ(z) =
π

2 sin(πiλ)
(I−iλ(z)− Iiλ(z)), Kiλ(z) ∼

√
π

2z
e−z, z → +∞.

As a result, the eigenfunctions of the open two-particle Toda chain Hamiltonian are

Ψ(x1, x2|P, λ) =

√
λ sinh(πλ)

4π3
eiPQKiλ(2eq), Q =

1

2
(x1 + x2), q =

1

2
(x1 − x2). (6)

The normalization factor
√

λ sinh(πλ)
4π3 has not been derived, it will be derived in section 6.
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3 L-operator, monodromy matrix, and the complete set of observables

To the kth particle in the chain one can match the operator

Lk(u) =

(
u− p̂k e−x̂k

−ex̂k 0

)
. (7)

It is called the L-operator [2]. Lk(u) contains the operators of physical quantities corresponding to kth

particle and depends on the complex parameter u called the spectral parameter. It acts on the tensor
product of quantum space of Toda chain and two-dimensional auxiliary space. On the auxiliary space
it acts as 2× 2 matrix in (7).

The monodromy matrix T (u) of the N -particle system is the product of L-operators of all particles
with the same auxiliary space [2]:

TN (u) = LN (u)LN−1(u) . . . L1(u) =

(
AN (u) BN (u)
CN (u) DN (u)

)
.

It can be proven by induction that the operator AN (u) is a polynomial of degree N in u and posseses
the complete set of observables as coe�cients of di�erent powers of u [2], and the Hamiltonian can be
represented in terms of these operators.

In the case of two particles
A2(u) = u2 − P̂ u+ P̂ 2/2− Ĥ.

As mentioned above, (P̂ , P̂ 2/2− Ĥ) form a complete set of observables as coe�cients of powers of u.
Expressing Ĥ in terms of these two operators, it is easy to deduce that (Ĥ, P̂ ) is also a complete set
of observables, which is in agreement with section 2.

Since the coe�cients of all powers of u in AN (u) are simultaneously diagonalizable, the problem
of determination of their common eigenvectors, which are also the eigenvectors of the Hamiltonian, is
equivalent to the eigenproblem for AN (u). For N = 2 this problem reads

A(u)Ψ = [u2 − Pu+ P 2/2− E]Ψ = (u− λ1)(u− λ2)Ψ,

where P is the total momentum, E is the energy, the quantum numbers λ1 and λ2 are the roots of the
polynomial u2 − Pu+ P 2/2− E in u. P and E can be expressed in terms of λ1, λ2:

P = λ1 + λ2, P 2/2− E = λ1λ2, (8)

and vice versa.
As a result, in the case of two particles we have the following equation for the eigenfunctions of the

Hamiltonian:

[(u+ i∂2)(u+ i∂1)− ex1−x2 ]︸ ︷︷ ︸
A2(u)

Ψ(x1, x2|λ1, λ2) = (u− λ1)(u− λ2)Ψ(x1, x2|λ1, λ2). (9)

In the next section this equation will be solved using two spesial integral representations of the
wavefunction Ψ � Mellin-Barnes and Gauss-Givental representations, which will lead to the expression
of a wavefunction of two-particle system in terms of the integral of one-particle wavefunction. This
reduction to the system with one particle less can be generalized to the case of Toda chain with
arbitrary number of particles [3, 4].

4 Integral representations of wavefunctions

One can try to �nd the solution of (9) using an analogue of the Fourier transform:

Ψ(x1, x2|λ1, λ2) =

∫
C1

∫
C2

dγ1 dγ2 e
iγ1x1eiγ2x2F (γ1, γ2|λ1, λ2), (10)
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where the contours C1 and C2 go in parallel with the real axis. Substituting the expression for Ψ from
(10) into (9) one obtains the following expression:∫
C1

