
Plan
Nakajima quiver varieties: definition and examples

1 Hilbert scheme of points on the affine plane

Resolution of singularities and Hilbert schemes of points

• We have natural object Sn(X) = X×n/Sn — natural configuration space of n
points. We will usually consider the simplest case X = Ak.

• Case dimX = 1: no singularities, coordinates — elementary symmetric polynomi-
als (on the map) e1, . . . en.

• Case dimX = 2 — singularities when points coincide: conic singularity via C/S2.

• Resolution: Hilbert schemes

X [n] = (Ak)[n] = {I ⊂ R = C[z1 . . . zk]|dimR/I = n}. (1)

— 0-dimensional subsheme of length n — generally n points. In case k = 1 it is
Sn(A×n). It is always non-singular for non-singular X — see below.

• Example: take ideal z2 + Poln−1(z1) = 0 and zn1 + an−1z
n−1
1 + . . . = 0. This

corresponds to the n points, generally distinct. Take ai = 0, then n = 2 and then
shift z2 = 0. This is coinciding point. This is ideal J = (z2

1 ; z2 − αz1) = {f ∈
OX |f(0) = 0, df0(v) = 0} of colength 2 — blow-up. Last equality — from the local
data: (y1, y

2
2) in the turned basis.

• Hilbert-Chow morphism π
π : X [n] 7→ SnX (2)

given by

π(Z) =
∑
x∈X

length(Zx)[x] (3)

where length(Zx)=colength of ideal Z, restricted on the vicinity of x, in OX .

Hilbert scheme of points on the plane: handy description

• Theorem 1.1 (A2)[n] = H where

H = {(B1, B2, i)|[B1, B2] = 0; stability:no proper subspace S s.t.B1,2(S) ⊂ S, im i ⊂ S}/GLn(C),
(4)

where B1, B2 ∈ End(Cn), i ∈ Hom(C,Cn) and action of GLn(C) is g · (B1, B2, i) =
(gB1g

−1, gB2g
−1, gi)



• Correspondence at the level of sets: Point in (A2)[n] — ideal I. V = C[z1, z2]/I
— n-dimensional space. Multiplication by z1,2 mod I give us commuting B1,2.
i(1) = 1 mod I and stability condition also holds (because mult 1 on z1 and z2

spanning all C[z1, z2]). Identification of vector spaces VI arised from different
ideals is not necessary because we are interested in GLn(C)-orbits.

Conversely: From (B1, B2, i) define φ : C[z1, z2] 7→ Cn : φ(f) = f(B1, B2)i(1).
By stab. cond. imφ = Cn. I = kerφ so dimC[z1, z2]/I = n. By the stability
condition

I = {f(z) ∈ C[z1, z2]|f(B1, B2) = 0} (5)

• Non-singularity of H: Map B1, B2 7→ [B1, B2] has constant rank. Calculating
cokernel of differential

{ξ| tr(ξ([B1, δB2] + [δB1, B2])) = 0} ⇔ {ξ|[ξ,B1] = [ξ,B2] = 0} (6)

Assign ξ 7→ ξ(i(1)) (i(1) 6= 0 by stab.). Inverse of this map is given by

ξ(Bl
1B

m
2 i(1)) = Bl

1B
m
2 v, l,m ∈ Z≥0 (7)

so coker has dim = n and variety without factorization is non-singular. Stabilizer
of GLn(C) action is trivial. gB1,2g

−1 = B1,2, gi = i so im i ⊂ ker(g − id) and the
ker is inv under B1,2, so from stab. g = id.

• Tangent space to (A2)[n] in point (B1, B2, i). Complex:

Hom(Cn,Cn) 7→d1 Hom(Cn,Cn)⊕Hom(Cn,Cn)⊕ Cn 7→d2 Hom(Cn,Cn) (8)

with d1(ξ) = ([ξ,B1], [ξ,B2], ξi) — derivative of GLn action, d2(C1, C2, I) =
[B1, C2] + [C1, B2] — derivative of commutator map. Kerd1 = 0, tangent space=
Ker(d2)/ Im(d1) with dimension 2n = 2n2 + n− (n2 − n)− n2.

• Example: n = 2: distinct points stratum. Either B1 or B2 have distinct eigenval-
ues. Then B1 = diag(λ1, λ2), B2 = diag(µ1, µ2), i(1) = (1, 1)t.

I = {f(z) ∈ C[z1, z2]|f(λ1, µ1) = 0, f(λ2, µ2) = 0} = (z1(z1 − λ), λz2 − µz1), (9)

where we shifted (λ1 = µ1 = 0) in the last equality.

• Example: n = 2: coinciding points B1 = λE,B2 = µE violates the stability
condition. So we have that

B1 =

(
λ α
0 λ

)
, B1 =

(
µ β
0 µ

)
, (10)

for (α, β) ∈ C2\{0, 0} and i = (0, 1)t. Remaining factor by diag(a, 0) and after
factorization we obtain (α : β) ∈ CP1

I = {(z1−λ)2, (z2−µ)2, β(z1−λ)−α(z2−µ)} = {f |f = (α : β)∇f |λ,µ = 0} (11)



• Hilbert-Chow morphism. Upper-triangular form of the commutative matrices
[B1, B2] give us eigenvalues λi, µi. Morphism is given by (λi, µi). All points are
distinct — matrices semisimple — we have isomorphism.

