Slices and relations in quantum group

Quiver data = representation of an algebra
- Generators = arrow
- Relations = moment map equations

\[R \text{ is a representation of an algebra } A, \quad \text{End}(R) = \text{Hom}_A(R, R) \]

1st order deformations
- Ext^1(R, R) \quad \text{obstructions to}
- Ext^2(R, R)

\[\delta_i \text{ representation with } \mathbb{C} \text{ at } i \text{th vertex, all maps are zero} \]

\[R = \sum v_i \delta_i \quad \text{Hom}(R, R) = \bigoplus \mathfrak{gl}(v_i) = \Pi \text{GL}(v_i) \]

\[\dim \text{Ext}^4(\delta_i, \delta_j) = \# \text{of arrows } i \to j \]

Observe \[\text{Ext}^4(\delta_i, \delta_i) = h^{-1} \circ \text{Ext}^4(\delta_i, \delta_j)^\ast \]

Obstruction map: moment map to \[\text{Ext}^2(R, R) = h^{-1} \text{Hom}(R, R) \]

\[X = \text{Quiver variety } \subseteq \left[\text{quiver data + moment map eq. } / \text{GL}(v) \right] = \text{stack of representations of } A \]

\[\text{nullius quotient } \quad \text{semisimplification} \]
Singular $X_0 = \text{affine quotient} = \text{semisimple representations.}$

\[\text{Spec (invariants) = points are closed orbits of } \text{GL}(V) \]

\[R = \bigoplus_{i=0}^{\ldots} v_i \delta_i \]

if we specialize equivariant variables then we can have a fixed pt other than 0

\[w = 2 \]

\[\text{Fock (} a_1 \text{) } \otimes \text{ Fock (} a_2 \text{)} \text{ will not be irreducible if } \]

\[\text{Exercise: Suppose } R = R_0 \oplus \sum_{i \neq 0} v_i \delta_i \]

\[\text{Then: quiver is the same up to loops at the 0-th vertex.} \]

new dim $v' = w - \text{Cartan } \beta$

new framing $w' = w - t \text{ Cartan } \beta$

\[\text{Ext}^1 \]

E.g.

\[A_2 \rightarrow C = \left(\begin{array}{cc} 1 + t^2 - 1 \\ -t^2 + t^2 \end{array} \right) \]
new primary \(w' = w - h \) ↓

1 + h^{-1} - adjacency matrix of my quiver

\[A_\circ \rightarrow \quad C = (1 + h^{-1} - 1 h^{-1}) \]
\[\{ A_\circ : C = 1 + h^{-1} - t_1 - t_2 = (1 - t_1)(1 - t_2) \]

For instance: \(\beta = a_1(t_1 + t_1^2 + \ldots + t_1^n) \)
\(w' = a_1(t_2^{-1} + t_1^n) \)

restriction to the neighborhood of a slice

\[\text{Fock}(a) \otimes \text{Fock}(a t_2^{-1} t_2^{-1}) \rightarrow \text{Fock}(a t_2^{-1}) \otimes \text{Fock}(a t_2^{-1}) \]

order important

stable envelopes are correspondences over \(X_0 \)

\[\begin{array}{c}
\text{e.g.} \quad X(\beta, w_0) \times X(\nu, w) \xrightarrow{\text{stab}} X(\beta + \nu, w_0 + w) \xrightarrow{\text{Res}} X(\beta + \nu, w)
\end{array} \]

add irreducibles

take coefficients
contraction to the preimage of \(D \)

one can look at the neighborhood of this point

dimensions of \(D \) add correctly.

restriction to the slice as \(R \otimes 0 \) is a map of quantum group modules!

example \(Y(\mathfrak{sl}(2)) \subset C^2(a_1) \otimes C^2(a_2) = H^* (TG(2)^A) \xrightarrow{\text{stab}} H^* (TG(2)) \)

map of Yangian modules in general, an isomorphism.
\[C^2 \otimes C^2 \xrightarrow{\text{Stab}_-^T} H^*(T^g(2)) \]

\[C^2 \otimes C^2 \xrightarrow{\text{Stab}_+} H^*(T^g(2)) \]

\text{Stab}_- \text{ misses the slice, i.e. not surjective.}

\text{Stab}_+^T \text{ blows up because improper push-forward}

\text{both maps isomorphisms}

\text{Conclusion:}
\[0 \to 3 \to H^*(T^g(2)) \to 1 \text{ dim} \to 0 \text{ always} \]
\[0 \to 3 \to C^2 \otimes C^2 \to 1 \to 0 \text{ depending on } \pm - \]
\[\text{or} \quad 0 \to 1 \to C^2 \otimes C^2 \to 3 \to 0 \]

\text{Conjecture: all relations in our quantum groups come from slices [999c]}

\text{true for } O \quad (\text{enough to check for } Y \text{ at } \hbar = 0 \Rightarrow \text{Thicker})

\text{for } O \text{ slices = screening operators}

\text{Know by different means that deformations are generically flat}

[Nozumano-0] \text{Theorem: if } 0 \text{ is the only fixed representation then } H^*(U \otimes X(v,w)) \text{ is irreducible}

\text{Last time: we had a quantum integrable system formed by}
\[\text{tr}_1 (\tau \otimes 1) R_{12}(a) \in \text{End}_2 \text{ (2nd factor)}(a) \]
\[\text{commute for all } a \text{ and fixed } z. \]

\[\text{fixed operator such that } [z \otimes z, R] = 0 \]

\[e.g. z \text{ can act by } T_1 z_i \]

\[\text{for } z=0 \text{ these are } (\phi, \phi) \text{ matrix elements} \]

\[\iff \text{operators of multiplication in } H'(X), K(X), \ldots \]

\[\text{operators of multiplication} \]

\[\text{commute} \]

Conjectured around 2007/8 ... by Nekrasov- Shatashvili

\[\text{(before } R\text{-matrices, before our quantum groups, ...)} \]

\[\text{In cohomology: one defines a new associative } (!) \text{ product on } H^*(X) \text{ by} \]

\[(\alpha \star \beta, \sigma) = \sum \left[\deg C \right] \]

\[\text{a formal series in the group algebra of effective curve } C \in H_2(X, \mathbb{Z}). \]

\[\text{degree } C = 0, \text{ means } C = pt \]

\[= (\alpha \cup \beta, \sigma) + O(z) \ldots \]