
1 Super-symmetric sigma-model and Landau-Ginzburg model

∙ Lagrangian of the super-symmetric non-linear sigma model with the Kahler target space 𝑋 is

ℒ = −𝑔𝑖𝑗̄𝜕𝜇𝜑𝑖𝜕𝜇𝜑𝑗̄ + 𝑖𝑔𝑖𝑗̄𝜓
𝑗̄

−(𝐷0 +𝐷1)𝜓𝑖
− + 𝑖𝑔𝑖𝑗̄𝜓

𝑗̄

+(𝐷0 −𝐷1)𝜓𝑖
+ +𝑅𝑖𝑗̄𝑘𝑙̄𝜓

𝑖
+𝜓

𝑗
−𝜓

𝑗̄
−𝜓

𝑙̄
+. (1)

where the target space Kahler metric is
𝑔𝑖𝑗̄ = 𝜕𝑖𝜕𝑗̄𝐾. (2)

Field 𝜑 defines mappings 𝜑 : Σ → 𝑋, while fermionic fields are sections of the bull-back of tangent bundle

𝜓± ∈ Γ(Σ, 𝜑*𝑇𝑀 (1,0) ⊗ 𝑆±), 𝜓± ∈ Γ(Σ, 𝜑*𝑇𝑀 (1,0) ⊗ 𝑆±) (3)

so the covariant derivatives are
𝐷𝜇𝜓

𝑖
± = 𝜕𝜇𝜓

𝑖
± + 𝜕𝜇𝜑

𝑗Γ𝑖
𝑗𝑘𝜓

𝑘
±. (4)

∙ The action can be compactly written using single D-term by

ℒ =

∫︁
𝑑4𝜃 𝐾(Φ,Φ). (5)

∙ One can deform the model to Landau-Ginzburg model, including super-potential by 𝐹 -term

𝛿ℒ = −1

4
𝑔𝑖̄𝑗𝜕𝑖̄𝑊𝜕𝑗𝑊 − 1

2
𝐷𝑖𝜕𝑗𝑊𝜓𝑖

+𝜓
𝑗
− − 1

2
𝐷𝑖̄𝜕𝑗̄𝑊𝜓

𝑖̄

−𝜓
𝑗̄

+ (6)

which is written using super-fields by

𝛿ℒ =
1

2

(︂∫︁
𝑑2𝜃 𝑊 (𝜑) + ℎ.𝑐.

)︂
(7)

∙ One can add topological term into path integral preserving super-symmetry using some 𝐵 ∈ 𝐻2(𝑀,R):

exp

⎛⎝𝑖∫︁
Σ

𝜑*𝐵

⎞⎠ . (8)

∙ The target space is ’coupling constant’ of the sigma-model which is to be renormalized. In the one-loop
approximation (doesn’t affected by fermions) RG equation is

𝜇
𝑑𝑔𝐼𝐽(𝜇)

𝑑𝜇
=

1

2𝜋
𝑅𝐼𝐽(𝑔(𝜇)), 𝑔𝐼𝐽(Λ𝑈𝑉 ) = 𝑔𝐼𝐽(𝜇) +

1

2𝜋
log

(︂
Λ𝑈𝑉

𝜇

)︂
𝑅𝐼𝐽 (9)

∙ There are three cases:

– 𝑅𝐼𝐽 > 0 - asymptotic freedom. The bare metric is large (if we fix physical metric) when we make
Λ𝑈𝑉 large, so there perturbation theory works well, theory is free. On the opposite - in the 𝐼𝑅 the
model is strongly coupled.

– 𝑅𝐼𝐽 = 0 - the theory is conformal. The CY case is ’close’ to be so. For LG models - one also have
to demand quasi-homogeneity of 𝑊 , as it flows ’trivially’ (see below). Hoped to flow to IR CFT.

– 𝑅𝐼𝐽 < 0 theory is ill-defined case.

This result is not exact (non-trivial four loops for CY, exact for Grassmanians and Hermitean spaces).

∙ However the renormalization of the Kahler class can be obtained from anomalies, and given by

[𝜔](𝜇) → [𝜔](Λ) + log(𝜇/Λ)𝑐1(𝑀) (10)

where [𝜔] ∈ 𝐻2(𝑀,R) is complexified, includes 𝐵-field 𝐵 ∈ 𝐻2(𝑀,R)/𝐻2(𝑀,Z). Scale + axial anomaly
absorb one parameter.