∫
C2

dγ1 dγ2 (u− γ1)(u− γ2)eiγ1x1eiγ2x2F (γ1, γ2|λ1, λ2)−

−
∫
C1

∫
C2

dγ1 dγ2 e
i(γ1−i)x1ei(γ2+i)x2F (γ1, γ2|λ1, λ2) =

=

∫
C1

∫
C2

dγ1 dγ2 (u− λ1)(u− λ2)eiγ1x1eiγ2x2F (γ1, γ2|λ1, λ2). (11)

In order to group all the summands in (11) into one integral and obtain the equation for F (γ1, γ2|λ1, λ2),
the second integral in the L.H.S. of (11) must be transformed to expression with the exponentials of the
same form as they appear in two other integrals. Using the change of variables γ′1 = γ1− i, γ′2 = γ2 + i
one obtains∫
C1

∫
C2

dγ1 dγ2 e
i(γ1−i)x1ei(γ2+i)x2F (γ1, γ2|λ1, λ2) =

=

∫
C1−i

∫
C2+i

dγ′1 dγ
′
2 e

iγ′1x1eiγ
′
2x2F (γ′1 + i, γ′2 − i|λ1, λ2) =

=

∫
C1

∫
C2

dγ′1 dγ
′
2 e

iγ′1x1eiγ
′
2x2F (γ′1 + i, γ′2 − i|λ1, λ2). (12)

Ðèñ. 2: contours C1, C1 − i and C1 + i in the plane of the complex variable γ′1.

For the correctness of the last equality in (12) F (γ′1 + i, γ′2 − i|λ1, λ2) must obey two conditions.
First, it must have no poles in variable γ′1 in the band between the contours C1 and C1− i (red-shaded
in the �gure 2). Equivalently, F (γ1, γ2|λ1, λ2) must have no poles in variable γ1 in the band between
the contours C1 and C1+i (blue-shaded in the �gure 2). This condition will de�ne the position of C1 in
relation to the points λ1 and λ2. Second, integrals along the green segments between C1 and C1− i on
the �gure 2 must tend to zero when the segments are moved to in�nity. The solution F (γ1, γ2|λ1, λ2)
will satisfy this condition.

Substituting the result of (12) into (11), gathering all the summands into one integral, and equating
the integrand to zero one obtains the equation for F (γ1, γ2|λ1, λ2):

(u− γ1)(u− γ2)F (γ1, γ2|λ1, λ2)− F (γ1 + i, γ2 − i|λ1, λ2) = (u− λ1)(u− λ2)F (γ1, γ2|λ1, λ2).

The equation for coe�cients of u2 is trivial. Equating the coe�cients of u1 one obtains

(λ1 + λ2 − γ1 − γ2)F (γ1, γ2|λ1, λ2) = 0,

therefore
F (γ1, γ2|λ1, λ2) = δ(λ1 + λ2 − γ1 − γ2) f(γ1), (13)

where δ(x) is the Dirac delta function, f(γ1) is some function of γ1 which should be found. Equating
the coe�cients of u0 one obtains

(γ1γ2 − λ1λ2)F (γ1, γ2|λ1, λ2) = F (γ1 + i, γ2 − i|λ1, λ2). (14)
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Substituting expression (13) for F into (14) and using γ2 = λ1 + λ2 − γ1 from the dirac delta function
in (13) one obtains the equivalent form of (14):

i(λ1 − γ1)i(λ2 − γ1)F (γ1, γ2|λ1, λ2) = F (γ1 + i, γ2 − i|λ1, λ2). (15)

From the property of the gamma function Γ(z + 1) = zΓ(z) [5] it follows that

F (γ1, γ2|λ1, λ2) = δ(λ1 + λ2 − γ1 − γ2) Γ(i(λ1 − γ1)) Γ(i(λ2 − γ1)) (16)

is a solution of (15). All that remains now is to de�ne the position of the contour C1 of integration
with respect to γ1. From the above formulated conditions on F (γ1, γ2|λ1, λ2), the fact that the poles
of the gamma function are nonpositive integers [5] and (16) it follows that γ1 must obey

R(i(λk − γ1)) > 0⇔ −I(λk − γ1) > 0⇔ Iγ1 > Iλk, k = 1, 2,

where R, I are real and imaginary parts of a complex number. Therefore, C1 must be located above
the points λ1 and λ2.

