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1 Introduction

Open Toda chain is an integrable many-body system with exponential interaction. Hamiltonian
of the system is the following:

HT =
n∑

i=1

p2i
2

+
n−1∑
i=1

g2i e
2(qi−qi+1) (1.1)

with the symplectic form:

ω =
n∑

i=1

dpi ∧ dqi. (1.2)

It gives rise to the standard equations of motions:

q̇i =
∂HT

∂pi
, ṗi = −∂H

T

∂qi
. (1.3)

Our aim is to solve the equations of motions (1.3) for open Toda chain using hamiltonian
reduction. For more information about the hamiltonian reduction and the moment map see [5].

2 Two-particle system

We start with the elementary example of two particle Toda chain. Our main aim in this section
will be showing how to obtain Toda chain hamiltonian geometrically via considering free motion
in the space of higher dimension(geodesic flows).
Hamiltonian of two particle Toda chain is the following:

H =
1

2
(p21 + p22) + g21e

2(q1−q2), (2.1)

the equations of motions are:

q̇i = pi, ṗ1 = −2g21e
2(q1−q2), ṗ2 = 2g21e

2(q1−q2). (2.2)

After introducing a new variable q = q2 − q1 + c, c = const we get the hamiltonian:

H = 1
2
p2 + g2e−2q, p = q̇. (2.3)
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Let us show how to obtain this hamiltonian geometrically. Consider a free motion on the upper
bowl of a two-cavity hyperboloid {x20−x21−x22 = 1, x0 > 0}. The kinetic energy is determined by
the metric on the hyperboloid and is equal to T = −1

2
(ẋ20 − ẋ21 − ẋ22). Intriduce the orispecrical

coordinates:

x0 = cosh q + z2

2
eq, x1 = sinh q − z2

2
eq, x2 = eqz, (2.4)

in this coordinates the kinetic energy reads as:

T =
1

2
(q̇2 + µe−2q), (2.5)

where µ = że2q = const. Finally, we obtained the hamiltonian for two particle Toda chain.
In next sections we will explain how to get the hamiltonian of n particle Toda chain using free
motion totally analogical to the two particle case.

3 Dynamics are on the extended space

To obtain the many-body open Toda chain, similarly to the section 2, we consider the extended
space X - symmetrical, positive-definite matrices with the determinant equal to 1. The group
G = SL(n,R) acts on the space X transitively x → gxgT , where x ∈ X g ∈ SL(n,R) = G.
Let Z - subgroup of uppertriangular matrices with ”1” on the diagonal and H - subgroup of
diagonal matrices in G. Every element of X may be represented in the following form(Iwasava
decomposition):

x = z(x)h2(x)zT (x), h ∈ H, z ∈ Z. (3.1)

In this way h and z are the coordinates in the space X, this system of coordinates is called
orispherical. Note that groups SL(2,R) and SO(2, 1) are locally isomorphic and systems of
coordinates decribed in sections 2 and 3 are equivalent. Coordinate h(x) is called the orispherical
projection of the element x. Instead of h(x) it is more convinient to consider h(x) = eq(x). For
the orispherical projection we have the following formula:

hj(x) = (
∆n−j+1

∆n−j

)
1
2 , (3.2)

where h(x) = diag(h1(x), .., hn(x)) and ∆i - lower corner minor of the order i of the matrix x,
∆0 = 1, the proof of this statement can be find, for example, in [3].
Consider the cotangent bundle T ∗X, it’s elements may be considered as pairs (x, y), x ∈ X y ∈
T ∗
xX and one-form on it θ = −1

2
tr(ydx−1) and the symplectic form on T ∗X: Ω = dθ = −1

2
tr(dy∧

dx−1). It is evident that these forms are equivalent under the following transformations:

x→ gxgT ,

y → gygT .
(3.3)

Consider the Hamiltonian

H =
1

2
tr(yx−1yx−1). (3.4)

Together with the symplectic form desribed in the above the hamiltonian defines the dynamic:

ẋ = 2y,

ẏ = 2yx−1y,
(3.5)
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from this equations one can deduce d
dt
ẋx−1 = 0, then it is possible to find x:

x(t) = b exp (2at)bT , (3.6)

where b ∈ G, a ∈ TeX. From the form of θ one can find that tr(yx−1)k with k > 1 are the
integrals of motion.