∙ We will be computing anomalies of the theory using Groethendieck-Riemann-Roch formula

𝜒(𝐸) =
∑︁
𝑘

(−1)𝑘dim𝐻𝑘(𝐸) =

∫︁
Σ

ch(𝐸)td(𝑇Σ), td(𝐹 ) = det

(︂
𝐹

1 − 𝑒−𝐹

)︂
, ch(𝐹 ) = det(1 + 𝐹 ) (11)

For our case

Σ = 1 +
1

2
𝑐1(Σ) (12)
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2 Super-symmetry

∙ The symmetry algebra of the theory is 𝒩 = (2, 2) super-Poincare in 2d:

[𝑃±,𝑀 ] = ±𝑀, {𝒬±,𝒬±} = −2𝑖𝜕± = −2𝑃±, [𝑀,𝒬±] = ±𝑖𝒬±, [𝑀,𝒬±] = ±𝑖𝒬±, 𝒬†
± = 𝒬± (13)

which can be represented in super-space by

𝒬± =
𝜕

𝜕𝜃±
+ 𝑖𝜃±𝜕±, 𝒬± =

𝜕

𝜕𝜃±
+ 𝑖𝜃±𝜕±, 𝑃± =

𝜕

𝜕𝑥±
, 𝑀 = 𝑥+

𝜕

𝜕𝑥+
− 𝑥−

𝜕

𝜕𝑥−
(14)

𝑥± = 𝑥0 ± 𝑥1, (𝜃±)* = 𝜃± (15)

Super-covariant derivatives, commuting with Poincare algebra

{𝐷±, 𝐷±} = 2𝑖𝜕±, {𝐷±,𝒬±} = {𝐷±,𝒬±} = 0, {𝐷±,𝒬±} = {𝐷±,𝒬±} = 0, (16)

can be defined by

𝐷± =
𝜕

𝜕𝜃±
− 𝑖𝜃±𝜕±, 𝐷± = − 𝜕

𝜕𝜃±
+ 𝑖𝜃±𝜕± (17)

∙ Chiral super-field is defined by constraints
𝐷±Φ = 0 (18)

which can be solved by

Φ(𝑥, 𝜃, 𝜃) = 𝜑(𝑦±) + 𝜃𝛼𝜓𝛼(𝑦±) + 𝜃+𝜃−𝐹 (𝑦±), 𝑦± = 𝑥± − 𝑖𝜃±𝜃± (19)

Twisted chiral super-field is defined by constraints

𝐷+𝑈 = 0, 𝐷−𝑈 = 0 (20)

which can be solved by

𝑈(𝑥, 𝜃, 𝜃) = 𝑣(𝑦±) + 𝜃+𝜒̄+(𝑦±) + 𝜃−𝜒−(𝑦±) + 𝜃+𝜃−𝐸(𝑦±), 𝑦± = 𝑥± ∓ 𝑖𝜃±𝜃± (21)

writing generator of super-symmetry as

𝛿 = 𝜖+𝒬− − 𝜖−𝒬− − 𝜖+𝒬− + 𝜖−𝒬+, 𝛿† = −𝛿 (22)

one finds transformation rules in components

𝛿𝜑 = 𝜖+𝜓− − 𝜖−𝜓+ 𝛿𝑣 = 𝜖+𝜒− − 𝜖−𝜒̄+

𝛿𝜓+ = +2𝑖𝜖−𝜕+𝜑+ 𝜖+𝐹 𝛿𝜒̄+ = 2𝑖𝜖−𝜕+𝑣 + 𝜖+𝐸
𝛿𝜓− = −2𝑖𝜖+𝜕−𝜑+ 𝜖−𝐹 𝛿𝜒− = −2𝑖𝜖+𝜕−𝑣 + 𝜖−𝐸
𝛿𝐹 = −2𝑖𝜖+𝜕−2𝑖𝜖−𝜕+𝜓− 𝛿𝐸 = −2𝑖𝜖+𝜕−𝜒̄+ − 2𝑖𝜖−𝜕+𝜒−

(23)

The lowest components satisfy constraints:

[𝒬±, 𝜑] = 0, [𝒬+, 𝑣] = [𝒬−, 𝑣] = 0 (24)

Conversely, if one got such fields, the whole multiplet can be constructed by the action of rising operators.