As a result, the expression for the wavefunction Ψ(x1, x2|λ1, λ2) reads

Ψ(x1, x2|λ1, λ2) =

∫
C

dγ Γ(i(λ1 − γ)) Γ(i(λ2 − γ)) ei(λ1+λ2−γ)x2eiγx1 , (17)

where C goes above the real axis. It is called the Mellin-Barnes representation [3]. There is no problem
with convergence of the integral because when |γ| tends to in�nity |Γ(i(λk − γ))| decays faster than
any negative power of γ. As it was mentioned in section 1 and at the end of section 3, Ψ(x1, x2|λ1, λ2)
is expressed in terms of an integral of one-particle wavefunction eiγx1 . It is signi�cant that in the case
of the Mellin-Barnes representation the variable of integration is the quantum number γ of (2 − 1)-
particle wavefunction. This is in contrast with the Gauss-Givental representation where the variables of
integration are space coordinates. The Mellin-Barnes representation can be generalized to the case of N
particles, and the corresponding eigenfunctions can be expressed in terms of integrals of (N−1)-particle
wavefunctions [3]. The integration variables are the quantum numbers of these wavefunctions.

The gamma function has the integral representation [5]

Γ(z) =

∞∫
0

tz−1e−t dt.

The change of variable t = ey leads to the expression

Γ(iβ) =

+∞∫
−∞

dy eiβy−e
y
.

Substituting this into (17) and making some calculations in the obtained triple integral one can deduce
the Gauss-Givental representation of Ψ(x1, x2|λ1, λ2) [4]:

Ψ(x1, x2|λ1, λ2) =

+∞∫
−∞

dy eiλ2(x1+x2−y)−e
x1−y−ey−x2

eiλ1y. (18)

As in (17) it is an integral with (2 − 1)-particle wavefunction eiλ1y. As it was already mentioned,
in contrast with the Mellin-Barnes representation the integration variable is the space coordinate y.
Analogously to (17) the Gauss-Givental representation can be generalized to the case of N particles,
and the N -particle wavefunction can be expressed in terms of an integral of (N −1)-particle one where
the integration variables are N − 1 space coordinates [4].
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5 The equivalence of integral representations and the expression in

terms of the Macdonald function

Remembering the change of variables Q = 1
2(x1 + x2), q = 1

2(x1 − x2) from the beginning of section 2
and using (18) one obtains

Ψ(x1, x2|λ1, λ2) = Ψ(Q, q|λ1, λ2) =

+∞∫
−∞

dy eiλ2(2Q−y)−e
Q+q−y−ey−Q+q

eiλ1y = [y′ = y −Q] =

= ei(λ1+λ2)Q
+∞∫
−∞

dy′ ei(λ1−λ2)y
′
e−2e

q cosh y′ = ei(λ1+λ2)Q
+∞∫
−∞

dy′ cosh[i(λ1 − λ2)y′]e−2e
q cosh y′ . (19)

From (3) and (8) it follows that λ1 + λ2 = P , λ1 − λ2 = λ. Therefore, from (19) using the text-book
integral representation for the Macdonald function [5]

Kν(z) =

∞∫
0

e−z cosh t cosh(νt) dt (20)

one can deduce that
Ψ(Q, q|λ1, λ2) = 2eiPQKiλ(2eq). (21)

Since the solutions of (9) obtained in section 4 are determined up to a coordinate-independent factor,
formulas (6), (17) and (18) de�ne one and the same eigenfunction of the Toda chain Hamiltonian up
to normalization. In the next section completeness and ortogonality of the set of these eigenfunctions
is shown.