• n−1 dim component of π−1(n[0]). It corresponds to B1 = E(1), B2 =
∑n−1

i=1 aiE
(i)

and i = (0 . . . 0, 1)t. As an ideal it is given by J = (zn1 , z2 −
∑n−1

i=1 aiz
i
1).

Giseker variety: definition and example

• Gieseker variety (or instanton moduli space variety): the simplest case of Nakajima
quiver variety

Definition 1.1 (A2)[n] = H where

M(r, n) = {(B1, B2, i, j)|[B1, B2]+ij = 0; stability:no proper subspace S s.t.B1,2(S) ⊂ S, im i ⊂ S}/GLn(C),
(12)

where B1, B2 ∈ End(Cn), i ∈ Hom(Cr,Cn), j ∈ Hom(Cn,Cr) and action of GLn(C)
is g · (B1, B2, i, j) = (gB1g

−1, gB2g
−1, gi, jg−1)

Figure of quiver

• Equivalence with previous definition: M(1, n) = (C2)[n]. That is because

Lemma 1.1 Let r = 1 and S is generated from i(1) by B1,2.Then j|S = 0.

jB̂i = 0 by induction from ji = tr(ij) = 0 where r = 1 is important.

• Description of Sn(C2)

Sn(C2) = {(B1, B2, i, j)|[B1, B2] + ij = 0}//GLn(C), (13)

where // — set of closed GLn(C) orbits.

Proof: Take a close orbit and S, then Cn = S ⊕ S⊥

B1,2 =

(
∗ ∗
0 ∗

)
, i = (∗, 0)t, j = (0, ∗). (14)

Take g(t) = diag(1, t) and t 7→ 0 and then g(t′) = t
′−1 and t′ 7→ 0, then we obtain

in this orbit i = j = 0 with [B1, B2] = 0 and we can make them both upper-
triangular. Taking g(t) = diag(1, t, t2 . . .) and t 7→ 0 we make B1,2 semisimple.



2 Generalization: Quiver variety

From Gieseker to quiver varieties Now we generalize the previous example. Instead
of self-loop graph we take quiver Q and introduce space M .

Graph Q (edges and orientation H, vertices 1 . . . n ) with orientation Ω, v — dim of
tuple Vk — hermitian vector spaces.

M =

(⊕
h∈H

Hom(Vout(h), Vin(h))

)
⊕

(
n⊕
k=1

Hom(Vk,Wk)⊕Hom(Wk, Vk)

)
= (Bh, ik, jk).

(15)
dimM = 〈v, Av〉+ 2〈v,w〉, C = 2I −A. Symplectic structure on M

ω((B, i, j), (B′, i′, j′)) =
∑
h∈H

tr(ε(h)BhB
′
h
) +

n∑
k=1

tr(ikj
′
k − i′kjk), (16)

so that M = MΩ ⊕MΩ — natural Lagrangian subspaces.
Group Gv =

∏
GL(Vk) acts by

(Bh, ik, jk) = (gin(h)Bhg
−1
out(h), gkik, jkg

−1
k ) (17)

Introduce moment map

µ(B, i, j) =
∑

h∈H,k=in(h)

ε(h)BhBh + ikjk (18)

Then analog of Sn(C2) is M0 defined by

M0(v,w) = µ−1(0)//Gv (19)

Trivial line G-bundle µ−1(0)×C with g(B, i, j, z) = (g(B, i, j), z
∏
k=1 det gk). Stable

points

µ−1(0)s = {(B, i, j) ∈ µ−1(0)|G(B, i, j, z) ∩ (µ−1(0)× {0}) = ∅forz 6= 0} (20)

Definition 2.1 Nakajima quiver variety is given by

M(v,w) = µ−1(0)s/Gv (21)

For stable points G-stabilizer is trivial and dµ is surjective so dimµ−1(0)s = 〈v, 2w +
(I − C)v〉 and dimM = 〈v, 2w − Cv〉

Projective morphism M 7→M0 exists

Quiver varieties of type An, e.g. partial flag variety. Dynkin quiver
1 ← 2 ← . . . ← n, then M0 = pt. Take v = (v1, v2 . . . vn) and w = (r, 0, . . . 0),
r > v1 > . . . vn > 0. Framed representation of quiver (x1,2, . . . xn−1,n, j). Take collection
of the vector spaces

Fi = Im(jx1,2 . . . xi−1,i) ⊂ Cr. (22)

form partial flag F1 ⊂ F2 ⊂ . . . Fn Stability condition: injectivity of the maps, so
dimFi = vi. Introduce flag variety Fv(n,W ). We obtain that R(v,w) = Fv(n,W ).
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