∙ Real vector multiplet 𝑉 is real scalar super-field, modulo transformations

𝑉 → 𝑉 + 𝑖(𝐴−𝐴) (25)

Fixing it properly, one can find

𝑉 = 𝜃−𝜃−(𝑣0 − 𝑣1) + 𝜃+𝜃+(𝑣0 + 𝑣1) − 𝜃−𝜃+𝜎 − 𝜃+𝜃−𝜎̄+ (26)

+𝑖𝜃−𝜃+(𝜃−𝜆̄− + 𝜃+𝜆̄+) + 𝑖𝜃+𝜃−(𝜃−𝜆− + 𝜃+𝜆+) + 𝜃−𝜃+𝜃+𝜃−𝐷

The field-strength is coming from the twisted chiral super-field

Σ = 𝐷+𝐷−𝑉, 𝐷+Σ = 0, 𝐷−Σ = 0 (27)

which decomposes as

Σ = 𝜎(𝑦) + 𝑖𝜃+𝜆̄+(𝑦) − 𝑖𝜃−𝜆−(𝑦) + 𝜃+𝜃−[𝐷(𝑦) − 𝑖𝑣01(𝑦)], 𝑣01 = 𝜕0𝑣1 − 𝜕1𝑣0 (28)
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∙ Non-renormalization theorem:

– 𝐹 term and twisted 𝐹 term doesn’t mix under renormalization. 𝐷 term doesn’t affect renormalization
of 𝐹 and twisted 𝐹 terms (by promoting couplings in 𝐷 to fields).

– Super-potential doesn’t renormalize (by demoting fields to couplings).

However if we write effective action, and integrate some fields out - the couplings can come.

∙ There are two 𝑅-symmetries

(𝑒𝑖𝛼𝐹𝑉 ℱ)(𝑥, 𝜃±, 𝜃±) = 𝑒𝑖𝛼𝑞𝑉 ℱ(𝑥, 𝑒−𝑖𝛼𝜃±, 𝑒𝑖𝛼𝜃±) (29)

(𝑒𝑖𝛼𝐹𝐴ℱ)(𝑥, 𝜃±, 𝜃±) = 𝑒𝑖𝛼𝑞𝐴ℱ(𝑥, 𝑒∓𝑖𝛼𝜃±, 𝑒±𝑖𝛼𝜃±) (30)

Note that super-symmetry change charges by

[𝐹𝐴,𝒬±] = ∓𝒬±, [𝐹𝐴,𝒬±] = ±𝒬±, [𝐹𝑉 ,𝒬±] = −𝒬±, [𝐹𝑉 ,𝒬±] = 𝒬± (31)

The axial 𝑅-charge of chiral super multiplet is 𝑞𝐴 = 0 so the components transform as

𝐹𝐴 : 𝜑 ↦→ 𝜑, 𝜓± ↦→ 𝑒∓𝑖𝛼𝜓±, 𝐹 ↦→ 𝐹 (32)

The vector symmetry is broken by superpotential, unless it is homogeneous of degree 𝑘 wrt the Φ. In this
case 𝑞𝑉 = 2/𝑘 and components transform by

𝐹𝑉 : 𝜑 ↦→ 𝑒2𝑖𝛼/𝑘𝜑, 𝜓± ↦→ 𝑒(2/𝑘−1)𝑖𝛼𝜓±, 𝐹 ↦→ 𝑒(2/𝑘−2)𝑖𝛼𝐹 (33)

Twisted field can be obtained by replacement 𝜃− ↔ 𝜃− which replace 𝐹𝑉 ↔ 𝐹𝐴 so 𝑞𝑉 = 0 and the vector
transformation rules are

𝐹𝑉 : 𝑣 ↦→ 𝑣, 𝜒− ↦→ 𝑒𝑖𝛼𝜒−, 𝜒̄+ ↦→ 𝑒−𝑖𝛼𝜒̄+, 𝐸 ↦→ 𝐸 (34)

Again, if twisted super-potential is homogenious of degree 𝑘 than

𝐹𝐴 : 𝑣 ↦→ 𝑒2𝑖𝛼/𝑘𝑣, 𝜒− ↦→ 𝑒(2/𝑘−1)𝑖𝛼𝜒−, 𝜒̄+ ↦→ 𝑒(2/𝑘−1)𝑖𝛼𝜒̄+, 𝐸 ↦→ 𝑒(2/𝑘−2)𝑖𝛼𝐸 (35)

