

| Course Title (in English) | Supersymmetric Gauge Theories and Integrable Systems           |
|---------------------------|----------------------------------------------------------------|
| Course Title (in Russian) | Суперсимметричные калибровочные теории и интегрируемые системы |
| Lead Instructor(s)        | Gavrylenko, Pavlo<br>Marshakov, Andrei                         |
|                           |                                                                |
| Status of this Syllabus   | The syllabus is a final draft waiting for form approval        |
| Contact Person            | Pavlo Gavrylenko                                               |
| Contact Person's E-mail   | pasha145@gmail.com                                             |

#### 1. Annotation

#### **Course Description**

The course will be devoted to the study of N=2 supersymmetric gauge theories and related topics. It turns out that comparing to the N=1 theories, N=2 allows to compute much more quantities. In particular, low-energy effective action can be described in terms of single function, prepotential. Seiberg-Witten solution of the N=2 theory gives explicit description of the prepotential in terms of periods of some meromorphic differentials on algebraic curves. It turns out that this description is deeply related to classical integrable systems.

During the course we will learn basics of the N=2 theories, classical solutions, holomorhy arguments, and so on, study Seiberg-Witten exact solution, and then its underlying integrable systems. We are also going to learn some modern developments of this topic, like Nekrasov instanton computations and AGT relation.

**Course Prerequisites** 

Knowledge of quantum mechanics and classical field theory. Basic knowledge of quantum field theory. Basics of N=1 supersymmetry.

#### 2. Structure and Content

**Course Academic Level** 

| Торіс                               | Summary of Topic                                                                                                                                              | Lectures (# of hours) | Seminars (# of hours) | Labs (# of hours) |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|-------------------|
| Basics of N=2 SUSY                  | <ol> <li>N=2 SUSY &amp; lagrangians</li> <li>N=2 algebra, superfields</li> <li>Classical solutions: monopoles, instantons</li> <li>Central charges</li> </ol> |                       |                       |                   |
| Physicsl properties of N=2 theories | 1) Vacua<br>2) Anomalies<br>3) 1-loop holomorphy                                                                                                              |                       |                       |                   |
| Seiberg-Witten exact solution       |                                                                                                                                                               |                       |                       |                   |
| Integrable system                   | <ol> <li>Simplest example of SU(2) pure<br/>gauge theory</li> <li>Spectral curves and Seiberg-<br/>Witten theory</li> </ol>                                   |                       |                       |                   |
| Instantons and Nekrasov functions   |                                                                                                                                                               |                       |                       |                   |
| AGT duality                         |                                                                                                                                                               |                       |                       |                   |

## 3. Assignments

| Assignment<br>Type | Assignment Summary                                                                                                                                                                                                                                                                                                                                        |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Homework           | <ul> <li>There will be two tests (homeworks).</li> <li>One will be devoted to the basics of N=2 supersymmetry: supersymmetry algebra representations, Lagrangians, classical solutions.</li> <li>Another one will be devoted to classial integrable systems: compatibility of Seiberg-Witten equations, Lax matrices, separation of variables.</li> </ul> |

# 4. Grading

Type of Assessment

Graded

| Grade Structure | Activity Type        | Activity weight, % |
|-----------------|----------------------|--------------------|
|                 | Attendance           | 50                 |
|                 | Homework Assignments | 50                 |

## Grading Scale

| A:                      | 86                       |
|-------------------------|--------------------------|
| B:                      | 76                       |
| C:                      | 66                       |
| D:                      | 56                       |
| E:                      | 46                       |
| F:                      | 0                        |
| Attendance Requirements | Optional with Exceptions |

## 5. Basic Information

Students of Which Programs do You Recommend to Consider this Course as an Elective?

| Masters Programs                     | PhD Programs                         |
|--------------------------------------|--------------------------------------|
| Mathematical and Theoretical Physics | Mathematics and Mechanics<br>Physics |

Course Tags

Math Physics

## 6. Textbooks and Internet Resources

| Papers                                                                                                                                                      | DOI or URL                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| L. Alvarez-Gaume, S.F. Hassan, Introduction to S-Duality in N=2<br>Supersymmetric Gauge Theory. (A pedagogical review of the work of<br>Seiberg and Witten) | https://arxiv.org/abs/hep-<br>th/9701069 |
| Adel Bilal, Duality in N=2 SUSY SU(2) Yang-Mills Theory: A pedagogical introduction to the work of Seiberg and Witten                                       | https://arxiv.org/abs/hep-<br>th/9601007 |
| Monopole Condensation, And Confinement In N. Seiberg, E. Witten, N=2<br>Supersymmetric Yang-Mills Theory                                                    | https://arxiv.org/abs/hep-<br>th/9407087 |
| A. Marshakov, A. Yung, Strong versus Weak Coupling Confinement in N=2 Supersymmetric QCD                                                                    | https://arxiv.org/abs/0912.1366          |

#### 7. Facilities

#### 8. Learning Outcomes

Knowledge Seiberg-Witten of exact solution of N=2 supersymmtric gauge theory

Skill
Ability to perform computations on algebraic curves

## 9. Assessment Criteria

Input or Upload Example(s) of Assignment 1:

Select Assignment 1 Type

Homework Assignments

Input Example(s) of Assignment 1 (preferable)

|                                            | Sample problems:                                                                                                                                                                      |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                            | 1) Compute Poisson bracket of super-charges in the field theory and derive expression for the central charge. Compute its value on the monopole solution.                             |
|                                            | 2) Write explicit component expansion of the Lagrangian in the Abelian N=2 sigma model.                                                                                               |
|                                            | 3) Check that the derivative formula $dF/dz_i = res_{z_i} (dS)^2/dz$ is compatible with Seiberg-Witten equations.                                                                     |
|                                            | 4) Compute the dimension of the Higgs branch in some simple SU(2) N=2 theory.                                                                                                         |
|                                            | 5) Compute derivatives of Seiberg-Witten differential in N_c=2, N_f=4 Seiberg-Witten theory. Which of them are meromorphic, and which can be made holomorphic by addition of some df? |
| Assessment Criteria for<br>Assignment 1    | Enough number of problems should be solved                                                                                                                                            |
| Input or Upload Example(s) of As           | ssigment 2:                                                                                                                                                                           |
| Input or Upload Example(s) of Assigment 3: |                                                                                                                                                                                       |
| Input or Upload Example(s) of Assigment 4: |                                                                                                                                                                                       |
| Input or Upload Example(s) of Assigment 5: |                                                                                                                                                                                       |
| 10. Additional Notes                       |                                                                                                                                                                                       |
|                                            |                                                                                                                                                                                       |

Upload a File (if needs to be) https://ucarecdn.com/3725ea57-ab93-4210-87c9-572a3c0c1d94/