Plan

Nakajima quiver varieties: definition and examples

1 Hilbert scheme of points on the affine plane

Resolution of singularities and Hilbert schemes of points

- We have natural object $S_n(X) = X^{\times n}/S_n$ natural configuration space of n points. We will usually consider the simplest case $X = \mathbb{A}^k$.
- Case dim X = 1: no singularities, coordinates elementary symmetric polynomials (on the map) $e_1, \ldots e_n$.
- Case dim X = 2 singularities when points coincide: conic singularity via \mathbb{C}/S_2 .
- Resolution: Hilbert schemes

$$X^{[n]} = (\mathbb{A}^k)^{[n]} = \{ I \subset R = \mathbb{C}[z_1 \dots z_k] | \dim R/I = n \}.$$
(1)

— 0-dimensional subsheme of length n — generally n points. In case k = 1 it is $S_n(\mathbb{A}^{\times n})$. It is always non-singular for non-singular X — see below.

- Example: take ideal $z_2 + Pol_{n-1}(z_1) = 0$ and $z_1^n + a_{n-1}z_1^{n-1} + \ldots = 0$. This corresponds to the *n* points, generally distinct. Take $a_i = 0$, then n = 2 and then shift $z_2 = 0$. This is coinciding point. This is ideal $J = (z_1^2; z_2 \alpha z_1) = \{f \in \mathcal{O}_X | f(0) = 0, df_0(v) = 0\}$ of colength 2 blow-up. Last equality from the local data: (y_1, y_2^2) in the turned basis.
- Hilbert-Chow morphism π

$$\pi: X^{[n]} \mapsto S^n X \tag{2}$$

given by

$$\pi(Z) = \sum_{x \in X} \operatorname{length}(Z_x)[x]$$
(3)

where length (Z_x) = colength of ideal Z, restricted on the vicinity of x, in \mathcal{O}_X .

Hilbert scheme of points on the plane: handy description

• Theorem 1.1 $(\mathbb{A}^2)^{[n]} = H$ where

$$H = \{(B_1, B_2, i) | [B_1, B_2] = 0; stability: no proper subspace S s.t. B_{1,2}(S) \subset S, im i \subset S\}/GL_n(\mathbb{C})$$

$$(4)$$

$$where B_1, B_2 \in \text{End}(\mathbb{C}^n), i \in \text{Hom}(\mathbb{C}, \mathbb{C}^n) \text{ and action of } GL_n(\mathbb{C}) \text{ is } g \cdot (B_1, B_2, i) = (gB_1g^{-1}, gB_2g^{-1}, gi)$$

• Correspondence at the level of sets: Point in $(\mathbb{A}^2)^{[n]}$ — ideal I. $V = \mathbb{C}[z_1, z_2]/I$ — *n*-dimensional space. Multiplication by $z_{1,2} \mod I$ give us commuting $B_{1,2}$. $i(1) = 1 \mod I$ and stability condition also holds (because mult 1 on z_1 and z_2 spanning all $\mathbb{C}[z_1, z_2]$). Identification of vector spaces V_I arised from different ideals is not necessary because we are interested in $GL_n(\mathbb{C})$ -orbits.

Conversely: From (B_1, B_2, i) define $\phi : \mathbb{C}[z_1, z_2] \mapsto \mathbb{C}^n : \phi(f) = f(B_1, B_2)i(1)$. By stab. cond. im $\phi = \mathbb{C}^n$. $I = \ker \phi$ so dim $\mathbb{C}[z_1, z_2]/I = n$. By the stability condition

$$I = \{ f(z) \in \mathbb{C}[z_1, z_2] | f(B_1, B_2) = 0 \}$$
(5)

• Non-singularity of H: Map $B_1, B_2 \mapsto [B_1, B_2]$ has constant rank. Calculating cokernel of differential

$$\{\xi | \operatorname{tr}(\xi([B_1, \delta B_2] + [\delta B_1, B_2])) = 0\} \Leftrightarrow \{\xi | [\xi, B_1] = [\xi, B_2] = 0\}$$
(6)

Assign $\xi \mapsto \xi(i(1))$ $(i(1) \neq 0$ by stab.). Inverse of this map is given by

$$\xi(B_1^l B_2^m i(1)) = B_1^l B_2^m v, l, m \in \mathbb{Z}_{\ge 0}$$
(7)

so coker has dim = n and variety without factorization is non-singular. Stabilizer of $GL_n(\mathbb{C})$ action is trivial. $gB_{1,2}g^{-1} = B_{1,2}, gi = i$ so im $i \subset \ker(g - id)$ and the ker is inv under $B_{1,2}$, so from stab. g = id.