3 Target spaces

∙ The almost complex manifold 𝑋 is the manifold equipped with smooth map 𝐽

𝐽 : 𝑇𝑋 → 𝑇𝑋 s.t. 𝐽2 = −1, 𝐽

(︂
𝜕

𝜕𝑥𝑎

)︂
= 𝐽𝑏

𝑎

𝜕

𝜕𝑥𝑏
(36)

This splits
𝑇C𝑋 = 𝑇𝑋 ⊕ 𝑇𝑋 : 𝐽 |𝑇𝑋 = 𝑖, 𝐽 |𝑇𝑋 = −𝑖 (37)

which induces decomposition on differential forms

Ω𝑛(𝑀) =
⨁︁

𝑝+𝑞=𝑛

Λ𝑝𝑇 *𝑀 ⊗ Λ𝑞𝑇
*
𝑀 =

⨁︁
𝑝+𝑞=𝑛

Ω𝑝,𝑞(𝑀) (38)

De-Rham derivative can be decomposed to

𝑑 = 𝜕 + 𝜕 + ... (39)

where
𝜕|Ω𝑝,𝑞 = 𝑃 |𝑝+1,𝑞 · 𝑑, 𝜕|Ω𝑝,𝑞 = 𝑃 |𝑝,𝑞+1 · 𝑑 (40)

and 𝑃 |𝑝,𝑞 is the projector on Ω𝑝,𝑞(𝑀).

∙ If 𝐽 satisfies 𝑃 [𝑃𝑋,𝑃𝑌 ] = 0 then 𝐽 can be ’integrated’, and one can find complex coordinates with
holomorphic transition maps. Equivalently, one can demand that 𝜕2 = 0. In this case

𝑑 = 𝜕 + 𝜕; 𝑑2 = 0 ⇒ 𝜕2 = 𝜕2 = 𝜕𝜕 + 𝜕𝜕 = 0 (41)

The deformations of complex structure 𝐽 ↦→ 𝐽 + 𝜖 satisfying 𝐽2 = 0 modulo coordinate changes are
elements of 𝐻1

𝜕
(𝑇𝑀) i.e. such

𝜖 = 𝜖𝑎𝑏̄𝑑𝑧
𝑏̄ ⊗ 𝜕

𝜕𝑧𝑎
(42)

that satisfy 𝜕𝑎̄𝜖
𝑐
𝑏̄
− 𝜕𝑏̄𝜖

𝑐
𝑎̄ = 0 modulo 𝜖𝑐

𝑏̄
= 𝜕𝑏̄𝑣

𝑐. One can also consider this as deformation of 𝜕 operator.
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∙ One can compute that Laplacians coincide

∆𝑑 = 2∆𝜕 = 2∆𝜕 (43)

and show that
Harm𝑟,𝑠

𝜕
= 𝐻𝑟,𝑠

𝜕
(44)

so by the Hodge theorem one can show that de-Rham cohomology are decomposable

𝐻𝑛(𝑀) =
⨁︁

𝑝+𝑞=𝑛

𝐻𝑝,𝑞

𝜕
(𝑀) (45)

∙ The Hodge numbers ℎ𝑝,𝑞 = dim 𝐻𝑝,𝑞(𝑀) got properties

– ℎ𝑝,𝑞 = ℎ𝑛−𝑝,𝑛−𝑞

– ℎ𝑝,𝑞 = ℎ𝑞,𝑝

– For CY triviality of 𝐻1(𝑋) implies ℎ0,2 = 0.

∙ The metric is said to be Hermitian, and define positive-defined inner product

𝑔 : 𝑇𝑀 ⊗ 𝑇𝑀 → C, 𝑔 = 𝑔𝑖𝑗̄𝑑𝑧
𝑖 ⊗ 𝑑𝑧𝑗̄ . (46)

if is satisfy
𝑔(𝑋,𝑌 ) = 𝑔(𝐽𝑋, 𝐽𝑌 ) ⇔ 𝐽𝑎𝑏 = −𝐽𝑏𝑎, 𝐽𝑎𝑏 = 𝐽𝑐

𝑎𝑔𝑐𝑏. (47)

One can define associated (1, 1)-form by

𝜔(𝑋,𝑌 ) = 𝑔(𝐽𝑋, 𝑌 ), 𝜔 = 𝑖𝑔𝑖𝑗̄𝑑𝑧
𝑖 ∧ 𝑑𝑧𝑗̄ (48)

∙ The manifold is said to be Kahler and the form defines Kahler class [𝜔] ∈ 𝐻1,1(𝑋) if

𝑑𝜔 = 0, 𝜕𝑖𝑔𝑗𝑘̄ = 𝜕𝑗𝑔𝑖𝑘̄ (49)

Locally one can find such Kahler potential 𝐾, that 𝑔𝑖𝑗̄ = 𝜕𝑖𝜕𝑗̄𝐾.