4 Hamiltonian reduction to the Toda system

Action of the group G on T ∗X is as follows:

x→ gxgT , y → gygT . (4.1)

The action gives rise to the flow:

(ẋ)−1 = gTx−1 − x−1g, ẏ = gy + ygT , (4.2)

where g lies in the Lie algebra Lie(G). Using the symplectic potential theta one can obtain that
this flow is generated by the hamiltonian:

F (x, y,g) = −1

2

[
tr(x−1ygT ) + tr(yx−1g)

]
. (4.3)

Let G = SL(n,R), Z - upper triangular matrices with ”1” on diagonals and Z
′
- lower triangular

matrices with ”1” on diagonals. Let Z and Z ′ thier Lie algebras respectively. Define the moment
map by the following formula:

F (x, a) =< Ψ(x), a >, (4.4)

x ∈M , a-belongs to the Lie algebra Lie(G), then

Ψg : (x, y)→ µ+ µ
′
, (4.5)

where µ = (x−1y)+ µ
′

= (yx−1)−. Signs + and − mean the projection onto the upper and
lower triangular matrices respectively.

µjk = gjδj,k−1. (4.6)

Let us use the hamiltonian reduction with respect to the group Z.
Proposition 1: Submanifold Ψ−1(µ) in T ∗X for µ and Ψ from the above are described by the
matrices:

x = ze2qzT , y = zỹzT , (4.7)

where q = diag(q1, .., qn), ỹkj = pke
2qkδkj + gje

2qjδk,j+1 + gj−1e
2qj−1δk+1,j, (p1, .., pn) ∈ Rn.

Proposition 2: Reduced phase space M̃ = Ψ−1(µ)/Z is parametrized by two vectors q =
(q1, .., qn) and p = (p1, .., pn) with

∑
j

qj =
∑
j

pj = 0 or by two matrcies exp(2q) and ỹ.

Proposition 3:With the moment map Ψ hamiltonian H = 1
2
tr(yx−1yx−1) becomes the hamil-

tonian of the Toda chain, the form Ω becomes the canonical form Ω̃ = dp ∧ dq on M̃ .
Proofs of all the propositions can be find in the [1]. Let p0 and q0 -the initial data for the Toda
chain and Jacobi matrix:

bjk = p0jδjk + gj−1e
q0j−1−q0j δj,k+1 + gje

q0j−q0j−1δj,k−1. (4.8)
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Then the following theorem holds:
Theorem 1: Let ∆j(t) - lower corner minors of exp(2bt), then the solution of the Toda chain is

qk(t) = qk(0) +
1

2
ln

∆n−k+1

∆n−k(t)
,∆0 = 1. (4.9)

Proof of the theorem can also be find in the [1].

5 Conclusion

Using the hamiltonian reduction formalism we desribed how to obtain the open Toda chain from
the geodesic dynamics on the extended homogeneous space X - symmetrical, positive-definite
matrices with the determinant equal to 1. The hamiltonian reduction ables one to solve the
Toda chain explicitely and write and solution in the form of (4.9). It is worth mentioning that
we considered the ”usual” open Toda chain, however one can write the generalized open Toda
chain hamiltonian with use of root systems of the complex simple Lie algebras. The Toda
system described above is related to the root system An of the Lie algebra sl(n + 1). The
generalized Toda chains can obtained in the same by the means of the hamiltonian reduction,
the exact solutions can also be find, for more information about generalized Toda chains and
the hamiltonian reduction see [2]. Also, let us mention that hamiltonian reduction can be used
to obtain not only Toda chain systems, but also integrable many-body systems of Calogero type
[4].
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