PROBLEMS FOR BEZRUKAVNIKOV AND BRAVERMAN LECTURES

1. Let X be a smooth algebraic curve over \mathbb{C} with a point $x \in X$. Choose a local (formal) coordinate t near x.

a) Show that the affine Grassmannian Gr_G classifies pairs (\mathcal{P}, ϕ) where \mathcal{P} is a principal G-bundle on X and ϕ is a trivialization of \mathcal{P} on $X \setminus \{x\}$.

b) Let $X = \mathbb{P}^1$. Let Gr^0_G denote the subset of Gr_G consisting of those pairs (\mathcal{P}, ϕ) where \mathcal{P} is trivial. Show that Gr^0_G is an open subset of Gr_G . Show that it is isomorphic to $G[t^{-1}]/G$ (which naturally embeds into G((t))/G[[t]])).

c) Invent a similar interpretation of the affine flag variety of G.

2. In this problem for simplicity we take G = SL(n). Recall that the determinant line bundle \mathcal{L} on Gr_G is defined as follows: given $g \in SL(n, \mathcal{K})$ set $L_0 = \mathcal{O}^n, L = g(L_0)$. The the fiber of \mathcal{L} at $g \mod G(\mathcal{O})$ is equal to $\det(L/L \cap L_0)^* \otimes \det(L_0/L \cap L_0)$ (here * stands for dual line; this definition is actually dual to the one discussed in the lecture).

a) Let us use the notation of Problem 1. Express the fiber of \mathcal{L} at (\mathcal{P}, ϕ) in terms of determinant of cohomology of the bundle \mathcal{P} (which in the case G = SL(n) can be thought of as rank *n* vector bundle with trivial determinant).

b) Take $X = \mathbb{P}^1$. Use a) in order to construct a trivialization of \mathcal{L} on Gr_G on Gr_G^0 .

c)* Show that the above trivialization extends to a section of \mathcal{L} on all of Gr_G whose zero locus is precisely the complement of Gr_G^0 .

3. Let G = SL(2). Compute the stabilizer of a point $t^{\lambda} \in \operatorname{Gr}_{SL(2)}$ (say, for a dominant coweight λ) in $SL(2, \mathcal{O})$. Show that unless $\lambda = 0$ this stabilizer acts non-trivially in the fiber of the determinant bundle \mathcal{L} . Deduce from this that if q is not a root of 1, then the category of q-monodromic $SL(2, \mathcal{O})$ -equivariant sheaves on \mathcal{L}^0 (total space of \mathcal{L} with zero-section removed) is equivalent to the category of vector spaces.

4. Let $N \subset G$ be a maximal unipotent subgroup of G normalized by a maximal torus T.

a) Show that the assignment $\lambda \mapsto N(\mathcal{K}) \cdot t^{\lambda}$ defines a one-to-one correspondence between coweights of T and $N(\mathcal{K})$ -orbits on Gr_G . Set $S^{\lambda} = N(\mathcal{K}) \cdot t^{\lambda}$.

b) Let χ_0 be a non-degenerate character of N. Let $\chi : N(\mathcal{K}) \to \mathbb{G}_a$ be Show that S^{λ} carries a non-zero $N(\mathcal{K}), \chi$)-equivariant D-module iff λ is dominant (hint: prove first the following fact. Let H be an algebraic group acting transitively on a variety X and let $\chi : H \to \mathbb{G}_a$ be any homomorphism. Then X carries a non-zero (H, χ) -equivariant D-module iff χ is trivial on the stabilizer of a point $x \in X$ in H). Explain (informally) why this means that "size-wise" the category $Whit(\operatorname{Gr}_G)$ looks like $\operatorname{Rep}(G^{\vee})$.

4. Let G be a simple algebraic group. Consider the functor $I_c : \operatorname{Rep}(G) \to \operatorname{KL}_c(G)$ which sends a G-module M to $(U(\hat{\mathfrak{g}}) \underset{U(\mathfrak{g})}{\otimes} M)/(1 - (c - h^{\vee})).$

a) Show that this functor indeed lands in $KL_c(G)$.

b) Show that this functor is an equivalence of categories $Rep(G) \simeq KL_c(G)$ if c is not rational. In particular, $KL_c(G)$ is a semi-simple category in this case.

c) Produce an explicit example which shows that b) is false for rational c.