∙ On Kahler manifold
Γ𝑖
𝑗𝑘̄ = ... = Γ𝑖̄

𝑗̄𝑘 = 0, Γ𝑖
𝑗𝑘 = 𝑔𝑖𝑙̄𝜕𝑗𝑔𝑙̄𝑘, Γ𝑖̄

𝑗̄𝑘̄ = 𝑔𝑖̄𝑙𝜕𝑗̄𝑔𝑙𝑘̄ (50)

∙ The property of being Kahler survives rescaling of the metric. Kahler cone is the cone in 𝐻1,1(𝑀) of such
𝜔, for which associated metrics define strictly positive volume for any sub-manifold. Inside Kahler cone
one can slightly deform 𝜔 by the any element of 𝐻1,1(𝑀), so these are deformations of Kahler structure.

∙ The Calabi-Yau manifold is such Kahler, that 𝑐1(𝑇𝑀) = [ 1
2𝜋ℛ] = 0. For simply connected, condition

Ω𝑑,0(𝑀) = 𝒪 (i.e. having non-vanishing highest holomorphic form) is equivalent. The equivalence is by
taking determinant bundle.

∙ In the case of CY-3 one can use highest holomorphic form to show

𝐻1
𝜕(𝑇𝑋) = 𝐻2,1

𝜕
(𝑋) (51)

so ℎ2,1 is the number of complex deformations, ℎ1,1 is the number of Kahler deformations.

∙ CY theorem: For complex manifold fixed complex structure and 𝑐1(𝑋) = 0 there exists unique (up to
scaling) Kahler metric which

– Has fixed [Ω] ∈ 𝐻1,1(𝑋) (i.e. periods).

– The curvature is zero ℛ = 0
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4 Non-linear from linear sigma models

∙ The gauged linear sigma-model is

ℒ =

∫︁
𝑑4𝜃

(︃
𝑁∑︁
𝑖=1

Φ𝑖𝑒
𝑄𝑖𝑎𝑉𝑎Φ𝑖 −

𝑘∑︁
𝑎=1

1

2𝑒2𝑎
Σ𝑎Σ𝑎

)︃
+

1

2

(︃∫︁
𝑑2𝜃

𝑘∑︁
𝑎=1

(−𝑡𝑎Σ𝑎) + 𝑐.𝑐.

)︃
(52)

where we used real vector-multiplet. The parameters 𝑡𝑎 = 𝑟𝑎 − 𝑖𝜃𝑎 are called FI parameters. The most
interesting pieces are potential term

𝑈 =

𝑁∑︁
𝑖=1

|𝑄𝑖𝑎𝜎𝑎|2|𝜑𝑖|2 +

𝑘∑︁
𝑎=1

(𝑒𝑎)2

2
(𝑄𝑖𝑎|𝜑𝑖|2 − 𝑟𝑎)2 (53)

and theta-terms
ℒ𝜃 =

∑︁
𝑎

𝜃𝑎(𝑣𝑎)01 (54)

∙ We are interested in phase where 𝜑 ̸= 0, 𝜎 = 0. In the strong coupling regime 𝑒2𝑎 → +∞:

– 𝜑𝑖 tangent to vacuum manifold are massless.

– 𝜑𝑖 transverse to vacuum manifold have mass 𝑒
√

2𝑟

– 𝑣𝜇 eat one mass-less scalar and get mass 𝑒
√

2𝑟

– The only massless fermions are those, which are tangent to vacuum

𝑁∑︁
𝑖=1

𝜑𝑖𝜓
𝑖
± = 0,

𝑁∑︁
𝑖=1

𝜑𝑖𝜓
𝑖

± = 0 (55)

∙ Using the equations of motion for vector and auxiliary fields, with kinetic term omitted, one can find that∫︁
𝐶∈𝐻2(𝑋)

(𝜔 − 𝑖𝐵) =
1

2𝜋
𝑡𝐶 (56)