• Tangent space to $(\mathbb{A}^2)^{[n]}$ in point (B_1, B_2, i) . Complex:

$$\operatorname{Hom}(\mathbb{C}^n,\mathbb{C}^n)\mapsto_{d_1}\operatorname{Hom}(\mathbb{C}^n,\mathbb{C}^n)\oplus\operatorname{Hom}(\mathbb{C}^n,\mathbb{C}^n)\oplus\mathbb{C}^n\mapsto_{d_2}\operatorname{Hom}(\mathbb{C}^n,\mathbb{C}^n)$$
(8)

with $d_1(\xi) = ([\xi, B_1], [\xi, B_2], \xi i)$ — derivative of GL_n action, $d_2(C_1, C_2, I) = [B_1, C_2] + [C_1, B_2]$ — derivative of commutator map. $Kerd_1 = 0$, tangent space= $Ker(d_2)/Im(d_1)$ with dimension $2n = 2n^2 + n - (n^2 - n) - n^2$.

• Example: n = 2: distinct points stratum. Either B_1 or B_2 have distinct eigenvalues. Then $B_1 = diag(\lambda_1, \lambda_2), B_2 = diag(\mu_1, \mu_2), i(1) = (1, 1)^t$.

$$I = \{f(z) \in \mathbb{C}[z_1, z_2] | f(\lambda_1, \mu_1) = 0, f(\lambda_2, \mu_2) = 0\} = (z_1(z_1 - \lambda), \lambda z_2 - \mu z_1), \quad (9)$$

where we shifted $(\lambda_1 = \mu_1 = 0)$ in the last equality.

• Example: n = 2: coinciding points $B_1 = \lambda E, B_2 = \mu E$ violates the stability condition. So we have that

$$B_1 = \begin{pmatrix} \lambda & \alpha \\ 0 & \lambda \end{pmatrix}, \quad B_1 = \begin{pmatrix} \mu & \beta \\ 0 & \mu \end{pmatrix}, \tag{10}$$

for $(\alpha, \beta) \in \mathbb{C}^2 \setminus \{0, 0\}$ and $i = (0, 1)^t$. Remaining factor by diag(a, 0) and after factorization we obtain $(\alpha : \beta) \in \mathbb{CP}^1$

$$I = \{(z_1 - \lambda)^2, (z_2 - \mu)^2, \beta(z_1 - \lambda) - \alpha(z_2 - \mu)\} = \{f | f = (\alpha : \beta)\nabla f|_{\lambda,\mu} = 0\}$$
(11)

- Hilbert-Chow morphism. Upper-triangular form of the commutative matrices $[B_1, B_2]$ give us eigenvalues λ_i, μ_i . Morphism is given by (λ_i, μ_i) . All points are distinct matrices semisimple we have isomorphism.
- n-1 dim component of $\pi^{-1}(n[0])$. It corresponds to $B_1 = E^{(1)}, B_2 = \sum_{i=1}^{n-1} a_i E^{(i)}$ and $i = (0 \dots 0, 1)^t$. As an ideal it is given by $\mathcal{J} = (z_1^n, z_2 - \sum_{i=1}^{n-1} a_i z_1^i)$.

Giseker variety: definition and example

• Gieseker variety (or instanton moduli space variety): the simplest case of Nakajima quiver variety

Definition 1.1 $(\mathbb{A}^2)^{[n]} = H$ where

 $\begin{aligned} \mathcal{M}(r,n) &= \{ (B_1, B_2, i, j) | [B_1, B_2] + ij = 0; \textit{stability:} no \ proper \ subspace \ S \ s.t. B_{1,2}(S) \subset S, \text{im } i \subset S \} / O_{(12)} \\ where \ B_1, B_2 \in \operatorname{End}(\mathbb{C}^n), i \in \operatorname{Hom}(\mathbb{C}^r, \mathbb{C}^n), j \in \operatorname{Hom}(\mathbb{C}^n, \mathbb{C}^r) \ and \ action \ of \ GL_n(\mathbb{C}) \\ is \ g \cdot (B_1, B_2, i, j) &= (gB_1g^{-1}, gB_2g^{-1}, gi, jg^{-1}) \end{aligned}$

Figure of quiver

• Equivalence with previous definition: $\mathcal{M}(1,n) = (\mathbb{C}^2)^{[n]}$. That is because

Lemma 1.1 Let r = 1 and S is generated from i(1) by $B_{1,2}$. Then $j|_S = 0$.

 $j\hat{B}i = 0$ by induction from ji = tr(ij) = 0 where r = 1 is important.

• Description of $S_n(\mathbb{C}^2)$

$$S_n(\mathbb{C}^2) = \{ (B_1, B_2, i, j) | [B_1, B_2] + ij = 0 \} / / GL_n(\mathbb{C}),$$
(13)

where // — set of closed $GL_n(\mathbb{C})$ orbits.