6 The completeness and ortogonality of the obtained set of eigenstates

The Kontorovich-Lebedev transform and its inverse are given by

f(z) =

∞∫
0

dλKiλ(z) g(λ) (22)

and

g(λ) =
2λ sinh(πλ)

π2

∞∫
0

dz′

z′
Kiλ(z′) f(z′), (23)

respectively [6]. Substituting (22) into (23) and using the change of variable z′ = 2eq one can obtain
the ortogonality relation for Macdonald functions

λ sinhλ

π2

∞∫
−∞

dq Kiλ(2eq)Kiλ′(2e
q) =

1

2

[
δ(λ′ − λ) + δ(λ′ + λ)

]
. (24)

Substituting (23) into (22) one can obtain the completeness relation for Macdonald functions

∞∫
−∞

dλ
λ sinhλ

π2
Kiλ(z)Kiλ(z′) = zδ(z′ − z). (25)

By the usage of (24) and (25) it is possible to deduce the ortogonality and completeness of the set
of the open two-particle Toda chain eigenfunctions obtained in sections 2 and 4:

Ψ(x1, x2|λ1, λ2) =
eiPQ

2
√
π

√
λ sinh(πλ)

π2
Kiλ(2eq),
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where Q = 1
2(x1 + x2), q = 1

2(x1 − x2), P = λ1 + λ2, λ = λ1 − λ2. The ortogonality of the set
{Ψ(x1, x2|λ1, λ2)|λ1, λ2 ∈ R}:∫

dx1 dx2 Ψ(x1, x2|λ1, λ2)Ψ(x1, x2|λ′1, λ′2) =

=

∫
2 dQdq

ei(P
′−P )Q

4π

√
λ sinh(πλ)

π2

√
λ′ sinh(πλ′)

π2
Kiλ(2eq)Kiλ′(2e

q) =

= δ(P ′ − P )
1

2

[
δ(λ′ − λ) + δ(λ′ + λ)

]
=

= δ(λ′1 + λ′2 − λ1 − λ2)
1

2
[δ(λ′1 − λ′2 − λ1 + λ2) + δ(λ′1 − λ′2 + λ1 − λ2)] =

=
1

2
[δ(λ′1 − λ1) δ(λ′2 − λ2) + δ(λ′1 − λ2) δ(λ′2 − λ1)].

The completeness of the set {Ψ(x1, x2|λ1, λ2)|λ1, λ2 ∈ R}:∫
dλ1 dλ2 Ψ(x1, x2|λ1, λ2)Ψ(x′1, x

′
2|λ1, λ2) =

∫
1

2
dP dλ

eiP (Q′−Q)

4π

λ sinh(πλ)

π2
Kiλ(2eq)Kiλ(2eq

′
) =

=
1

2
δ(Q′−Q)

1

2
2eqδ(2eq

′ − 2eq) = δ(x′1 +x′2−x1−x2) δ(x′1−x′2−x1 +x2) = δ(x1−x′1)δ(x2−x′2).
(26)

7 Conclusion

To sum up, two integral representations of the eigenfunctions of two-particle Toda chain Hamiltonian
have been obtained: the Mellin-Barnes representation

Ψ(x1, x2|λ1, λ2) =

∫
C

dγ Γ(i(λ1 − γ)) Γ(i(λ2 − γ)) ei(λ1+λ2−γ)x2eiγx1 (27)

(C goes above λ1 and λ2 in parallel to the real axis) and the Gauss-Givental representation

Ψ(x1, x2|λ1, λ2) =

+∞∫
−∞

dy eiλ2(x1+x2−y)−e
x1−y−ey−x2

eiλ1y. (28)

Both of them express the wavefunction of the two-particle chain in terms of an integral of one-particle
wavefunction. For both representations such a reduction can be generalized to the case of arbitrary
number of particles [3, 4]. The ortogonality and completeness of the set of obtained two-particle
functions has been shown in section 6. From (26) it follows that the complete set is given by functions
parametrized by real-valued quantum numbers λ1, λ2. Therefore, it is reasonable to assume that in
the case of larger number of particles the corresponding quantum numbers also take real values.
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