∙ Large class of examples can, for which the target is defined by Hamiltonian reduction (wrt the 𝜔 =∑︀
𝑘 𝑑𝜑𝑘 ∧ 𝑑𝜑𝑘), can be defined so. The simplest:

– Projective space C𝑃𝑁−1

C𝑃𝑁−1 = {(𝜑1, ..., 𝜑𝑁 ) ⊂ C𝑁 : 𝐻 = |𝜑1|2 + ..+ |𝜑𝑁 |2 − 𝑟 = 0}/{𝑈(1) : 𝜑𝑘 ↦→ 𝜑𝑘𝑒
𝑖𝛼} (57)

The gauge field constraint give

𝑣𝜇 =
𝑖

2

∑︀𝑁
𝑖=1

(︀
𝜑𝑖𝜕𝜇𝜑𝑖 − 𝜕𝜇𝜑𝜑𝑖

)︀∑︀𝑁
𝑗=1 |𝜑𝑗 |2

(58)

which defines metric for mass-less fields to be

𝑑𝑠2 =
𝑟

2𝜋
𝑔𝐹𝑆 . (59)

The gauge field also define connection, whose curvature is 𝑐1(𝒪(1)) = 1
2𝜋𝜔

𝐹𝑆 which generates
𝐻2(C𝑃𝑁−1,Z). Thus the 𝐵-field is

𝐵 =
𝜃

2𝜋
𝜔𝐹𝑆 (60)

so, collecting together

[𝜔] − 𝑖[𝐵] =
𝑡

2𝜋
[𝜔𝐹𝑆 ] (61)

– Resolved conifold

{(𝜑1, 𝜑2, 𝜑3, 𝜑4) ⊂ C4 : 𝐻 = |𝜑1|2 + |𝜑2|2 − |𝜑3|2 − |𝜑4|2 − 𝑟 = 0}/𝑈(1) (62)

𝑈(1) : (𝜑1, 𝜑2, 𝜑3, 𝜑4) ↦→ (𝜑1𝑒
𝑖𝛼, 𝜑2𝑒

𝑖𝛼, 𝜑3𝑒
−𝑖𝛼, 𝜑4𝑒

−𝑖𝛼) (63)

the open cell is
𝑥𝑧 = 𝑦𝑤, where 𝑥 = 𝜑1𝜑3, 𝑦 = 𝜑1𝜑4, 𝑧 = 𝜑2𝜑3, 𝑤 = 𝜑2𝜑4 (64)

The exceptional divisor is at 𝜑3 = 𝜑4 = 0 if 𝑟 > 0 and defined by

{(𝜑1, 𝜑2) : |𝜑1|2 + |𝜑2|2 − 𝑟 = 0}/{𝑈(1) : (𝜑1, 𝜑2) ↦→ (𝑒𝑖𝛼𝜑1, 𝑒
𝑖𝛼𝜑2)} (65)

∙ The geometric transition from resolved conifold to 𝑇 *𝑆3 is by considering it as a degenerate equation.
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5 Topological twists

∙ The pair of combinations of SUSY generators

𝑄𝐴 = 𝑄+ +𝑄−, 𝑄𝐵 = 𝑄+ +𝑄− (66)

are scalar wrt the twister rotations

𝑀𝐴 = 𝑀 + 𝐹𝑉 , 𝑀𝐵 = 𝑀 + 𝐹𝐴 (67)

This allows to define them on the curved Rhiman surface, as one don’t need a covariantly constant spinor
in order to have vanishing SUSY variation

𝛿𝑆 =

∫︁
Σ

(︁
∇𝜇𝜖+𝐺

𝜇
− −∇𝜇𝜖−𝐺

𝜇
+ −∇𝜇𝜖+𝐺

𝜇

− + ∇𝜇𝜖−𝐺
𝜇

+

)︁
. (68)

The theory on the curved surface is obtained by gauging the new rotation group.