Proof: Take a close orbit and S, then $\mathbb{C}^n = S \oplus S^{\perp}$

$$B_{1,2} = \begin{pmatrix} * & * \\ 0 & * \end{pmatrix}, \quad i = (*,0)^t, \quad j = (0,*).$$
(14)

Take g(t) = diag(1, t) and $t \mapsto 0$ and then $g(t') = t'^{-1}$ and $t' \mapsto 0$, then we obtain in this orbit i = j = 0 with $[B_1, B_2] = 0$ and we can make them both uppertriangular. Taking $g(t) = diag(1, t, t^2 \dots)$ and $t \mapsto 0$ we make $B_{1,2}$ semisimple.

2 Generalization: Quiver variety

From Gieseker to quiver varieties Now we generalize the previous example. Instead of self-loop graph we take quiver Q and introduce space M.

Graph Q (edges and orientation H, vertices $1 \dots n$) with orientation Ω , \mathbf{v} — dim of tuple V_k — hermitian vector spaces.

$$M = \left(\bigoplus_{h \in H} \operatorname{Hom}(V_{out(h)}, V_{in(h)})\right) \oplus \left(\bigoplus_{k=1}^{n} \operatorname{Hom}(V_k, W_k) \oplus \operatorname{Hom}(W_k, V_k)\right) = (B_h, i_k, j_k).$$
(15)

dim $M = \langle \mathbf{v}, A\mathbf{v} \rangle + 2 \langle \mathbf{v}, \mathbf{w} \rangle$, C = 2I - A. Symplectic structure on M

$$\omega((B,i,j),(B',i',j')) = \sum_{h \in \mathbb{H}} \operatorname{tr}(\epsilon(h)B_h B'_{\overline{h}}) + \sum_{k=1}^n \operatorname{tr}(i_k j'_k - i'_k j_k),$$
(16)

so that $M = M_{\Omega} \oplus M_{\overline{\Omega}}$ — natural Lagrangian subspaces.

Group $G_{\mathbf{v}} = \prod \operatorname{GL}(V_k)$ acts by

$$(B_h, i_k, j_k) = (g_{in(h)} B_h g_{out(h)}^{-1}, g_k i_k, j_k g_k^{-1})$$
(17)

Introduce moment map

$$\mu(B, i, j) = \sum_{h \in H, k = in(h)} \epsilon(h) B_h B_{\overline{h}} + i_k j_k \tag{18}$$

Then analog of $S_n(\mathbb{C}^2)$ is \mathfrak{M}_0 defined by

$$\mathfrak{M}_0(\mathbf{v}, \mathbf{w}) = \mu^{-1}(0) / / G_{\mathbf{v}}$$
(19)

Trivial line G-bundle $\mu^{-1}(0) \times \mathbb{C}$ with $g(B, i, j, z) = (g(B, i, j), z \prod_{k=1} \det g_k)$. Stable points

$$\mu^{-1}(0)^s = \{ (B, i, j) \in \mu^{-1}(0) | \overline{G(B, i, j, z)} \cap (\mu^{-1}(0) \times \{0\}) = \varnothing \text{ for } z \neq 0 \}$$
(20)

Definition 2.1 Nakajima quiver variety is given by

$$\mathfrak{M}(\mathbf{v}, \mathbf{w}) = \mu^{-1}(0)^s / G_{\mathbf{v}}$$
(21)

For stable points G-stabilizer is trivial and $d\mu$ is surjective so dim $\mu^{-1}(0)^s = \langle v, 2w + (I-C)v \rangle$ and dim $\mathfrak{M} = \langle v, 2w - Cv \rangle$

Projective morphism $\mathfrak{M} \mapsto \mathfrak{M}_0$ exists

Quiver varieties of type A_n , e.g. partial flag variety. Dynkin quiver

 $1 \leftarrow 2 \leftarrow \ldots \leftarrow n$, then $\mathfrak{M}_0 = pt$. Take $\mathbf{v} = (v_1, v_2 \ldots v_n)$ and $\mathbf{w} = (r, 0, \ldots 0)$, $r > v_1 > \ldots v_n > 0$. Framed representation of quiver $(x_{1,2}, \ldots x_{n-1,n}, j)$. Take collection of the vector spaces

$$F_i = \operatorname{Im}(jx_{1,2}\dots x_{i-1,i}) \subset \mathbb{C}^r.$$
(22)

form partial flag $F_1 \subset F_2 \subset \ldots F_n$ Stability condition: injectivity of the maps, so $\dim F_i = v_i$. Introduce flag variety $\mathcal{F}_{\mathbf{v}}(n, W)$. We obtain that $\mathcal{R}(\mathbf{v}, \mathbf{w}) = \mathcal{F}_{\mathbf{v}}(n, W)$.