INTRODUCTION TO POISSON LIE GROUPS, LIE BIALGEBRAS AND THEIR QUANTIZATION

1. Let G be a Poisson-Lie group, and let $G^{(0)} = \{x \in G : \Pi(x) = 0\}$ be the subset of all points where the Poisson structure vanishes. Show that $G^{(0)}$ is a closed Lie subgroup of G.

2. Let G be a Poisson-Lie group with Lie bialgebra $(\mathfrak{g}, [,], \delta)$. Let $H \subset G$ be a closed, connected Lie subgroup and let $Lie(H) = \mathfrak{h} \subset \mathfrak{g}$. Show that G/H inherits a unique Poisson structure such that $\pi : G \to G/H$ is a Poisson map if and only if $\delta(\mathfrak{h}) \subset \mathfrak{h} \otimes \mathfrak{g} + \mathfrak{g} \otimes \mathfrak{h}$.

3. If G_1 and G_2 are simply connected Poisson-Lie groups and $\mathfrak{g}_1 = \widetilde{F}(G_1)$, $\mathfrak{g}_2 = \widetilde{F}(G_2)$, then there is a one-to-one correspondence between the Poisson-Lie group morphisms $G_1 \to G_2$ and the Lie bialgebra morphisms $\mathfrak{g}_1 \to \mathfrak{g}_2$.

4. Show that any coboundary Lie bialgebra structure on $\mathfrak{a} = \mathbb{C}[[x]] \frac{d}{dx}$ of formal vector fields on the line can be obtained as an image of the \tilde{b}_2 Lie bialgebra structure of T_2 under a homomorphism $T_2 \to \mathfrak{a}$, and classify all such structures up to isomorphism.

5. Let V be a finite-dimensional vector space. We say that a Poisson bracket on V is of degree n if the Poisson bivector is a polynomial on V of degree n. Poisson brackets of degrees 0, 1, 2 are called constant, linear and quadratic, respectively.

Let A be an associative, finite dimensional algebra with unit over \mathbb{R} , and let $\{,\}$ be a Poisson bracket on A, such that the multiplication map $m : A \times A \to A$ is a Poisson map. Show that the Poisson bracket is quadratic.

6. Recall the construction of $\tilde{\mathfrak{g}}$ for a simple Lie algebra $\mathfrak{g} = \mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$ with Killing form $(\cdot, \cdot) = (\cdot, \cdot)_{\mathfrak{g}}$. As a vector subspace, $\tilde{\mathfrak{g}} = \mathfrak{n}_{+} \oplus \mathfrak{h}^{(1)} \oplus \mathfrak{h}^{(2)} \oplus \mathfrak{n}_{-}$, where $\mathfrak{h}^{(1)} \cong \mathfrak{h}^{(2)} \cong \mathfrak{h}$. Its Lie bracket is determined by the relations

$$[\mathfrak{h}^{(1)},\mathfrak{h}^{(2)}] = 0, \qquad [h^{(i)},e_{\alpha}] = \alpha(h)e_{\alpha} \qquad [h^{(i)},f_{\alpha}] = -\alpha(h)f_{\alpha}, \qquad [e_{\alpha},f_{\alpha}] = \frac{1}{2}(h_{\alpha}^{(1)} + h_{\alpha}^{(2)}).$$

The Lie algebra $\tilde{\mathfrak{g}}$ can be given the nondegenerate invariant bilinear form $(\cdot, \cdot)_{\tilde{\mathfrak{g}}}$ defined as follows

$$(x+h^{(1)}+h^{(2)},x'+h'^{(1)}+h'^{(2)})_{\widetilde{\mathfrak{g}}}=2((h^{(1)},h'^{(2)})+(h^{(2)},h'^{(1)}))+(x,x').$$

Show that $\tilde{\mathfrak{g}}$ is naturally isomorphic to the Lie algebra $\mathfrak{g} \oplus \mathfrak{h}$, and that the invariant form for $\tilde{\mathfrak{g}}$ given above is mapped under this isomorphism to the form $(,)_{\mathfrak{g}} - (,)_{\mathfrak{h}}$.

7. Let *A* be a finite dimensional commutative algebra which is Frobenius, this is, there exists a trace map $tr: A \to k$ such that the bilinear form $(a, b)_A = tr(ab)$ is nondegenerate. Let $(\mathfrak{g}, \mathfrak{g}_+, \mathfrak{g}_-)$ be a Manin triple with bilinear form $(,)_{\mathfrak{g}}$. Let $\mathfrak{g}_A = \mathfrak{g} \otimes_k A$ and $\mathfrak{g}_{\pm,A} = \mathfrak{g}_{\pm} \otimes_k A$. Then the bilinear form $(,)_{\mathfrak{g}} \otimes (,)_A$ on \mathfrak{g}_A is invariant and nondegenerate, and $(\mathfrak{g}_A, \mathfrak{g}_{+,A}, \mathfrak{g}_{-,A})$ is a Manin triple.

8. Let \mathfrak{g} be a Lie bialgebra and $r \in \mathfrak{g} \oplus \mathfrak{g}$ a solution to the CYBE. Let

$$\mathfrak{g}_r^+ = Span\{(1 \otimes f)r | f \in \mathfrak{g}^*\},\\ \mathfrak{g}_r^- = Span\{(f \otimes 1)r | f \in \mathfrak{g}^*\}.$$

Then \mathfrak{g}_r^+ and \mathfrak{g}_r^- are finite dimensional Lie subcoalgebras of \mathfrak{g} .