∙ The chiral ring are so operators, that
[𝑄𝐵 ,𝒪] = 0 (69)

Their translations preserve cohomology classes

𝑖

2
(𝜕0 + 𝜕1)𝒪 = {𝑄𝐵 , [𝑄+,𝒪]}, 𝑖

2
(𝜕0 − 𝜕1)𝒪 = {𝑄𝐵 , [𝑄−,𝒪]} (70)

Morover, one can show in examples that

𝑇𝜇𝜈 = {𝑄𝐵 , 𝑏𝜇𝜈} (71)

So one can define multiplication in cohomologies by

𝜑𝑖𝜑𝑗 = 𝜑𝑘𝐶
𝑘
𝑖𝑗 + [𝑄𝐵 ,Λ] (72)

without reference to a particular points. Using two-point functions on 𝑆2

𝜂𝑖𝑗 = ⟨𝜑𝑖 𝜑𝑗⟩0 (73)

one can relate structure constants to three point functions on sphere by

𝐶𝑖𝑗𝑘 = ⟨𝜑𝑖 𝜑𝑗 𝜑𝑘⟩0 = 𝜂𝑖𝑙𝐶
𝑙
𝑗𝑘 (74)

All the same is applicable to twisted chiral ring of 𝐴-twisted theory.

∙ The statement of mirror-symmetry is that

∙ Standard logic of super-symmetry defines SUSY vacuum states

5.1 A-twist

We consider here non-linear sigma model.

∙ The shifted fields are

𝜒𝑖 = 𝜓𝑖
−, 𝜒𝑖̄ = 𝜓

𝑖̄

+, 𝜌𝑖̄𝑧 = 𝜓
𝑖̄

−, 𝜌𝑖𝑧 = 𝜓𝑖
+, (75)

With the action

𝑆 =

∫︁
𝑑2𝑧𝑔𝑖𝑗̄ℎ

𝜇𝜈𝜕𝜇𝜑
𝑖𝜕𝜈𝜑

𝑗̄
√
ℎ− 𝑖𝑔𝑖𝑗̄𝜌

𝑗̄
𝑧𝐷𝑧𝜒

𝑖 + 𝑖𝑔𝑖𝑗̄𝜌
𝑖
𝑧𝐷𝑧𝜒

𝑗̄ − 1

2
𝑅𝑖𝑘̄𝑗𝑙̄𝜌

𝑖
𝑧𝜒

𝑖𝜌𝑘̄𝑧𝜒
𝑙̄. (76)

∙ The only remaining SUSY transform got 𝜖+ = 𝜖− = 0, 𝜖+ = 𝜖− = 𝜖

𝛿𝜑𝑖 = 𝜖+𝜒
𝑖, 𝛿𝜑

𝑖̄
= 𝜖−𝜒

𝑖̄, 𝛿𝜌𝑖𝑧 = 2𝑖𝜖−𝜕𝑧𝜑
𝑖+𝜖+Γ𝑖

𝑗𝑘𝜌
𝑗
𝑧𝜒

𝑘, 𝛿𝜌𝑖̄𝑧 = −2𝑖𝜖+𝜕𝑧𝜑
𝑖̄
+𝜖−Γ𝑖̄

𝑗̄𝑘̄𝜌
𝑘̄
𝑧𝜒

𝑗̄ , 𝛿𝜒𝑖 = 𝛿𝜒𝑖̄ = 0

(77)
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∙ The chiral ring is isomorphic to 𝐻*
𝐷𝑅(𝑋) with elements represented by

𝜔𝑖1,...,𝑖𝑝,𝑗̄1,...,𝑗̄𝑞 (𝜑)𝜒𝑖1 ...𝜒𝑖𝑝𝜒𝑗̄1 ...𝜒𝑗̄𝑞 , 𝑄− → 𝜕, 𝑄+ → 𝜕 (78)

We don’t use 𝜌 as we can’t create zero-form using it, and not using a metric. The corresponding charges
if ≀ ∈ 𝐻𝑝𝑖,𝑞𝑖(𝑋) are

𝑞𝑉 = −𝑝𝑖 + 𝑞𝑖, 𝑞𝐴 = 𝑝𝑖 + 𝑞𝑖 (79)

Vector symmetry is not anomalous so
∑︀
𝑝𝑖 =

∑︀
𝑞𝑖. The axial anomaly is

#(𝜒 zero mode)−#(𝜌 zero mode) = 2

∫︁
Σ

𝜑*𝑐1(𝑋)+2(1−𝑔)dim𝑋 = 2(𝑐1(𝑋)·𝛽)+2(1−𝑔)dim𝑋 = 2𝑘 (80)

so ∑︁
𝑝𝑖 =

∑︁
𝑞𝑖 = 𝑘 (81)

∙ The localization locus is 𝜕𝑧𝜑
𝑖 = 0. The only part of the action, which contributes is∫︁

Σ

𝜑*(𝜔 − 𝑖𝐵) (82)

The bosonic and fermionic determinant cancel each other, so

⟨𝒪1...𝒪𝑠⟩ = 𝑒−(𝜔−𝑖𝐵)·𝛽
∫︁

ℳ(𝑋,𝛽)

𝑒𝑣*1𝜔1 ∧ ... ∧ 𝑒𝑣*𝑠𝜔𝑠 (83)

where we take pull-back along the map

𝑒𝑣𝑖 : ℳΣ(𝑋,𝛽) → 𝑋, 𝜑 ↦→ 𝜑(𝑥𝑖) (84)

Note, that 𝜔 · 𝛽 ≥ 0 so in the large volume limit, when 𝛽 = 0 dominates, all what remain is integral over
𝑋

ℳΣ(𝑋, 0) = 𝑋 (85)

So, from selection rules we deal with genus 0, and the number of operator is so, that

⟨𝒪1, ...,𝒪𝑠⟩0 =

∫︁
𝑋

𝜔1 ∧ ... ∧ 𝜔𝑠 = #(𝐷1 ∩ ... ∩𝐷𝑠) (86)

∙ The path integral is depending only on twisted-chiral parameters holomorphically, so only on Kahler
deformations.

∙ For the case of C𝑃 1 there is a pair of cohomology classes

– Operator 𝑃 corresponding to 1 ∈ 𝐻0(C𝑃 2), dual to whole C𝑃 2

– Operator 𝑄 corresponding to 𝐻 ∈ 𝐻2(C𝑃 2), dual to point so
∫︀
C𝑃 1 𝐻 = 1

– The only non-trivial two-point function is ⟨𝑃𝑄⟩ = 1

– The only non-trivial three-point function is ⟨𝑄𝑄𝑄⟩ =
∑︀

𝑛∈Z⟨𝑄𝑄𝑄⟩𝑛.
– Since 𝑐1(C𝑃 1) = 2𝐻, the axial anomaly for degree 𝑛map is 2𝑘 with 𝑘 = 𝑐1(C𝑃 1)𝛽+dim C𝑃 1(1−0) =

2𝑛+ 1. Since axial charge for 𝑄 is two, only degree one map contribute.

– As the class is Poincare-dual to the class of the point, the correlation function computes number of
maps from three points to three points. Thus

⟨𝑄𝑄𝑄⟩ = ⟨𝑄𝑄𝑄⟩1 = 𝑒−𝑡. (87)

– So the quantum cohomology of C𝑃 1 is

𝑃𝑃 = 𝑃, 𝑃𝑄 = 𝑄𝑃 = 𝑄, 𝑄𝑄 = 𝑒−𝑡𝑃 (88)
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5.2 B-twist

∙ We name new fields by

which are sections of

∙ The redefined SYSY transformations are given by

∙ The closed operators are holomorphic functions on 𝑋. The 𝑄𝐵 exact terms are those, which can be
presented in the form

𝑣𝑊 = 𝑣𝑖𝜕𝑖𝑊 (89)

for some holomorphic vector field 𝑣. So the chiral ring is

C[𝜑1, ..., 𝜑𝑛]/(𝜕𝑖𝑊 ) (90)

∙ The action in redefined fields is .. or extracting 𝑄-exact terms ...

∙ The path integral localizes to

⟨𝑂𝑓1 ...𝑂𝑓𝑠⟩𝑔 =

𝑁∑︁
𝑖=1

𝑓1(𝑦𝑖)...𝑓𝑠(𝑦𝑖)(det𝜕𝑖𝜕𝑗𝑊 )𝑔−1(𝑦𝑖) (91)

where the sum goes over critical points of potential.

∙ The path integral is depending only on chiral parameters holomorphically.

∙ The anomaly is

so the only allowed correlators are

∙ One can represent

∙ The mirror of C𝑃 1 is C× with 𝑊 = 𝑧 + 𝑒−𝑡𝑧−1.

– The chiral ring is C[𝑧]/(𝑧2 − 𝑒−𝑡).

– The critical points are 𝑧 = ±𝑒−𝑡/2.

– The only non-trivial three-point functions in genus zero are

⟨11𝑧⟩ = 1, ⟨𝑧𝑧𝑧⟩ = 𝑒−𝑡 (92)

which coincide with 𝐴-model three point functions for C𝑃 1.
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